
E6998.3
Adv. Programming Languages & Compilers
Data-Flow Analysis
September 11, 2012

Lecture Outline

1. The data-flow analysis schema
2. Reaching definitions
3. Control-flow equations for reaching definitions
4. Iterative algorithm for reaching definitions
5. Live-variable analysis
6. Basic questions about the iterative algorithm
7. Semilattices
8. Data-flow analysis frameworks
9. The iterative algorithm for general frameworks
10.Meaning of a data-flow solution

1

1. The Data-Flow Analysis Schema

• A data-flow value at a program point represents
the set of all possible program states that can be
observed for that point, for example, all
definitions in the program that can reach that
point.

• Let IN[s] and OUT[s] be the set of data-flow

values before and after a statement s in a
program.

• A transfer function fs relates the data-flow values

before and after a statement s.

• In a forward data-flow problem

OUT[s] = fs(IN[s])

In a backward data-flow problem

IN[s] = fs(OUT[s])

2

• A transfer function can be extended to a basic

block by composing the transfer functions for all
the statements in the block. Thus in a forward
data-flow problem such as reaching definitions
for a block B,

OUT[B] = fB(IN[B])

• Given a flow graph, in a forward data-flow

problem the IN set of a basic block B is computed
from the OUT sets of B’s predecessors:

IN[B] = ∪P a predecessor of B OUT[P]

• In a backward data-flow problem such as live
variable analysis:

IN[B] = fB(OUT[B])

OUT[B] = ∪S a successor of B IN[s]

• The data-flow problem for a flow graph is to

compute the values of IN[B] and OUT[B] for all
blocks B in the flow graph.

3

2. Reaching Definitions

• A definition d reaches a program point p if there

is a path from the point immediately following d to
p such that d is not killed along that path.

• Flow graph with gen and kill sets for each basic
block:

ENTRY

• genB contains all definitions in block B that
are visible immediately after block B.

• killB is the union of all definitions killed by the

statements in block B.

d1: i = m – 1
d2: j = n
d3: a = u1

d4: i = i + 1
d5: j = j - 1

d6: a = u2

d7: i = u3

EXIT

genB1 = { d1, d2, d3 }
B1

killB1 = { d4, d5, d6, d7 }

genB2 = { d4, d5 }
B2

killB2 = { d1, d2, d7 }

genB3 = { d6 }
B3

killB3 = { d3 }

genB4 = { d7 } B4

killB4 = { d1, d4 }

4

3. Control-Flow Equations for Reaching
Definitions

• The reaching definitions problem is defined

by the following control-flow equations:

OUT[ENTRY] = empty_set

For all blocks B other than ENTRY:

OUT[B] = genB ∪ (IN[B] ─ killB)

IN[B] = ∪P a predecessor of B OUT[P]

5

4. Iterative Algorithm for Reaching Definitions

• Given a flow graph for which the gen and kill sets
have been computed for each block, we can
compute the set of definitions reaching the entry
and exit of each block B using the following
iterative algorithm:

OUT[ENTRY] = empty_set;
for (each block B other than ENTRY)
 OUT[B] = empty_set;
while (changes to any OUT occur)
 for (each block B other than ENTRY) {

 IN[B] = ∪P a predecessor of B OUT[P];
 OUT[B] = genB ∪ (IN[B] ─ killB);

 }

6

• Example: Let us represent a set of
definitions in the flow graph above by a bit
vector. Thus 1110000 represents the set
{ d1, d2, d3 }. The following table
represents the values taken on by the IN
and OUT sets after each iteration of the
while-loop of this algorithm. The superscript
denotes the iteration. The initial values of
OUT, computed by the second statement of
the algorithm, are indicated by the
superscript 0.

Block B OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000
B2 000 0000 111 0000 001 1100 111 0111 001 1110
B3 000 0000 001 1100 000 1110 001 1110 000 1110
B4 000 0000 001 1110 001 0111 001 1110 001 0111
EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

IN and OUT sets for the basic blocks of flowgraph in Section 3

7

5. Live-Variable Analysis

• In live-variable analysis we want to determine for

each variable x and each program point p
whether the value x at p could be used along
some path in the flow graph starting at p. If so,
we say x is live at p; if not, x is dead at p. Live-
variable analysis is crucial for register allocation.

• Live-variable analysis is an example of a

backwards data-flow problem.

• Define defB as the set of variables defined in B

prior to any use of that variable in B. In the flow
graph above defB2 is the empty set. Note that in
the statement d4: i = i + 1, the variable i is
used on the right-hand side of the assignment
before it is defined. Similarly, in the statement
d5: j = j - 1, the variable j is used on the
right-hand side of the assignment before it is
defined. It is for these reasons defB2 is empty.

Define useB as the set of variables whose values
may be used in B prior to any definition of the
variable. In the flow graph above useB2 = { i, j }.

