
Lexicalized Probabilistic Context-Free Grammars

Michael Collins

1 Introduction

In the previous lecture notes we introduced probabilistic context-free grammars
(PCFGs) as a model for statistical parsing. We introduced the basic PCFG for-
malism; described how the parameters of a PCFG can be estimated from a set of
training examples (a “treebank”); and derived a dynamic programming algorithm
for parsing with a PCFG.

Unfortunately, the basic PCFGs we have described turn out tobe a rather poor
model for statistical parsing. This note introduceslexicalized PCFGs, which build
directly on ideas from regular PCFGs, but give much higher parsing accuracy. The
remainder of this note is structured as follows:

• In section 2 we describe some weaknesses of basic PCFGs, in particular
focusing on their lack of sensitity to lexical information.

• In section 3 we describe the first step in deriving lexicalized PCFGs: the
process of adding lexical items to non-terminals in treebank parses.

• In section 4 we give a formal definition of lexicalized PCFGs.

• In section 5 we describe how the parameters of lexicalized PCFGs can be
estimated from a treebank.

• In section 6 we describe a dynamic-programming algorithm for parsing with
lexicalized PCFGs.

2 Weaknesses of PCFGs as Parsing Models

We focus on two crucial weaknesses of PCFGs: 1) lack of sensitivity to lexical
information; and 2), lack of sensitivity to structural preferences. Problem (1) is the
underlying motivation for a move to lexicalized PCFGs. In a later lecture we will
describe extensions to lexical PCFGs that address problem (2).

1

2.1 Lack of Sensitivity to Lexical Information

First, consider the following parse tree:
S

NP

NNP

IBM

VP

VB

bought

NP

NNP

Lotus
Under the PCFG model, this tree will have probability

q(S→ NP VP)× q(VP → V NP)× q(NP→ NNP)× q(NP→ NNP)

×q(NNP→ IBM)× q(Vt → bought)× q(NNP→ Lotus)

Recall that for any ruleα → β, q(α → β) is an associated parameter, which can
be interpreted as the conditional probability of seeingβ on the right-hand-side of
the rule, given thatα is on the left-hand-side of the rule.

If we consider the lexical items in this parse tree (i.e.,IBM, bought, andLotus),
we can see that the PCFG makes a very strong independence assumption. Intu-
itively the identity of each lexical item depends only on thepart-of-speech (POS)
above that lexical item: for example, the choice of the wordIBM depends on its tag
NNP, but does not depend directly on other information in the tree. More formally,
the choice of each word in the string is conditionally independent of the entire tree,
once we have conditioned on the POS directly above the word. This is clearly a
very strong assumption, and it leads to many problems in parsing. We will see that
lexicalized PCFGs address this weakness of PCFGs in a very direct way.

Let’s now look at how PCFGs behave under a particular type of ambiguity,
prepositional-phrase (PP) attachment ambiguity. Figure 1shows two parse trees
for the same sentence that includes a PP attachment ambiguity. Figure 2 lists the set
of context-free rules for the two parse trees. A critical observation is the following:
the two parse trees have identical rules, with the exceptionof VP -> VP PP
in tree (a), andNP -> NP PP in tree (b). It follows that the probabilistic parser,
when choosing between the two parse trees, will pick tree (a)if

q(VP→ VP PP) > q(NP→ NP PP)

and will pick tree (b) if

q(NP→ NP PP) > q(VP→ VP PP)

2

(a) S

NP

NNS

workers

VP

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

(b) S

NP

NNS

workers

VP

VBD

dumped

NP

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

Figure 1: Two valid parses for a sentence that includes a prepositional-phrase at-
tachment ambiguity.

3

(a)

Rules
S→ NP VP
NP→ NNS
VP → VP PP
VP→ VBD NP
NP→ NNS
PP→ IN NP
NP→ DT NN
NNS→ workers
VBD → dumped
NNS→ sacks
IN → into
DT → a
NN → bin

(b)

Rules
S→ NP VP
NP→ NNS
NP → NP PP
VP → VBD NP
NP→ NNS
PP→ IN NP
NP→ DT NN
NNS→ workers
VBD → dumped
NNS→ sacks
IN → into
DT → a
NN → bin

Figure 2: The set of rules for parse trees (a) and (b) in figure 1.

