
Chronicler
Lightweight Recording to Reproduce Field Failures

Jonathan Bell, Nikhil Sarda, Gail Kaiser

Department of Computer Science
Columbia University in the City of New York

New York City, NY 10027

jbell@cs.columbia.edu, ns2847@columbia.edu,
gail@cs.columbia.edu

September x, 2012



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Motivation

Software errors are costly!

Traditional testing strategies are useful but inadequate

Complex software has a large state space.

Errors occurring in the field are hard to debug

They occur under a very specific set of circumstances.
They may involve multiple systems.

Writing good bug reports takes skill

Bug reports for FOSS projects require steps to replicate
and/or a test case. Cannot expect the average user to
make this kind of an effort.
Alternative is to use automatic error reporting tools, but
these do not provide any insight into the error (symptom
vs underlying cause)

With Chronicler, we aim to make errors in the field easier to
capture and debug without requiring any effort from the end
user.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

But before we proceed ...

A quick tour of modern software testing strategies

Test case generation

In-vivo testing

Metamorphic testing

Bug finding



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Test case generation

Software engineers typically write unit tests as sanity checks for
their code. These tools supplement these efforts

Randoop: Feedback directed random testing

Palus: Combined static and dynamic test generation

Ballerina: Test generation to uncover races



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

RANDOOP

Feedback directed random testing

Generates random input that conforms with the program
input space

Randomized creation of new test input depends on
feedback from previous tests

How do we evaluate such a tool?

Improve coverage

Find new bugs!



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

RANDOOP contd.

Program in, test suite out

Input

Class under test (CUT)
Time limit
Set of contracts

Method contracts (e.g. a call to hashcode() will not result
in an exception)
Object invariants (e.g. o.equals(o) will return true)

Output: Contract violating test cases



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

RANDOOP contd.

Randoop generates test cases that disclose bugs
But what is the secret ingredient?

Generates random input that conforms with the program
input space

Randomized creation of new test input depends on
feedback from previous tests

How do we evaluate such a tool?

Improve coverage

Find new bugs!



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

How is it done?

Build test inputs incrementally

What is a test input? A sequence of valid method calls for
a class under test (CUT)
New sequences will depend on older ones

Execute them as they are created

Use feedback to guide generation

The idea is to keep sequences that work while discarding those
that don’t. For valid sequences, augment them with randomly
generated sequences.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Evaluation of RANDOOP

Subjects:

JDK 2 library (53k loc, 272 classes)

Test cases input: 32, Error revealing cases: 29, distinct
errors: 8

Apache Commons (114k loc, 974 classes over 5 libraries)

Test cases input: 187, Error revealing cases: 29, distinct
errors: 6

.Net framework (582k loc, 3330 classes)

Test cases input: 192, Error revealing cases: 192, distinct
errors: 192



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Ballerina

Random testing to detect concurrency bugs
Central thesis: Most concurrency bugs occur in the presence of
two threads

Generates randomized sequences of methods similar to
RANDOOP

Adds additional threading code to trigger concurrency
bugs

How do we evaluate such a tool?

Find new bugs!

Coverage as a metric is irrelevant here as it relates to testing all
possible paths that a program can take sequentially.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

How is it done?

Building the parallel prefix

Select two methods with the most number of parameters

Select sequential sequences to plug in after the methods

Create parameters which will be consumed by these
sequences

The idea is to create multithreaded code that acts on some
objects in a randomized manner in the hope that a concurrency
bug will manifest.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Sounds good, but...

One major problem with this approach is a lot of false positives
Ballerina deals with this problem using
handwav...err...statistics!