8

• Data-flow equations for live-variable analysis:

IN[EXIT] = empty_set

For all blocks B other than EXIT:

IN[B] = useB ∪ (OUT[B] ─ defB)

OUT[B] = ∪S a predecessor of B IN[S]

• Given a flow graph for which the def and use sets

have been computed for each block, we can
compute the set of variables live on entry and exit
of each block B using the following iterative
algorithm:

IN[EXIT] = empty_set;
for (each block B other than EXIT)
 IN[B] = empty_set;
while (changes to any IN occur)
 for (each block B other than EXIT)
 {

 OUT[B] = ∪S a successor of B IN[S];
 IN[B] = useB ∪ (OUT[B] ─ defB);

}

9

• Unlike reaching definitions, the information flow

for liveness travels backward in the data-flow
graph, opposite to the direction of control flow.

• However, as for reaching definitions, live-variable

analysis uses union as the “meet” operator. We
are interested in whether any path with the
desired properties exists, not whether something
is true along all paths.

• Also as for reaching definitions, the solution to

the data-flow equation is not necessarily unique.
We want the solution with the smallest sets of live
variables.

10

6. Basic Questions about the Iterative
Algorithm

1) When is the iterative algorithm correct?

2) How precise is the solution?

3) Under what conditions does the iterative
algorithm converge?

4) What is the meaning of the solution to the
data-flow equations?

11

7. Semilattices

The following definitions are fundamental.

o A semilattice is a set V and a binary meet
operator Λ such that for all x, y, z in V:

1. x Λ x = x (meet is idempotent)
2. x Λ y = y Λ x (meet is

commutative)
3. x Λ (y Λ z) = (x Λ y) Λ z (meet is

associative)

o A semilattice has a top element TOP such
that for all x in V, TOP Λ x = x.

o Optionally, a semilattice may have a
bottom element BOTTOM such that for all
x in V, BOTTOM Λ x = BOTTOM.

12

o The meet operator of a semilattice defines
a partial order ≤ on V: x ≤ y if and only if
x Λ y = x.

o Greatest lower bound
 A greatest lower bound (glb) of x and

y is an element g such that
1. g ≤ x,
2. g ≤ y, and
3. If z is any element such that z ≤ x

and z ≤ y, then z ≤ g.

13

8. Data-Flow Analysis Frameworks

• A data-flow analysis framework (D, V, Λ, F)
consists of

1. A direction D of the the data flow. D can be
forwards or backwards.

2. A semilattice (V, Λ).
3. A family F of transfer functions from V to V.

• The family F of transfer functions has two
properties:

1. F has an identity function I such that I(x) = x
for all x in V.

2. F is closed under composition; i.e., for f and
g in F, the function h defined by h(x) = g(f(x))
is in F.

• A framework is monotone if for all x and y in V
and f in F, x ≤ y implies f(x) ≤ f(y).

• A framework is distributive if for all x and y in V
and f in F, f(x Λ y) = f(x) Λ f(y).

14

9. The Iterative Algorithm for General
 Frameworks

• The iterative algorithm takes as input:
o A data-flow graph with an ENTRY and EXIT

node.
o A direction, forward or backward.
o A set of values V for IN and OUT.
o A meet operator Λ on V such that (V, Λ)

forms a semilattice.
o A set of transfer functions for the blocks of

the data-flow graph.
o A constant value for the boundary condition:

for forward frameworks vENTRY; for backward
framewors vEXIT.

• The iterative algorithm produces as output the
sets IN[B] and OUT[B] for each block B in the
data-flow graph.

• A maximum fixed point (MFP) is a solution with
the property that in any other solution, the values
of IN[B] and OUT[B] are ≤ the corresponding
values of the MFP.

15

• The iterative algorithm for a forward data-flow
problem:

OUT[EXIT] = v ; ENTRY

for (each block B ≠ EXIT)
 OUT[B] = TOP;
while (changes to any OUT occur)
 for (each block B ≠ ENTRY) {
 IN[B] = ΛP a predecessor

 OUT[B] = f
 of BOUT[P];
B(IN[B]);

 }

• fB is the transfer function for block B.

16

• The iterative algorithm for a backward data-flow
problem:

IN[EXIT] = v ; EXIT

for (each block B ≠ EXIT)
 IN[B] = TOP;
while (changes to any IN occur)
 for (each block B ≠ EXIT) {
 OUT[B] = Λ f BS a successor o

 IN[B] = f
IN[S];

B(OUT[B]);
 }

• fB is the transfer function for block B.

17

• Important properties of the algorithm:
o If the algorithm converges, the result is a

solution to the data-flow equations.

o If the framework is monotone, the solution is
the MFP of the data-flow equations.

o If the semilattice of the framework is
monotone and of finite height, the algorithm
is guaranteed to converge.