Notice that this decision isentirely independent of any lexical information (the
words) in the two input sentences. For this particular case of ambiguity (NP vs VP
attachment of a PP, with just one possible NP and one possibleVP attachment) the
parser will always attach PPs to VP ifq(VP→ VP PP) > q(NP→ NP PP), and
conversely will always attach PPs to NP ifq(NP→ NP PP) > q(VP→ VP PP).

The lack of sensitivity to lexical information in this particular situation, prepositional-
phrase attachment ambiguity, is known to be highly non-optimal. The lexical items
involved can give very strong evidence about whether to attach to the noun or the
verb. If we look at the preposition,into, alone, we find that PPs withinto as the
preposition are almost nine times more likely to attach to a VP rather than an NP
(this statistic is taken from the Penn treebank data). As another example, PPs with
the prepositionof are about 100 times more likely to attach to an NP rather than a
VP. But PCFGs ignore the preposition entirely in making the attachment decision.

As another example, consider the two parse trees shown in figure 3, which is an
example of coordination ambiguity. In this case it can be verified that the two parse
trees have identical sets of context-free rules (the only difference is in the order in
which these rules are applied). Hence a PCFG will assign identical probabilities to
these two parse trees, again completely ignoring lexical information.

In summary, the PCFGs we have described essentially generate lexical items as
an afterthought, conditioned only on the POS directly abovethem in the tree. This
is a very strong independence assumption, which leads to non-optimal decisions
being made by the parser in many important cases of ambiguity.

4

(a) NP

NP

NP

NNS

dogs

PP

IN

in

NP

NNS

houses

CC

and

NP

NNS

cats

(b) NP

NP

NNS

dogs

PP

IN

in

NP

NP

NNS

houses

CC

and

NP

NNS

cats

Figure 3: Two valid parses for a noun-phrase that includes aninstance of coordi-
nation ambiguity.

5

(a) NP

NP

NN

president

PP

IN

of

NP

NP

DT

a

NN

company

PP

IN

in

NP

NN

Africa

(b) NP

NP

NP

NN

president

PP

IN

of

NP

DT

a

NN

company

PP

IN

in

NP

NN

Africa

Figure 4: Two possible parses forpresident of a company in Africa.

2.2 Lack of Sensitivity to Structural Preferences

A second weakness of PCFGs is their lack of sensitivity to structural preferences.
We illustrate this weakness through a couple of examples.

First, consider the two potential parses forpresident of a company in Africa,
shown in figure 4. This noun-phrase again involves a case of prepositional-phrase
attachment ambiguity: the PPin Africa can either attach topresidentor a company.
It can be verified once again that these two parse trees contain exactly the same set
of context-free rules, and will therefore get identical probabilities under a PCFG.

Lexical information may of course help again, in this case. However another
useful source of information may be basic statistics about structural preferences
(preferences that ignore lexical items). The first parse tree involves a structure of
the following form, where the final PP (in Africa in the example) attaches to the
most recent NP (a company):

6

NP

NP

NN

PP

IN NP

NP

NN

PP

IN NP

NN

(1)

This attachment for the final PP is often referred to as aclose attachment, because
the PP has attached to the closest possible preceding NP. Thesecond parse structure
has the form

NP

NP

NP

NN

PP

IN NP

NN

PP

IN NP

NN

(2)

where the final PP has attached to the further NP (presidentin the example).
We can again look at statistics from the treebank for the frequency of structure 1

versus 2: structure 1 is roughly twice as frequent as structure 2. So there is a fairly
significant bias towards close attachment. Again, we stressthat the PCFG assigns
identical probabilities to these two trees, because they include the same set of rules:
hence the PCFG fails to capture the bias towards close-attachment in this case.

