JAVA DYNAMICS

Reflection and a lot more

YoungHoon Jung
(jung@cs.columbia.edu)

Recent Publication

A Broadband Embedded Computing System for
MapReduce Utilizing Hadoop

* Hadoop ported to STBs

* to be presented at IEEE
CloudCom2012 in Dec.
(http://2012.cloudcom.org)

Embedded Svstemsl—\\
|l ________________________ ._ - I A \

: . . |
1 Applications Layer Applications !
! P ——— Tttt ——— T \
1 I
| Hadoop Hadoop Hadoop |
I
| 3™ party libraries Layer 34 party libs | ||
M e e e e e e e e e e e e e e e o [e o e e e o —
” - I - - il
I Imported Profile :
| ° o
| Runtime Classes || Gap Filler Virtual !
I BackPort / Retrotranslator Machine JavaSE JVM :
: Layer !
I Embedded JVM :
\

Contents

* Terminology
* Dynamic Code Modification
* Why Java?
* Java Dynamics

* Class loading

* Reflection

* Introspection
* Performance
 Javassist | BCEL
* Reflection in Research
* Thoughts for Project

Terminology

Dynamic Code Modification / Self-Modifying Code
* Add [Overwrite | Remove code in memory at runtime

Dynamic Programming
* An algorithm that pre-calculates immediate values

Reflection
* To examine and modify the structure and behavior of an object at runtime

Introspection
* To examine the type or properties of an object at runtime

Self-Hosting
* To use a toolchain or OS that produces new versions of the same program

Bootstrapping
* To write a compiler in the target programming language which it compiles

Dynamic Code Modification

* Modifying the program’s code at runtime
* Not Hacking, but smells similar

* Purposes
e Performance (Fast Paths)

« Camouflage
* Self-referential Machine Learning Systems

* Disadvantages
* Hard to understand
- Sometimes slightly slower because of cache flushing

Dynamic Code Modification (cont.)

» Still extensively used by some JIT compilers

* OS support
» efforts to distinguish from attacks or accidental errors =» W"X security

policy
* available in many OSs - Linux

« Massalin’s Synthesis Kernel (PhD at Columbia University in 1992)
* designed using self-modifying code
 extremely fast
* but written entirely in assembly

Dynamic Code l\/\odlﬁcatlon for Embedded Oss

: c

3 CS(X) R COde e Of i ’ Dynamic Code S Mai);g‘ebvaLm TkShell
X 5 Modification System s Module %
 old = old function, new = new function o
Target system i

e branch = branch code e R g
i tion Al ot o Applicati Malcr::nes B.r:I:.e:

OVErTIte -l — -
Load

CS(old)>=\CS(branch Branch Code (ARM)
PUSH {ro, r1, r2}
MOV r1, sp
ADD r1,r1, #8
loadnew tunctomem LDR ro, =ADDR LBL

STRro, [r1]
POP {ro, r1, pc}
ADDR_LBL: DCD [Address of New Code]

pVvenwrite branch'code
failed

success
VY

https://sites.google.com/site/slvnjung/home/dcms.jpg?attredirects=0

Self-Generating Code

* Saitou Hajime
* |0CCC (The International Obfuscated C Code Contest)

Y devtestsld.cs.columbia.edu - PuTTY, (=] B [z

e
1a+/d4"
11bE7"
"e+p) "

wlge) 1w

c6!+],c6!) £8
"b'c)céa!sb-_Sc”
g (d.d/1s

£.B,p,
++))2t] i

<b;i++)olw+t]
olw++] els

) devtestsld.cs.columbia.edu - PUTTY [

X0 [!4eM, "1 4c)

i deviestsid.cs columbia.edu - PUTTY. =] & i

"£5E, 1=L
Wi maannr)

tequn

-+
351+t]) 2x
princf (o,

<+93) {1f (Ip) o [w++]=34; for(
1+4) o [wet il ++]=p?n() :+34; Jelse for(i;
itt)olwit] Jelse ol[wt+]=10;0 [u] :

mp $

http://www.ioccc.org/

Why Java?

* Portability
 handsets, smartphones, STBs, TVs, DVDs, PlayStation, ...

* Still one of the most popular programming languages in use
(Orace: 9M, Wikipedia: 10M)

* Wide support for Cloud services (Hadoop)

* MIPL has a Java Bytecode-generating Backend.