18

10. Meaning of a Data-Flow Solution

• For a forward data-flow framework, the IDEAL[B]
solution for a block B is the meet over all feasible
paths P of fP(vENTRY).

o Any answer greater than IDEAL is incorrect.
o Any answer smaller than or equal to IDEAL

is safe.

• MOP[B], the meet over all paths solution,
assumes that every path in the data-flow graph
can be taken, but some of these paths may not
be feasible. Thus, MOP[B] ≤ IDEAL[B] for all
blocks B.

• The MFP solution is always smaller than or equal
to the MOP solution. Therefore, MFP ≤ MOP ≤
IDEAL.

19

11. Reference

• Compilers: Principles, Techniques, & Tools

(second edition), Aho, Lam, Sethi, Ullman,
Chapter 9.

aho@cs.columbia.edu

20

	E6998.3
	Adv. Programming Languages & Compilers
	Data-Flow Analysis
	September 11, 2012
	Lecture Outline
	The Data-Flow Analysis Schema
	A data-flow value at a program point represents the set of a
	Let IN[s] and OUT[s] be the set of data-flow values before a
	A transfer function fs relates the data-flow values before a
	In a forward data-flow problem
	OUT[s] = fs(IN[s])
	In a backward data-flow problem
	IN[s] = fs(OUT[s])
	A transfer function can be extended to a basic block by comp
	OUT[B] = fB(IN[B])
	Given a flow graph, in a forward data-flow problem the IN se
	IN[B] = (P a predecessor of B OUT[P]
	In a backward data-flow problem such as live variable analys
	IN[B] = fB(OUT[B])
	OUT[B] = (S a successor of B IN[s]
	The data-flow problem for a flow graph is to compute the val
	Reaching Definitions
	A definition d reaches a program point p if there is a path
	Flow graph with gen and kill sets for each basic block:
	genB contains all definitions in block B that are visible im
	killB is the union of all definitions killed by the statemen
	Control-Flow Equations for Reaching Definitions
	The reaching definitions problem is defined by the following
	OUT[ENTRY] = empty_set
	For all blocks B other than ENTRY:
	OUT[B] = genB ((IN[B] - killB)
	IN[B] = (P a predecessor of B OUT[P]
	Iterative Algorithm for Reaching Definitions
	Given a flow graph for which the gen and kill sets have been
	OUT[ENTRY] = empty_set;
	for (each block B other than ENTRY)
	OUT[B] = empty_set;
	while (changes to any OUT occur)
	for (each block B other than ENTRY) {
	IN[B] = (P a predecessor of B OUT[P];
	OUT[B] = genB ((IN[B] - killB);
	}
	Example: Let us represent a set of definitions in the flow g
	Block B
	OUT[B]0
	IN[B]1
	OUT[B]1
	IN[B]2
	OUT[B]2
	B1
	000 0000
	000 0000
	111 0000
	000 0000
	111 0000
	B2
	000 0000
	111 0000
	001 1100
	111 0111
	001 1110
	B3
	000 0000
	001 1100
	000 1110
	001 1110
	000 1110
	B4
	000 0000
	001 1110
	001 0111
	001 1110
	001 0111
	EXIT
	000 0000
	001 0111
	001 0111
	001 0111
	001 0111
	IN and OUT sets for the basic blocks of flowgraph in Section
	Live-Variable Analysis
	In live-variable analysis we want to determine for each vari
	Live-variable analysis is an example of a backwards data-flo
	Define defB as the set of variables defined in B prior to an
	Define useB as the set of variables whose values may be used
	Data-flow equations for live-variable analysis:
	IN[EXIT] = empty_set
	For all blocks B other than EXIT:
	IN[B] = useB ((OUT[B] - defB)
	OUT[B] = (S a predecessor of B IN[S]
	Given a flow graph for which the def and use sets have been
	IN[EXIT] = empty_set;
	for (each block B other than EXIT)
	IN[B] = empty_set;
	while (changes to any IN occur)
	for (each block B other than EXIT)
	{
	OUT[B] = (S a successor of B IN[S];
	IN[B] = useB ((OUT[B] - defB);
	}
	Unlike reaching definitions, the information flow for livene
	However, as for reaching definitions, live-variable analysis
	Also as for reaching definitions, the solution to the data-f
	Basic Questions about the Iterative Algorithm
	When is the iterative algorithm correct?
	How precise is the solution?
	Under what conditions does the iterative algorithm converge
	What is the meaning of the solution to the data-flow equatio
	Semilattices
	Data-Flow Analysis Frameworks
	The Iterative Algorithm for General
	Frameworks
	Meaning of a Data-Flow Solution
	Reference
	Compilers: Principles, Techniques, & Tools (second edition),
	aho@cs.columbia.edu