There are many other examples where close attachment is a useful cue in dis-
ambiguating structures. The preferences can be even stronger when a choice is
being made between attachment to two different verbs. For example, consider the
sentence

John was believed to have been shot by Bill

Here the PPby Bill can modify either the verbshot(Bill was doing the shooting)
or believe(Bill is doing the believing). However statistics from the treebank show
that when a PP can attach to two potential verbs, it is about 20times more likely

7

to attach to the most recent verb. Again, the basic PCFG will often give equal
probability to the two structures in question, because theycontain the same set of
rules.

3 Lexicalization of a Treebank

We now describe how lexicalized PCFGs address the first fundamental weakness of
PCFGs: their lack of sensitivity to lexical information. The first key step, described
in this section, is tolexicalizethe underlying treebank.

Figure 5 shows a parse tree before and after lexicalization.The lexicalization
step has replaced non-terminals such asS or NP with new non-terminals that in-
clude lexical items, for exampleS(questioned) or NP(lawyer).

The remainder of this section describes exactly how trees are lexicalized. First
though, we give the underlying motivation for this step. Thebasic idea will be to
replace rules such as

S→ NP VP

in the basic PCFG, with rules such as

S(questioned)→ NP(lawyer) VP(questioned)

in the lexicalized PCFG. The symbols S(questioned), NP(lawyer) and VP(questioned)
are new non-terminals in the grammar. Each non-terminal nowincludes a lexical
item; the resulting model has far more sensitivity to lexical information.

In one sense, nothing has changed from a formal standpoint: we will sim-
ply move from a PCFG with a relatively small number of non-terminals (S, NP,
etc.) to a PCFG with a much larger set of non-terminals (S(questioned),
NP(lawyer) etc.) This will, however, lead to a radical increase in the num-
ber of rules and non-terminals in the grammar: for this reason we will have to take
some care in estimating the parameters of the underlying PCFG. We describe how
this is done in the next section.

First, however, we describe how the lexicalization processis carried out. The
key idea will be to identify for each context-free rule of theform

X → Y1 Y2 . . . Yn

an indexh ∈ {1 . . . n} that specifies theheadof the rule. The head of a context-
free rule intuitively corresponds to the “center” or the most important child of the
rule.1 For example, for the rule

S→ NP VP
1The idea of heads has a long history in linguistics, which is beyond the scope of this note.

8

(a) S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

(b)

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Figure 5: (a) A conventional parse tree as found for example in the Penn treebank.
(b) A lexicalized parse tree for the same sentence. Note thateach non-terminal in
the tree now includes a single lexical item. For clarity we mark the head of each
rule with an overline: for example for the ruleNP → DT NN the childNN is the
head, and hence theNN symbol is marked asNN.

9

the head would beh = 2 (corresponding to theVP). For the rule

NP→ NP PP PP PP

the head would beh = 1 (corresponding to theNP). For the rule

PP→ IN NP

the head would beh = 1 (corresponding to theIN), and so on.
Once the head of each context-free rule has been identified, lexical information

can be propagated bottom-up through parse trees in the treebank. For example, if
we consider the sub-tree

NP

DT

the

NN

lawyer
and assuming that the head of the rule

NP→ DT NN

is h = 2 (theNN), the lexicalized sub-tree is
NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer
Parts of speech such asDT or NN receive the lexical item below them as their

head word. Non-terminals higher in the tree receive the lexical item from their
head child: for example, theNP in this example receives the lexical itemlawyer,
because this is the lexical item associated with theNN which is the head child of
theNP. For clarity, we mark the head of each rule in a lexicalized parse tree with
an overline (in this case we haveNN). See figure 5 for an example of a complete
lexicalized tree.

As another example consider theVP in the parse tree in figure 5. Before lex-
icalizing theVP, the parse structure is as follows (we have filled in lexical items
lower in the tree, using the steps described before):

10

VP

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness
We then identifyVt as the head of the rule VP→ Vt NP, and lexicalize the tree as
follows:

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness
In summary, once the head of each context-free rule has been identified, lexical

items can be propagated bottom-up through parse trees, to give lexicalized trees
such as the one shown in figure 5(b).

The remaining question is how to identify heads. Ideally, the head of each
rule would be annotated in the treebank in question: in practice however, these
annotations are often not present. Instead, researchers have generally used a simple
set of rules to automatically identify the head of each context-free rule.