Class Loading

* Late Dynamic Binding

* The JRE does not require that all classes are loaded prior to
execution

* Different from most other environments
* Class loading occurs when the class is first referenced
* Late Dynamic Binding is...

* Important for polymorphism

* Message propagation is dictated at runtime
* Messages are directed to the correct method

* Essential for reflection to be possible

10

The Order of Class Loading

1 p) 3 4 5
A,B,C,D,E E,D,C, B, A E,C,B,A, D E,AB,C,D E,D,A B, C
1

The Order of Class Loading

before create an instance of C

after create an instance of C
before create an instance of D

after create an instance of D

Java ClassLoaders

* All ClassLoaders are a subclass of the class “ClassLoader”’

* Every ClassLoader has a parent class loader (or often null)
* Create a tree
* Delegation Class Loading Model

* Many JVM has three default ClassLoaders

» Bootstrap class loader
* Loads the core Java libs in <JJAVA HOME>/lib
* Part of the core JVYM
* Written in native code

* Extensions class loader

* Loads the code in the Extension directories <JAVA HOME>/lib/ext or specified directories by
“java.ext.dirs”

* Cryptographic, Secure Socket, Management, ...
» System class loader
* Loads classes found on CLASSPATH

13

User-Defined ClassLoaders

* Written in Java by users

* Support various way to get bytecode (e.g. from HTTP)
* Can decode specific bytecode (e.g. encrypted)

* Allows multiple namespaces (e.g. CORBA /| RMI)

* Can modify the loaded bytecode (e.g. AOP)

* Implemented by overriding two methods:
» protected synchronized Class<?> loadClass(String name, boolean resolve)
 Determines the class has already been loaded, otherwise call findClass()

* Protected Class<?> findClass(String name)
* Actually tries to find the contents of the designated class

14

Typical loadClass()

<?> loadClass (name, resolve)
ClassNotFoundException {

c = findLoadedClass(name);
if (c==null) {
try {
if (parent !=null) {
c = getParent().loadClass(name, false);
}else {

}

} catch (ClassNotFoundException e) {
/[If still not found, then invoke findClass to find the class.
c = findClass(name);

c = Class.forName(name, resolve, null);

}
}
if (resolve) {
resolveClass(c);
}

return ¢

les of Class Loader | — Plu

* Class Loading from specific directories in configuration

<?> findClass(name) ClassNotFoundException {

try {
while (dir : pluginDirs) {
classPath = dir + className.replace('.,File.separatorChar)+".class";
classByte = loadClassData(classPath);
result = defineClass(className,classByte,o0,classByte.length,null);
classes.put(className,result);
return result;
}
} catch (e){
return null;
}

}

Examples of Class Loader |l — Jar

* Class Loading from jar files

<?> findClass(name) ClassNotFoundException {

for (jarFilename : jarsList) {
try {

JarFile jarFile = new JarFile(jarFilename);
ZipEntry entry = jarFile.getEntry(className);
if (entry == null) continue;
InputStream classStream = jarFile.getInputStream(entry);
byte[] theClass = ... /[fully read from classStream
loadedClass = defineClass(name, theClass, o, theClass.length);
classList.put(name, loadedClass);

} catch (e){... }
}

return loadedClass;

}

Examples of Class Loader |ll - Network

* Class Loading through HTTP

HttpClassLoader
host;
port;

findClass(name) {
[1b = downloadClassData(name);
return defineClass(name, b, 0, b.length);

[] downloadClassData(name) {

Another Class Loading Example

java.net.URL;
java.net.URLClassLoader;
java.net.MalformedURLException;

TwoClassLoaders

(d h
try
InstantiationException cl = new URLClassLoader(new URL[] {new URL(
catch (MalformedURLException mue)

ClassNotFoundException o/ cIsA = clloadClass("A");

A a=(A) clsA.newlInstance();

’
i . tch (InstantiationException i
NullPointerException catch (InstantiationException ie)

catch (ClassNotFoundException cnfe)

InvocationTargetException catch (Exception e)

None of above

Another Class Loading Example

java.net.URL;

java.net.URLClassLoader;

java.net.MalformedURLException;
TwoClassLoaders

(d h

InstantiationExc JRL[] {new URL(
1 mue)

ClassNotFoundExc

)

catch (ClassNotFoundException cnfe)

<t InvocationTargetException catch (Exception e)
> None of above

NullPointerExc

Class Identity Crisis

* The same class loaded by two different Class Loaders is identified as
two different classes.

o=
&

Application

interface I | interface I |
: - :
Class
clase & implements I) Loader class & implements I |
} T } "=

a Instanceof I == falz=e / a instanceof I == true

instance of class &

Object a = new A{)
Source: Java Programming Dynamics

Reflection

* The ability to observe and/or manipulate the inner workings of the
environment programmatically

* The reflection APl represents, or reflects, the classes, interfaces,
and objects in the current Java™ virtual machine

* Reflection can be used for observing and/or modifying program
execution (not code!) at runtime.