Select some key characteristics of the error (exception
thrown and method executed)

Cluster similar errors

Use randomized sampling to select error reports to analyze

Using Ballerina, three previously unknown bugs were found in
Apache Log4J and Apache Pool.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

In-vivo testing: Testing programs in the field

The idea is to test actively deployed programs in an
unobtrusive manner

One way is to instrument programs so that a method
execution results in a forked JVM that executes the
corresponding unit-test
Distribute tests to different machines or cores in order to
improve performance
Hash previously seen application states so that we only
test new states
Current research focus is on applying invivo testing to
security issues

Several open research questions:

Can we offload tests other systems? (GPUs for instance)
Classification of defects that can be detected by invivo
tests
Test sandboxing



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Metamorphic testing: Testing in the absence of
oracles

The idea is that even in the absence of testing oracles, we can
always test for invariants
Many applications reflect metamorphic properties that define a
relationship between pairs of inputs and outputs

Corduroy: A tool that allows developers to specify
metamorphic properties using JML

Amsterdam: Checks metamorphic properties at runtime
using execution traces

Current research focuses on automatically extracting
metamorphic properties from programs.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Bug finding

Modern tools for bug finding pioneered by Dawson Engler’s
group at Stanford U.
Coverity was founded by Engler’s students and makes use of
several ideas developed there
The most important one is belief analysis

Key idea: Programmer beliefs are reflected in source code
Checkers extract beliefs using templates. A simple one is
that ¡a¿ must accompany ¡b¿. Beliefs can also be
extracted by observing code.
Beliefs may be of two types: MUST and MAY
MUST beliefs are propagated for internal consistency
MAY beliefs are treated as MUST beliefs at first.
Statistical analysis is used to separate errors from
coincidences.

Other tools developed there include KLEE (symbolic execution
engine) and eXplode (system specific model checking).



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Back to Chronicler

Chronicler is an approach for in-vivo test case generation.
Some related work

RecrashJ

Scarpe

BugRedux

As we will see, each of these tools have weaknesses that
Chronicler seeks to address.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Some existing tools are inadequate

RecrashJ

Key ideas

Monitors a running JVM application and writes out a test
case in the event of an uncaught exception.
The principal idea is to record the parameters of each
method call. When generating the test case, use these
recorded parameters in that case.

Weaknesses

Extremely slow, 20x overhead in the worst case.
Things get especially bad with deep call stacks.
Does not work with some newer software.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Some existing tools are inadequate

Scarpe

Key ideas

Key idea is to record only a partial execution by isolating a
subsystem and capturing all information flowing in and out
of it.
When attempting to replay a bug in that subsystem, replay
those flows.

Weaknesses

Again, very slow. 10x overhead for some applications.
Not publicly available.
Very weak evaluation.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Some existing tools are inadequate

BugRedux: Recreating failure conditions from crash data

Key ideas

Log specific execution data and use symbolic execution to
guide generation of tests
Valid execution data; points of failure, call sequences,
execution trace.

Weaknesses

Ability to reproduce a failure accurately depends on
completeness of set of intermediate states logged
Because it uses symbolic execution, it is susceptible to
path explosion

But performance is reasonable and promising: 94% of bugs
observed were recreated (for Chronicler the figure is 100%)



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

The Chronicler approach

Key idea: Capture sources of non determinism by logging at a
layer above the Java API and replay those sources

Definition (Non-determinism)

Dependence on factors other than initial state and input.

What do we need to look out for?

All sources of user input (file.read(), buf.readLine())

Methods that invoke native calls (System.currentTimeMillis())

Nondeterministic API

Language VM (.NET CLR, JVM, etc)

Outside world (sources of 
nondeterminism)

Deterministic APIApplication

Chronicler

Language API

Similar approach as liblog and Mugshot except that we insert shims

at the JDK level



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Using Chronicler in the field

Figure: Workflow illustrating how Chronicler could be deployed in the
field

ChroniclerApplication

Instrumented for log

Instrumented for 
replay

Used in the 
field

Bug successfully 
reproduced in the lab

Chronicler generates
test case

Cr
ash
esDeployed

Bug fixed by developer

Creates

Crashes



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Implementation Details

API scanning

Mark all native methods as non deterministic

Recursively mark callers of above methods as ND

Non-determinism is propagated up the inheritance
heirarchy

Creating the recorder and replayer

Instrument bytecode to log results of ND method call

In the replayer, replace invocations to method call with
logged results

Special case for event driven systems (Swing)



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Implementation Details

Logging code is embedded inline into the bytecode
representation of the program

We also record events dispatched nondeterministically

Log is flushed after it is large enough

Uncaught exceptions are handled using a global exception
handler which writes out a test case