As one example, figure 6 gives an example set of rules that identifies the head
of rules whose left-hand-side isNP. Figure 7 shows a set of rules used forVPs.
In both cases we see that the rules look for particular children (e.g.,NN for theNP
case,Vi for theVP case). The rules are fairly heuristic, but rely on some linguistic
guidance on what the head of a rule should be: in spite of theirsimplicity they
work quite well in practice.

4 Lexicalized PCFGs

The basic idea in lexicalized PCFGs will be to replace rules such as

S→ NP VP

with lexicalized rules such as

S(examined)→ NP(lawyer) VP(examined)

11

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

ElseChoose the rightmost child

Figure 6: Example of a set of rules that identifies the head of any rule whose left-
hand-side is an NP.

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains a VP: Choose the leftmost VP

ElseChoose the leftmost child

Figure 7: Example of a set of rules that identifies the head of any rule whose left-
hand-side is a VP.

12

Thus we have replaced simple non-terminals such asS or NP with lexicalized non-
terminals such asS(examined) or NP(lawyer).

From a formal standpoint, nothing has changed: we can treat the new, lexi-
calized grammar exactly as we would a regular PCFG. We have just expanded the
number of non-terminals in the grammar from a fairly small number (say 20, or
50) to a much larger number (because each non-terminal now has a lexical item,
we could easily have thousands or tens of thousands of non-terminals).

Each rule in the lexicalized PCFG will have an associated parameter, for ex-
ample the above rule would have the parameter

q(S(examined)→ NP(lawyer) VP(examined))

There are a very large number of parameters in the model, and we will have to
take some care in estimating them: the next section describes parameter estimation
methods.

We will next give a formal definition of lexicalized PCFGs, inChomsky normal
form. First, though, we need to take care of one detail. Each rule in the lexicalized
PCFG has a non-terminal with a head word on the left hand side of the rule: for
example the rule

S(examined)→ NP(lawyer) VP(examined)

hasS(examined) on the left hand side. In addition, the rule has two children.
One of the two children must have the same lexical item as the left hand side:
in this exampleVP(examined) is the child with this property. To be explicit
about which child shares the lexical item with the left hand side, we will add an
annotation to the rule, using→1 to specify that the left child shares the lexical item
with the parent, and→2 to specify that the right child shares the lexical item with
the parent. So the above rule would now be written as

S(examined)→2 NP(lawyer) VP(examined)

The extra notation might seem unneccessary in this case, because it is clear
that the second child is the head of the rule—it is the only child to have the same
lexical item,examined, as the left hand side of the rule. However this information
will be important for rules where both children have the samelexical item: take for
example the rules

PP(in)→1 PP(in) PP(in)

and
PP(in)→2 PP(in) PP(in)

13

where we need to be careful about specifying which of the two children is the head
of the rule.

We now give the following definition:

Definition 1 (Lexicalized PCFGs in Chomsky Normal Form) A lexicalized PCFG
in Chomsky normal form is a 6-tupleG = (N,Σ, R, S, q, γ) where:

• N is a finite set of non-terminals in the grammar.

• Σ is a finite set of lexical items in the grammar.

• R is a set of rules. Each rule takes one of the following three forms:

1. X(h) →1 Y1(h) Y2(m) whereX,Y1, Y2 ∈ N , h,m ∈ Σ.

2. X(h) →2 Y1(m) Y2(h) whereX,Y1, Y2 ∈ N , h,m ∈ Σ.

3. X(h) → h whereX ∈ N , h ∈ Σ.

• For each ruler ∈ R there is an associated parameter

q(r)

The parameters satisfyq(r) ≥ 0, and for anyX ∈ N,h ∈ Σ,
∑

r∈R:LHS(r)=X(h)

q(r) = 1

where we useLHS(r) to refer to the left hand side of any ruler.

• For eachX ∈ N , h ∈ Σ, there is a parameterγ(X,h). We haveγ(X,h) ≥
0, and

∑

X∈N,h∈Σ γ(X,h) = 1.

