Approximation Guarantees for Spectral Clustering

Tony Jebara Columbia University New York, NY 10027 jebara@cs.columbia.edu

Abstract

We show a classic result that spectral clustering on a *b*-regular graph can only solve sparse cut to $\phi_{sc} \leq \sqrt{8b\phi}$.

We are given a weighted graph G with n nodes with weights W which can equivalently be represented as an adjacency matrix $A \in \mathbb{R}^{n \times n}$. Graph partitioning recovers a cut or subset of vertices S on G such that $|S| \leq |V|$. Good choices of S are obtained by minimizing the SPARSE CUT criterion defined as

$$\mathcal{SC}_G(S) = W(S, \bar{S})/(|S||\bar{S}|/n).$$

Here we have defined $W(S_1, S_2)$ as the total weight of edges between the set of nodes S_1 and S_2 .

Consider trying to minimize $SC_G(S)$ which is NP-hard. Instead, we attempt to run the following polynomial-time algorithm.

SPECTRALCUT: Input: a graph G = (V, E) with adjacency matrix A. 1. Compute the second leading eigenvector $\mathbf{v} \in \Re^n$ of A. 2. For each i = 1, ..., n create a candidate partition $S_i = \{j : j \in V, \mathbf{v}(j) \le \mathbf{v}(i)\}$. 3. Output the partition with lowest SPARSE CUT value $S = \arg\min_{i \in \{1,...,n\}} SC_G(S_i)$.

The following theorem says how well this algorithm performs.

Theorem 1 Given a b-regular graph G with the optimal SPARSEST CUT $\phi = \min_S SC_G(S)$ then algorithm SPECTRALCUT provides a cut for G that achieves a sparse cut value ϕ_{sc} satisfying $\phi_{sc} \leq \sqrt{8b(b-\lambda_2)}$ and therefore satisfying $\phi_{sc} \leq \sqrt{8b\phi}$.

Proof 1 Consider the incidence matrix A for G for a b-regular graph which satisfies $A\mathbf{1} = b\mathbf{1}$. The leading eigenvalue of the graph is $\lambda_1 = b$. Given a vector $\mathbf{x} \in \Re^n$, the second eigenvalue is:

$$\lambda_2 = \max_{\mathbf{x}:\mathbf{x}\in\mathfrak{R}^n,\mathbf{x}\perp\mathbf{1}} \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}.$$

Similarly, it is straightforward to show for b-regular graphs that

$$b - \lambda_2 = \min_{\mathbf{x}:\mathbf{x}\in\Re^n, \mathbf{x}\perp \mathbf{1}} \frac{\sum_{ij} A(i,j)(\mathbf{x}(i) - \mathbf{x}(j))^2}{\frac{1}{n} \sum_{ij} (\mathbf{x}(i) - \mathbf{x}(j))^2} = \min_{\mathbf{x}:\mathbf{x}\in\Re^n} \frac{\sum_{ij} A(i,j)(\mathbf{x}(i) - \mathbf{x}(j))^2}{\frac{1}{n} \sum_{ij} (\mathbf{x}(i) - \mathbf{x}(j))^2}$$

where we have dropped the perpendicularity constraint which is redundant. It is also straightforward to see that

$$b - \lambda_2 = \min_{\mathbf{x}:\mathbf{x}\in\Re^n} \frac{\sum_{ij} A(i,j) (\mathbf{x}(i) - \mathbf{x}(j))^2}{\frac{1}{n} \sum_{ij} (\mathbf{x}(i) - \mathbf{x}(j))^2} \le \min_{\mathbf{x}:\mathbf{x}\in\{-1,1\}^n} \frac{\sum_{ij} A(i,j) (\mathbf{x}(i) - \mathbf{x}(j))^2}{\frac{1}{n} \sum_{ij} (\mathbf{x}(i) - \mathbf{x}(j))^2} = \phi$$
(1)

since minization over real values is a strict relaxation over the discrete minimization producing ϕ . Define $\mathbf{v} \in \Re^n$ as the second leading eigenvector which minimizes the continuous optimization above:

$$b - \lambda_2 = \frac{\sum_{ij} A(i,j) (\mathbf{v}(i) - \mathbf{v}(j))^2}{\frac{1}{n} \sum_{ij} (\mathbf{v}(i) - \mathbf{v}(j))^2}.$$
 (2)

Normalize \mathbf{v} to obtain $\hat{\mathbf{v}} \propto \mathbf{v}$ such that $\max_i \hat{\mathbf{v}}(i) - \min_i \hat{\mathbf{v}}(i) = 1$. Consider selecting a cut S by picking a threshold t as in the algorithm SPECTRALCUT where t is distributed uniformly in the interval $t \in [\min_i \hat{\mathbf{v}}(i), \max_i \hat{\mathbf{v}}(i)]$. The cut we produce is then $S = \{j : j \in V, \hat{\mathbf{v}}(j) \ge t\}$. The probability that edge (i, j) is in the cut $E(S, \overline{S})$ is proportional to $|\hat{\mathbf{v}}(i) - \hat{\mathbf{v}}(j)|$. It is easy to see that the following expectations over t are satisfied $E[W(S, \overline{S}] = \frac{1}{2}\sum_{ij} A(i, j)|\hat{\mathbf{v}}(i) - \hat{\mathbf{v}}(j)|$ and $E[|S||\overline{S}|] = \frac{1}{2}\sum_{ij} |\hat{\mathbf{v}}(i) - \hat{\mathbf{v}}(j)|$. Thus, as we sample t we must find a threshold that satisfies:

$$\frac{W(S,\bar{S})}{\frac{1}{n}|S||\bar{S}|} \leq \frac{\sum_{ij}A(i,j)|\hat{\mathbf{v}}(i)-\hat{\mathbf{v}}(j)|}{\sum_{ij}|\hat{\mathbf{v}}(i)-\hat{\mathbf{v}}(j)|}$$