* example:

new Foo().hello();

<?>clazz = .forName();
clazz.getMethod().invoke(clazz.newlnstance());

22

http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://en.wikipedia.org/wiki/Reflection_(computer_programming)

Reflection (cont.)

* Reflection is a relatively advanced feature and should be used only
by developers who have a strong grasp of the fundamentals of the
language.

» With that caveat in mind, reflection is a powerful technique and can
enable applications to perform operations which would otherwise

be impossible.

(from Oracle’s official Java Tutorial)

23

http://en.wikipedia.org/wiki/Reflection_(computer_programming)

History of Reflection

* Invented by Brian Smith in June 1976 at the Xerox Palo Alto Research
Center.

* Designed for a way to learn a language, MANTIQ.
* Worked on the initial versions of the language for five years.

1982

¢ Brian Cantwell Smith writes a doctoral dissertation at MIT introducing the
notion of computational reflection. 3-LISP is the first official programming
language to use reflection.

1983

« Smalltalk v1.0 has 75% of the standard Reflection command language.

Oct 1996

* Visual J++ and C# has reflections. Python v1.4

Feb 1997
» Java Reflections (JDK v1.1).

Source: Java Reflection

24

The Reflection Classes

* java.lang.reflect
* The reflection package
* Introduced in JDK 1.1 release

* java.lang.reflect.AccessibleObject
* The superclass for Field, Method, and Constructor classes
* Suppresses the default Java language access control checks
* Introduced in JDK 1.2 release

* java.lang.reflect.Array
* Provides static methods to dynamically create and access Java arrays

* java.lang.reflect.Constructor
* Provides information about, and access to, a single constructor for a class

25

The Reflection Classes (cont.)

* java.lang.reflect.Field

* Provides information about, and dynamic access to, a single field of a class or
an interface

* The reflected field may be a class (static) field or an instance field

* java.lang.reflect.Member

* Interface that reflects identifying information about a single
member (a field or a method) ora constructor

* java.lang.reflect.Method

* Provides information about, and access to, a single method on a
class or interface

* java.lang.reflect.Modifier

* Provides static methods and constants to decode class and member
access modifiers

26

The Reflection Classes (cont.)

* JDK 1.3 release additions
* java.lang.reflect.Proxy
* Provides static methods for creating dynamic proxy classes and instances
* The superclass of all dynamic proxy classes created by those methods
* java.lang.reflect.InvocationHandler
* Interface
* Interface implemented by the invocation handler of a proxy instance

27

What Reflection Does?

* Literally everything that you can do if you know the
object’s class
* Load a class
* Determine if it is a class or interface
* Determine its superclass and implemented interfaces
* [nstantiate a new instance of a class
* Determine class and instance methods
* Invoke class and instance methods
* Determine and possibly manipulate fields

* Determine the modifiers for fields, methods, classes,
and interfaces

* Etc.

28

Reflection Howto

* Load a class

Class c Class.forName (“Classname”)

* Determine if a class or interface
c.isInterface ()

* Determine lineage

* Superclass
Class cl = c.getSuperclass ()

* Superinterface
Class[] c2 = c.getInterfaces ()

29

Reflection Howto

* Determine implemented interfaces
Class[] c2 = c.getInterfaces ()

* Determine constructors
Constructor[] c0O = c.getDeclaredConstructors ()

e Instantiate an instance

» Default constructor
Object ol = c.newInstance ()

» Non-default constructor
Constructor cl = c.getConstructor (class[]({..})
Object i1 = cl.newInstance (Object[] {..})

30

Reflection Howto

* Determine methods
Methods|[] ml = c.getDeclaredMethods ()

* Find a specific method
Method m = c.getMethod (“"methodName”,
new Class|[] {..})