Given a left-most derivationr1, r2, . . . rN under the grammar, where eachri is a
member ofR, the probability of the derivation is

γ(LHS(r1))×
N
∏

i=1

q(ri)

As an example, consider the parse tree in figure 5, repeated here:

14

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness
In this case the parse tree consists of the following sequence of rules:

S(questioned)→2 NP(lawyer) VP(questioned)
NP(lawyer)→2 DT(the) NN(lawyer)
DT(the)→ the
NN(lawyer)→ lawyer
VP(questioned)→1 Vt(questioned) NP(witness)
NP(witness)→2 DT(the) NN(witness)
DT(the)→ the
NN(witness)→ witness

The probability of the tree is calculated as

γ(S, questioned)
×q(S(questioned)→2 NP(lawyer) VP(questioned))
×q(NP(lawyer)→2 DT(the) NN(lawyer))
×q(DT(the)→ the)
×q(NN(lawyer)→ lawyer)
×q(VP(questioned)→1 Vt(questioned) NP(witness))
×q(NP(witness)→2 DT(the) NN(witness))
×q(DT(the)→ the)
×q(NN(witness)→ witness)

Thus the model looks very similar to regular PCFGs, where theprobability of a
tree is calculated as a product of terms, one for each rule in the tree. One difference
is that we have theγ(S, questioned) term for the root of the tree: this term can
be interpreted as the probability of choosing the nonterminal S(questioned) at the

15

root of the tree. (Recall that in regular PCFGs we specified that a particular non-
terminal, for exampleS, always appeared at the root of the tree.)

5 Parameter Estimation in Lexicalized PCFGs

We now describe a method for parameter estimation within lexicalized PCFGs.
The number of rules (and therefore parameters) in the model is very large. How-
ever with appropriate smoothing—using techniques described earlier in the class,
for language modeling—we can derive estimates that are robust and effective in
practice.

First, for a given rule of the form

X(h) →1 Y1(h) Y2(m)

or
X(h) →2 Y1(m) Y2(h)

define the following variables:X is the non-terminal on the left-hand side of the
rule;H is the head-word of that non-terminal;R is the rule used, either of the form
X →1 Y1 Y2 orX →2 Y1 Y2; M is the modifier word.

For example, for the rule

S(examined)→2 NP(lawyer) VP(examined)

we have

X = S

H = examined

R = S→2 NP VP

M = lawyer

With these definitions, the parameter for the rule has the following interpreta-
tion:

q(S(examined)→2 NP(lawyer) VP(examined))

= P (R = S→2 NP VP,M = lawyer|X = S,H = examined)

The first step in deriving an estimate ofq(S(examined)→2 NP(lawyer) VP(examined))
will be to use the chain rule to decompose the above expression into two terms:

P (R = S→2 NP VP,M = lawyer|X = S,H = examined)

= P (R = S→2 NP VP|X = S,H = examined) (3)

×P (M = lawyer|R = S→2 NP VP,X = S,H = examined) (4)

16

This step is exact, by the chain rule of probabilities.
We will now derive separate smoothed estimates of the quantities in Eqs. 3

and 4. First, for Eq. 3 define the following maximum-likelihood estimates:

qML(S→2 NP VP|S, examined) =
count(R = S→2 NP VP,X = S,H = examined)

count(X = S,H = examined)

qML(S→2 NP VP|S) =
count(R = S→2 NP VP,X = S)

count(X = S)

Here the count(. . .) expressions are counts derived directly from the training sam-
ples (the lexicalized trees in the treebank). Our estimate of

P (R = S→2 NP VP|X = S,H = examined)

is then defined as

λ1 × qML(S→2 NP VP|S, examined) + (1− λ1)× qML(S→2 NP VP|S)

whereλ1 dictates the relative weights of the two estimates (we have0 ≤ λ1 ≤ 1).
The value forλ1 can be estimated using the methods described in the notes on
language modeling for this class.

