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1.  The Data-Flow Analysis Schema 
 

• A data-flow value at a program point represents 
the set of all possible program states that can be 
observed for that point, for example, all 
definitions in the program that can reach that 
point. 

 
• Let IN[s] and OUT[s] be the set of data-flow 

values before and after a statement s in a 
program. 

 
• A transfer function fs relates the data-flow values 

before and after a statement s. 
 
• In a forward data-flow problem 

 
OUT[ s ] = fs(IN[ s ]) 

 
In a backward data-flow problem 

 
IN[ s ] = fs(OUT[ s ]) 
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• A transfer function can be extended to a basic 

block by composing the transfer functions for all 
the statements in the block. Thus in a forward 
data-flow problem such as reaching definitions 
for a block B, 

 
OUT[ B ] = fB(IN[ B ]) 

 
• Given a flow graph, in a forward data-flow 

problem the IN set of a basic block B is computed 
from the OUT sets of B’s predecessors: 

 
IN[ B ] = ∪P a predecessor of B OUT[ P ] 

 
 
 

• In a backward data-flow problem such as live 
variable analysis: 

 
IN[ B ] = fB(OUT[ B ]) 

 
OUT[ B ] = ∪S a successor of B IN[ s ] 

 
• The data-flow problem for a flow graph is to 

compute the values of IN[ B ] and OUT[ B ] for all 
blocks B in the flow graph. 
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2.  Reaching Definitions 
 
• A definition d reaches a program point p if there 

is a path from the point immediately following d to 
p such that d is not killed along that path. 

• Flow graph with gen and kill sets for each basic 
block: 

 

ENTRY

 
 

• genB contains all definitions in block B that 
are visible immediately after block B. 

 
• killB is the union of all definitions killed by the 

statements in block B. 
 

d1: i = m – 1
d2: j = n 
d3: a = u1 

d4: i = i + 1
d5: j = j - 1 

d6: a = u2 

d7: i = u3

EXIT

genB1 = { d1, d2, d3 } 
B1  

killB1 = { d4, d5, d6, d7 } 

genB2 = { d4, d5 } 
B2  

killB2 = { d1, d2, d7 } 

genB3 = { d6 } 
B3  

killB3 = { d3 } 

genB4 = { d7 } B4 
 
killB4 = { d1, d4 } 
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3. Control-Flow Equations for Reaching 
Definitions 

 
• The reaching definitions problem is defined 

by the following control-flow equations: 
 

OUT[ ENTRY ] = empty_set 
 

For all blocks B other than ENTRY: 
 

OUT[ B ] = genB  ∪ ( IN[ B ] ─ killB  ) 
 

IN[ B ] = ∪P a predecessor of B OUT[ P ] 
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4. Iterative Algorithm for Reaching Definitions 
 

• Given a flow graph for which the gen and kill sets 
have been computed for each block, we can 
compute the set of definitions reaching the entry 
and exit of each block B using the following 
iterative algorithm: 

 
OUT[ENTRY] = empty_set; 
for (each block B other than ENTRY) 
   OUT[B] = empty_set; 
while (changes to any OUT occur) 
   for (each block B other than ENTRY) { 

          IN[B] = ∪P a predecessor of B OUT[P]; 
          OUT[B] = genB  ∪ (IN[B] ─ killB); 

   } 
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• Example: Let us represent a set of 
definitions in the flow graph above by a bit 
vector.  Thus 1110000 represents the set    
{ d1, d2, d3 }.  The following table 
represents the values taken on by the IN 
and OUT sets after each iteration of the 
while-loop of this algorithm. The superscript 
denotes the iteration. The initial values of 
OUT, computed by the second statement of 
the algorithm, are indicated by the 
superscript 0. 

 
 

Block B OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000 
B2 000 0000 111 0000 001 1100 111 0111 001 1110 
B3 000 0000 001 1100 000 1110 001 1110 000 1110 
B4 000 0000 001 1110 001 0111 001 1110 001 0111 
EXIT 000 0000 001 0111 001 0111 001 0111 001 0111 

 
IN and OUT sets for the basic blocks of flowgraph in Section 3 
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5. Live-Variable Analysis 
 
• In live-variable analysis we want to determine for 

each variable x and each program point p 
whether the value x at p could be used along 
some path in the flow graph starting at p.  If so, 
we say x is live at p; if not, x is dead at p. Live-
variable analysis is crucial for register allocation. 

 
• Live-variable analysis is an example of a 

backwards data-flow problem. 
 
• Define defB as the set of variables defined in B 

prior to any use of that variable in B.  In the flow 
graph above defB2 is the empty set. Note that in 
the statement d4: i = i + 1, the variable i is 
used on the right-hand side of the assignment 
before it is defined. Similarly, in the statement     
d5: j = j - 1, the variable j is used on the 
right-hand side of the assignment before it is 
defined. It is for these reasons defB2 is empty. 

 
Define useB as the set of variables whose values 
may be used in B prior to any definition of the 
variable.  In the flow graph above useB2 = { i, j }. 
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• Data-flow equations for live-variable analysis: 

 
IN[ EXIT ] = empty_set 

 
For all blocks B other than EXIT: 
 

IN[ B ] = useB  ∪ ( OUT[ B ] ─ defB  ) 
 

OUT[ B ] = ∪S a predecessor of B IN[ S ] 
 

 
• Given a flow graph for which the def and use sets 

have been computed for each block, we can 
compute the set of variables live on entry and exit 
of each block B using the following iterative 
algorithm: 

 
 

IN[EXIT] = empty_set; 
for (each block B other than EXIT) 
  IN[B] = empty_set; 
while (changes to any IN occur) 
  for (each block B other than EXIT) 
   { 

        OUT[B] = ∪S a successor of B IN[S]; 
                   IN[B] = useB  ∪ (OUT[B] ─ defB); 

} 
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• Unlike reaching definitions, the information flow 

for liveness travels backward in the data-flow 
graph, opposite to the direction of control flow. 