* Invoke a method
m.invoke (c, new Object[] ({..})

31

Reflection Howto

e Determine modifiers
Modifiers[] mo = c.getModifiers ()

* Determine fields
Class[] £ = c.getDeclaredFields ()

* Find a specific field
Field £ = c.getField(“name”)
* Modify a specific field
* Get the value of a specific field
f.get (o)
* Set the value of a specific field

f.set (o, wvalue)

32

Three Myths of Reflection

» “Reflection is only useful for JavaBeans™
technology-based components”

* “Reflection is too complex for use in
general purpose applications”

» “Reflection always reduces performance
of applications”

Source: Using Java Technology Reflection to Improve Design

33

““Reflection Is Only Useful for JavaBeans™
Technology-based Components”

* False

* Reflection is a common technique used in other

pure object oriented languages like Smalltalk and
Eiffel

* Benefits
 Reflection helps keep software robust

* Can help applications become more
* Flexible
* Extensible
 Pluggable

34

“Reflection Is Too Complex for Use in General
Applications”

e False

* For most purposes, use of reflection requires mastery
of only several method invocations

* The skills required are easily mastered
* Reflection can significantly...

* Reduce the footprint of an application
* Improve reusability

35

““Reflection Always Reduces the
Performance of Applications”

* False

* Reflection can actually increase the performance of
code

* Benefits
 Can reduce and remove expensive conditional code
» Can simplify source code and design
* Can greatly expand the capabilities of the application

36

Reflection - Drawbacks

* Performance Overhead

* reflective operations have slower performance than their non-reflective
counterparts

 Security Restrictions

* Reflection requires a runtime permission which may not be present when
running under a security manager.

* Exposure of Internals

* can result in unexpected side-effects, which may render code dysfunctional
and may destroy portability. Reflective code breaks abstractions and
therefore may change behavior with upgrades of the platform.

37

Why Use Reflection

* Reflection solves problems within
object-oriented design:

* Flexibility
* Extensibility
* Pluggability

* Reflection solves problems
caused by...

* The static nature of the class hierarchy
* The complexities of strong typing

38

Use Reflection With Design Patterns

* Design patterns can benefit from reflection

* Reflection can ...
* Further decouple objects
* Simplify and reduce maintenance

39

Design Patterns and Reflection

* Many of the object- ° Factory
oriented design patterns * Factory Method
can benefit from reflection e State

e« Command

» Reflection extends * Observer

the decoupling of objects e Others

that design patterns offer

* Can significantly simplify
design patterns

40

Factory Without Reflection

public static Shape getFactoryShape (String s)

{

Shape temp = null;

return temp;

}

41

Factory With Reflection

public static Shape getFactoryShape (String s)
{

Shape temp = null;
try

| temp = (Shape) Class fortane (x).nevinstance ()7

catch (Exception e)

{
}

return temp;

42

Design Pattern Implications

* Product classes can be added, changed, or deleted
without affecting the factory

* Faster development (one factory fits all)
* Reduced maintenance
* Less code to develop, test, and debug

43

Reflective Programming Languages

* APL e Lisp * PL/SQL
* Befunge * Logo S ROP-
e BlitzMax * Logtalk * Poplog
* ColdFusion MX * Lua * Prolog
* Curl « Mathematica * Python
* Delphi » Maude system SR
* JavaScript * .NET Common * REBOL
e Eiffel Language Runtime * Ruby
 Forth * Oberon * Scheme
e GO * Objective-C * Smalltalk
e lo * Perl » SuperCollider
* Java o Rl * Snobol

* Pico e Tcl

Source: Wikipedia

44

Summary of Java Reflection

* Reflection is what makes the language dynamic
* An advanced and powerful feature but easy to use

* Java Reflection APIs provide access to every part of a class
e Field, Method, Constructors, ...
* Load, Check, Create, Invoke, Manipulate, ...

* Disadvantages:
* Performance, Security, and Exposure

* Advantages
* Flexibility, Extensibility, and Pluggability

45

Introspection

* Focused on Type Checking

* instanceof
if(obj instanceof Person)

{

Person p = (Person) obj;
p-walk();

}

* getName()

System.out.printin(obj.getClass().getName());

46

Comparison to Reflections in Other Languages

* versus C#
* Reflection in C# is done at assembly the level
* while in Java is done at the class level

(Source: A Comparison of Microsoft’s C# Programming Language to Sun Microsystems’ Java Programming Language)
g Languag g g Languag

* versus Python
* Python supports Reflection (or Introspection in Python) without using APIs
* Thus, some argue it’s easier in Python

(Source: Why is Python more fun than Java?)