Next, consider our estimate of the expression in Eq. 4. We candefine the
following two maximum-likelihood estimates:

qML(lawyer|S→2 NP VP, examined) =
count(M = lawyer, R = S→2 NP VP,H = examined)

count(R = S→2 NP VP,H = examined)

qML(lawyer|S→2 NP VP) =
count(M = lawyer, R = S→2 NP VP)

count(R = S→2 NP VP)

The estimate of

P (M = lawyer|R = S→2 NP VP,X = S,H = examined)

is then

λ2 × qML(lawyer|S→2 NP VP, examined) + (1− λ2)× qML(lawyer|S→2 NP VP)

where0 ≤ λ2 ≤ 1 is a parameter specifying the relative weights of the two terms.
Putting these estimates together, our final estimate of the rule parameter is as

follows:

q(S(examined)→2 NP(lawyer) VP(examined))

= (λ1 × qML(S→2 NP VP|S, examined) + (1− λ1)× qML(S→2 NP VP|S))

×(λ2 × qML(lawyer|S→2 NP VP, examined) + (1− λ2)× qML(lawyer|S→2 NP VP))

17

It can be seen that this estimate combines very lexically-specific information, for
example the estimates

qML(S→2 NP VP|S, examined)

qML(lawyer|S→2 NP VP, examined)

with estimates that rely less on lexical information, for example

qML(S→2 NP VP|S)

qML(lawyer|S→2 NP VP)

The end result is a model that is sensitive to lexical information, but which is never-
theless robust, because we have used smoothed estimates of the very large number
of parameters in the model.

6 Parsing with Lexicalized PCFGs

The parsing algorithm for lexicalized PCFGs is very similarto the parsing algo-
rithm for regular PCFGs, as described in the previous lecture notes. Recall that
for a regular PCFG the dynamic programming algorithm for parsing makes use of
a dynamic programming tableπ(i, j,X). Each entryπ(i, j,X) stores the high-
est probability for any parse tree rooted in non-terminalX, spanning wordsi . . . j
inclusive in the input sentence. Theπ values can be completed using a recursive
definition, as follows. Assume that the input sentence to thealgorithm isx1 . . . xn.
The base case of the recursion is fori = 1 . . . n, for all X ∈ N ,

π(i, i,X) = q(X → xi)

where we defineq(X → xi) = 0 if the ruleX → xi is not in the grammar.
The recursive definition is as follows: for any non-terminalX, for anyi, j such

that1 ≤ i < j ≤ n,

π(i, j,X) = max
X→Y Z,s∈{i...(j−1)}

q(X → Y Z)× π(i, s, Y)× π(s+ 1, j, Z)

Thus we have amax over all rulesX → Y Z, and all split-pointss ∈ {i . . . (j −
1)}. This recursion is justified because any parse tree rooted inX, spanning words
i . . . j, must be composed of the following choices:

• A rule X → Y Z at the root of the tree.

• A split point s ∈ {i . . . (j − 1)}.

18

• A sub-tree rooted inY , spanning words{i . . . s}.

• A sub-tree rooted inZ, spanning words{(s + 1) . . . j}.

Now consider the case of lexicalized PCFGs. A key differenceis that each
non-terminal in the grammar includes a lexical item. A key observation is that
for a given input sentencex1 . . . xn, parse trees for that sentence can only include
non-terminals with lexical items that are one ofx1 . . . xn.

Following this observation, we will define a dynamic programming table with
entriesπ(i, j, h,X) for 1 ≤ i ≤ j ≤ n, h ∈ {i . . . j}, X ∈ N , whereN is the set
of unlexicalized non-terminals in the grammar. We give the following definition:

Definition 2 (Dynamic programming table for lexicalized PCFGs.) π(i, j, h,X)
is the highest probability for any parse tree with non-terminal X and lexical item
h at its root, spanning wordsi . . . j in the input.

As an example, consider the following sentence from earlierin this note:

workers dumped the sacks into a bin

In this case we haven = 7 (there are seven words in the sentence). As one example
entry,

π(2, 7, 2, V P)

will be the highest probability for any subtree rooted inV P (dumped), spanning
words2 . . . 7 in the sentence.