Logging is thread-safe and write protected using a barrier



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Implementation Details

Figure: A diagram illustrating Chronicler’s implementation strategy

In
 th

e 
la

b
In

 th
e 

fie
ld

In
 th

e 
la

b

Visit each class in the 
application

(Binary for Deployment)
Add logging code

(Binary for Replay in Lab)
Replace with replay code

Copy value at top of stack 
(completely cloning 

Objects)

Store cloned value and 
current thread identifier to 

log
Flush log to disk if full

Read top value of this 
thread's log

Advance pointer to next 
log entry

Advance to next log file if 
reached the end

Application running in the 
field needs to log

Execution replaying in the 
lab needs to read log

Find every invocation of 
nondeterministic methodsInstrumentation time



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Example

Note that we do not show object creation

Listing˜1: Bytecode to create a buffer and read a file into it

SIPUSH 5000
NEWARRAY T_CHAR
ASTORE 3
ALOAD 2: r
ALOAD 3: buf
ICONST_0
ALOAD 3: buf
ARRAYLENGTH
INVOKEVIRTUAL BufferedReader.read(char[], int,

int) : int <- Non deterministic method!
POP



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Example contd. : Recorder

Listing˜2: Bytecode modified for recorder

SIPUSH 5000
NEWARRAY T_CHAR
ASTORE 3
ALOAD 2: r
ALOAD 3: buf
ICONST_0
ALOAD 3: buf
ARRAYLENGTH
INVOKEVIRTUAL BufferedReader.read(char[], int,

int)
// Special case here, BufferedReader returns

an int and modifies char, in our case buf
// Create a copy of the topmost value on stack

and store it in the log
// Create a copy of buf and store it in our

log
POP



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Example contd. : Replayer

Listing˜3: Bytecode for the replayer

SIPUSH 5000
NEWARRAY T_CHAR
ASTORE 3
ALOAD 2: r
ALOAD 3: buf
ICONST_0
ALOAD 3: buf
ARRAYLENGTH
// Ignore this call: INVOKEVIRTUAL

BufferedReader.read(char[], int, int)
// Retrieve the return value of this call from

the log and push it onto the stack
// Retrieve the copy of buf in the log and use

System.ArrayCopy to copy it onto buf
POP



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Performance: Dacapo

Dacapo is a suite of Java benchmarks presented in OOPSLA
2006 and is designed to stress test JVMs.
It consists of several workloads of varying nature, from a
python interpreter written in Java to an IDE.

0 20000 40000 60000 80000 100000 120000 

avrora 
batik 

eclipse 
fop 
h2 

jython 
luindex 

lusearch 
pmd 

sunflow 
tomcat 

tradebeans 
tradesoap 

xalan 

Average benchmark time (ms) 

Baseline 

Chronicler 

ReCrashJ 

We hypothesize that since our performance on Dacapo is
reasonable, Chronicler is well suited for running in the field.



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Performance: Targeted

Under what circumstances does Chronicler display its best
performance? Worst?

Scimark performance

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

Composite 
FFT SOR Monte Carlo 

MatMult 
LU 

Pe
rf

or
m

an
ce

 (M
eg

af
lo

ps
) 

Baseline Chronicler 

IO Performance

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

2 4 8 16 32 64 128 512 1024 2048 3072 

O
ve

rh
ea

d 

Input File Size (MB) 



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Weaknesses

Thread interleavings are not recorded

Privacy concerns have not been addressed

Native methods that mutate their parameters



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Related Work

Application level record-replay systems

Liblog

R2

Mugshot

OS or VM level record-replay systems

Zap

DeJaVu



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Conclusions

Capture sources of non determinism by logging at a layer
above the language API

Replay those sources in order to reproduce bugs

Solid performance numbers, worst case is upper bounded

Chronicler can replay all non-race bugs



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Future directions

Checkpoint-restart using the record replay framework

Thread migration

Developing a warp drive...



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Future directions

Checkpoint-restart using the record replay framework

Thread migration

Developing a warp drive...



Chronicler

Jonathan Bell,
Nikhil Sarda,
Gail Kaiser

Questions