47

BCEL: The Byte Code Engineering Library
(Apache Commons BCEL™)

* intended to give users a convenient way to analyze, create, and
manipulate (binary) Java class files (those ending with .class).

* Objects can be
* read from an existing file
» transformed by a program (e.g. a class loader at run-time)
* written to a file

* One can create classes from scratch at run-time

* being used successfully in several projects such as compilers,
optimizers, obfuscators, code generators and analysis tools

* MIPL generates Java byte code using BCEL

48

BCEL Example

org.apache.bcel.Repository; catch(ClassNotFoundException ex) {
org.apache.bcel.classfile.JavaClass; ex.printStackTrace();
org.apache.bcel.generic.ClassGen; return;

java.io.lOException; }

SomeBcelClass §

main([]args) {

try {
ClassGen myClassGen; myClassGen.getJavaClass()

try { .dump();
JavaClass myClass = ¥

Repository.lookupClass(); catch(IOException ex) {
myClassGen = new ClassGen(myClass); ex.printStackTrace();

}

Pertormance Comparison

* Code Generation is 5-24 times faster!

EH-
F

=1

32K

128K

912K

1}]“

0 80 100 150 200 250 300 350 400

B reflection I Javassist [] Reflection [JBCEL

Source: Java Programming Dynamics

50

Leveraging Java Reflection

 T. J. Brown, |. Spence, and P. Kilpatrick, “Mixin Programming in Java with
Reflection and Dynamic Invocation,” Proc. of Inaugural Conf. on Principles and
Practice of Programming, 2002

¢ Unlike C++, Java has no template. Instead, Reflection is used for Mixin.

* Viera K. Proulx and Weston Jossey, “Unit Test Support for Java via Reflection and
Annotations,” Proc. of 8" Int. Conf. on Principles and Practice of Programming in
Java, 2009

¢ Mathias Braux and Jacques Noye, “Towards partially evaluating reflection in
Java,” Proc. of Partial Evaluation and Semantics-based Program Manipulation,

1999
* Remi forax, Etienne Duris, and Gilles Roussel, “Reflection-based implementation

of Java extensions: the double-dispatch use-case,” Proc. of ACM symposium on
Applied Computing, 2005

51

Reflection for Performance

» Tharaka Devadithya, Kenneth Chiu, and Wei Lu, “C++ Reflection for
High Performance Problem Solving Environments,” in Proc. of the
2007 Spring Simulation MultiConference, vol 2, pp 435-440, 2007

52

Thoughts for Project

* MIPL (Mining Integrated Programming Language) - []
» Compiler written in Java (over 12,000 loc)

* Pluggable Backend Architecture

* Java+Hadoop

Front End Back End Remote End

|

| :
MapReduce Matrix

| Operations

|

Compiler
Options

Semantic
Analyzer

Matrix Operations

HW Accelerated
Operations

Syntax

Analyzer SW Operations

Lexical
Analyzer Data Structures

" Built-in Matrices
Input Data Built-in Terms
Output Data

|

|

|

1

1

|

1
I 4 Runtime
|

|

1

|

|

|

Configuration /[Logger

L T — T ———————————— oo o Y

Java Virtual Machine

>3

http://www1.cs.columbia.edu/~aho/cs4115/lectures/12-05-09_Team25_MIPL.pptx

Thoughts for Project

* Designing front end for dynamic elements in the language
* Applying various Matrix Computation Optimizations

* Connecting Front-end and Middle-end through Dynamic Code
Modification

* Using Flexibility for Performance

54

Reference

* Dennis Sosnoski, Java Programming Dynamics, Developer Works,
IBM, 2003

* Michael T. Portwood, Using Java Technology Reflection to Improve
Design, Exuberance LLC, 2008

» Ken Cooney, Java Reflection

* Dare Obasanjo, A Comparison of Microsoft’s C# Programming
Language to Sun Microsystems’ Java Programming Language

* Brian Clapper, Why is Python more fun than Javaz, 2008
* Wikipedia: http://www.wikipedia.org

* BCEL official site: http://commons.apache.org/bcel
* Java Tutorials: http://docs.oracle.com/javase/tutorial

55