Minimizing over v then yields

$$\phi_{sc} = \min_{\mathbf{v}\in\mathfrak{R}^n} \frac{\sum_{ij} A(i,j) |\hat{\mathbf{v}}(i) - \hat{\mathbf{v}}(j)|}{\frac{1}{n} \sum_{ij} |\hat{\mathbf{v}}(i) - \hat{\mathbf{v}}(j)|} = \min_{\mathbf{v}\in\mathfrak{R}^n} \frac{\sum_{ij} A(i,j) |\mathbf{v}(i) - \mathbf{v}(j)|}{\frac{1}{n} \sum_{ij} |\mathbf{v}(i) - \mathbf{v}(j)|}.$$
(3)

Assume without loss of generality that the median of $\mathbf{v} = 0$. Define the vector $\mathbf{y} \in \Re^n$ such that $\mathbf{y}(i) = \mathbf{v}(i)|\mathbf{v}(i)|$. It is immediate to see that

$$\frac{1}{n}\sum_{i,j}|\mathbf{v}(i) - \mathbf{v}(j)|^2 = 2\sum_i \mathbf{v}(i)^2 - 2\left(\sum_i \mathbf{v}(i)\right)^2 \le 2\sum_i |\mathbf{y}(i)|$$
(4)

and that

$$\mathbf{y}(i) - \mathbf{y}(j)| = |\mathbf{v}(i) - \mathbf{v}(j)|(\mathbf{v}(i) + \mathbf{v}(j)).$$

Multiply both sides by A(i, j) and sum over i, j to get:

$$\sum_{ij} A(i,j) |\mathbf{y}(i) - \mathbf{y}(j)| = \sum_{ij} A(i,j) |\mathbf{v}(i) - \mathbf{v}(j)| (|\mathbf{v}(i)| + |\mathbf{v}(j)|).$$

Apply Cauchy-Schwartz to the above expression:

$$\begin{split} \sum_{ij} A(i,j) |\mathbf{y}(i) - \mathbf{y}(j)| &\leq \sqrt{\sum_{ij} A(i,j) |\mathbf{v}(i) - \mathbf{v}(j)|^2} \sqrt{\sum_{ij} A(i,j) (|\mathbf{v}(i)| + |\mathbf{v}(j)|)^2} \\ &= \sqrt{\frac{b - \lambda_2}{n} \sum_{ij} (\mathbf{v}(i) - \mathbf{v}(j))^2} \sqrt{\sum_{ij} A(i,j) (|\mathbf{v}(i)| + |\mathbf{v}(j)|)^2} \end{split}$$

where we plugged in Equation 2 inside the left root. Next, apply Equation 4 in the left root:

$$\sum_{ij} A(i,j)|\mathbf{y}(i) - \mathbf{y}(j)| \leq \sqrt{2(b-\lambda_2)\sum_i |\mathbf{y}(i)|} \sqrt{\sum_{ij} A(i,j)(|\mathbf{v}(i)| + |\mathbf{v}(j)|)^2}.$$

Apply Jensen's inequality $(E[x])^2 \le E[x^2]$ inside the right root:

$$\begin{split} \sum_{ij} A(i,j) |\mathbf{y}(i) - \mathbf{y}(j)| &\leq \sqrt{2(b - \lambda_2) \sum_i |\mathbf{y}(i)|} \sqrt{\sum_{ij} A(i,j) (2|\mathbf{v}(i)|^2 + 2|\mathbf{v}(j)|^2)} \\ &= \sqrt{2(b - \lambda_2) \sum_i |\mathbf{y}(i)|} \sqrt{4b \sum_i |\mathbf{v}(i)|^2} \end{split}$$

where the second line holds since A comes from a b-regular graph. Next, since $|\mathbf{v}(i)|^2 = |\mathbf{y}(i)|$

$$\begin{split} \sum_{ij} A(i,j) |\mathbf{y}(i) - \mathbf{y}(j)| &\leq \sqrt{8b(b - \lambda_2)} \sum_i |\mathbf{y}(i)| \\ &\leq \sqrt{8b(b - \lambda_2)} \frac{1}{n} \sum_{ij} |\mathbf{y}(i) - \mathbf{y}(j)| \end{split}$$

where the last step holds since the median is zero. Dividing both sides by $\frac{1}{n} \sum_{ij} |\mathbf{y}(i) - \mathbf{y}(j)|$ gives

$$\frac{\sum_{ij} A(i,j) |\mathbf{y}(i) - \mathbf{y}(j)|}{\frac{1}{n} \sum_{ij} |\mathbf{y}(i) - \mathbf{y}(j)|} \leq \sqrt{8b(b - \lambda_2)}.$$

Since Equation 3 guarantees that ϕ_{sc} is lower than the left hand side of the above equation for any choice of $\mathbf{v} \in \Re^n$ or $\mathbf{y} \in \Re^n$, we have $\phi_{sc} \leq \sqrt{8b(b-\lambda_2)}$ as desired for the first part of the theorem. Applying Equation 1 to $b - \lambda_2$ gives the second part of the theorem.