 
• However, as for reaching definitions, live-variable 

analysis uses union as the “meet” operator.  We 
are interested in whether any path with the 
desired properties exists, not whether something 
is true along all paths. 

 
• Also as for reaching definitions, the solution to 

the data-flow equation is not necessarily unique.  
We want the solution with the smallest sets of live 
variables. 
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6.  Basic Questions about the Iterative  
Algorithm 

 

1)  When is the iterative algorithm correct? 

 

2)  How precise is the solution? 

 

3)  Under what conditions does the iterative  
algorithm converge? 

 

4)  What is the meaning of the solution to the 
data-flow equations? 
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7.  Semilattices 

The following definitions are fundamental. 

o A semilattice is a set V and a binary meet 
operator Λ such that for all x, y, z in V: 

1. x Λ x = x (meet is idempotent)  
2. x Λ y = y Λ x (meet is 

commutative)  
3. x Λ (y Λ z) = (x Λ y) Λ z (meet is 

associative)  

 

o A semilattice has a top element TOP such 
that for all x in V, TOP Λ x = x. 

 

o Optionally, a semilattice may have a 
bottom element BOTTOM such that for all 
x in V, BOTTOM Λ x = BOTTOM. 
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o The meet operator of a semilattice defines 
a partial order ≤ on V: x ≤ y if and only if   
x Λ y = x. 

 

o Greatest lower bound 
 A greatest lower bound (glb) of x and 

y is an element g such that 
1. g ≤ x, 
2. g ≤ y, and  
3. If z is any element such that z ≤ x 

and z ≤ y, then z ≤ g. 
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8. Data-Flow Analysis Frameworks 

• A data-flow analysis framework (D, V, Λ, F) 
consists of 

1. A direction D of the the data flow. D can be 
forwards or backwards. 

2. A semilattice (V, Λ). 
3. A family F of transfer functions from V to V. 

 

• The family F of transfer functions has two 
properties: 

1. F has an identity function I such that I(x) = x 
for all x in V. 

2. F is closed under composition; i.e., for f and 
g in F, the function h defined by h(x) = g(f(x)) 
is in F. 

 

• A framework is monotone if for all x and y in V 
and f in F, x ≤ y implies f(x) ≤ f(y). 

 

• A framework is distributive if for all x and y in V 
and f in F, f(x Λ y) = f(x) Λ f(y). 
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9.  The Iterative Algorithm for General 
    Frameworks 

• The iterative algorithm takes as input: 
o A data-flow graph with an ENTRY and EXIT 

node. 
o A direction, forward or backward. 
o A set of values V for IN and OUT. 
o A meet operator Λ on V such that (V, Λ) 

forms a semilattice. 
o A set of transfer functions for the blocks of 

the data-flow graph. 
o A constant value for the boundary condition: 

for forward frameworks vENTRY; for backward 
framewors vEXIT. 

 

• The iterative algorithm produces as output the 
sets IN[B] and OUT[B] for each block B in the 
data-flow graph. 

 

• A maximum fixed point (MFP) is a solution with 
the property that in any other solution, the values 
of IN[B] and OUT[B] are ≤ the corresponding 
values of the MFP. 
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• The iterative algorithm for a forward data-flow 
problem: 

 
 
OUT[EXIT] = v ; ENTRY

for (each block B ≠ EXIT) 
   OUT[B] = TOP; 
while (changes to any OUT occur) 
   for (each block B ≠ ENTRY) { 
      IN[B] = ΛP a predecessor 

      OUT[B] = f
 of BOUT[P]; 
B(IN[B]); 

   } 
 

• fB is the transfer function for block B. 
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• The iterative algorithm for a backward data-flow 
problem: 

 
IN[EXIT] = v ; EXIT

for (each block B ≠ EXIT) 
   IN[B] = TOP; 
while (changes to any IN occur) 
   for (each block B ≠ EXIT) { 
      OUT[B] = Λ f BS a successor o

      IN[B] = f
IN[S]; 

B(OUT[B]); 
   } 

• fB is the transfer function for block B. 
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• Important properties of the algorithm: 
o If the algorithm converges, the result is a 

solution to the data-flow equations. 

 

o If the framework is monotone, the solution is 
the MFP of the data-flow equations. 

 

 

o If the semilattice of the framework is 
monotone and of finite height, the algorithm 
is guaranteed to converge. 
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10. Meaning of a Data-Flow Solution 

• For a forward data-flow framework, the IDEAL[B] 
solution for a block B is the meet over all feasible 
paths P of fP(vENTRY). 

o Any answer greater than IDEAL is incorrect. 
o Any answer smaller than or equal to IDEAL 

is safe. 

 

• MOP[B], the meet over all paths solution, 
assumes that every path in the data-flow graph 
can be taken, but some of these paths may not 
be feasible. Thus, MOP[B] ≤ IDEAL[B] for all 
blocks B. 

 

• The MFP solution is always smaller than or equal 
to the MOP solution. Therefore, MFP ≤ MOP ≤ 
IDEAL. 
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11. Reference 
 
• Compilers: Principles, Techniques, & Tools 

(second edition), Aho, Lam, Sethi, Ullman, 
Chapter 9. 
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