The π values can again be completed using a recursive definition. The base
case is as follows:

π(i, i, i,X) = q(X(xi) → xi)

where we defineq(X(xi) → xi) = 0 if the rule q(X(xi) → xi) is not in the
lexicalized PCFG. Note that this is very similar to the base case for regular PCFGs.
As one example, we would set

π(1, 1, 1,NNS) = q(NNS(workers)→ workers)

for the above example sentence.
We now consider the recursive definition. As an example, consider completing

the value ofπ(2, 7, 2, V P) for our example sentence. Consider the following sub-
tree that spans words2 . . . 7, has lexical itemx2 = dumped and label VP at its
root:

19

VP(dumped)

VP(dumped)

VBD(dumped)

dumped

NP(sacks)

DT(the)

the

NNS(sacks)

sacks

PP(into)

IN(into)

into

NP(bin)

DT(a)

a

NN(bin)

bin

We can see that this subtree has the following sub-parts:

• A choice of split-points ∈ {1 . . . 6}. In this case we chooses = 4 (the split
between the two subtrees under the rule VP(dumped)→1 VBD(dumped) PP(into)
is afterx4 = sacks).

• A choice of modifier wordm. In this case we choosem = 5, corresponding
to x5 = into, becausex5 is the head word of the second child of the rule
VP(dumped)→1 VBD(dumped) PP(into).

• A choice of rule at the root of the tree: in this case the rule isVP(dumped)→1 VBD(dumped) PP(into).

More generally, to find the value for anyπ(i, j, h,X), we need to search over
all possible choices fors, m, and all rules of the formX(xh) →1 Y1(xh) Y2(xm)
or X(xh) →2 Y1(xm) Y2(xh). Figure 8 shows pseudo-code for this step. Note
that some care is needed when enumerating the possible values fors andm. If s is
in the rangeh . . . (j − 1) then the head wordh must come from the left sub-tree; it
follows thatm must come from the right sub-tree, and hence must be in the range
(s + 1) . . . j. Conversely, ifs is in the rangei . . . (h − 1) thenm must be in the
left sub-tree, i.e., in the rangei . . . s. The pseudo-code in figure 8 treats these two
cases separately.

Figure 9 gives the full algorithm for parsing with lexicalized PCFGs. The
algorithm first completes the base case of the recursive definition for theπ values.
It then fills in the rest of theπ values, starting with the case wherej = i+ 1, then
the casej = i+ 2, and so on. Finally, the step

(X∗, h∗) = arg max
X∈N,h∈{1...n}

γ(X,h) × π(1, n, h,X)

finds the pairX∗(h∗) which is at the root of the most probable tree for the input sen-
tence: note that theγ term is taken into account at this step. The highest probability
tree can then be recovered by following backpointers starting atbp(1, n, h∗,X∗).

20

1. π(i, j, h,X) = 0

2. Fors = h . . . (j − 1), for m = (s+1) . . . j, for X(xh) →1 Y (xh)Z(xm) ∈
R,

(a) p = q(X(xh) →1 Y (xh)Z(xm))× π(i, s, h, Y)× π(s+ 1, j,m,Z)

(b) If p > π(i, j, h,X),
π(i, j, h,X) = p

bp(i, j, h,X) = 〈s,m, Y, Z〉

3. Fors = i . . . (h− 1), for m = i . . . s, for X(xh) →2 Y (xm)Z(xh) ∈ R,

(a) p = q(X(xh) →2 Y (xm)Z(xh))× π(i, s,m, Y)× π(s+ 1, j, h, Z)

(b) If p > π(i, j, h,X),
π(i, j, h,X) = p

bp(i, j, h,X) = 〈s,m, Y, Z〉

Figure 8: The method for calculating an entryπ(i, j, h,X) in the dynamic pro-
gramming table. The pseudo-code searches over all split-points s, over all mod-
ifier positionsm, and over all rules of the formX(xh) →1 Y (xh) Z(xm) or
X(xh) →2 Y (xm) Z(xh). The algorithm stores backpointer valuesbp(i, j, h,X).

21

Input: a sentences = x1 . . . xn, a lexicalized PCFGG = (N,Σ, S,R, q, γ).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i, i,X) =

{

q(X(xi) → xi) if X(xi) → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n− l)

∗ Setj = i+ l

∗ For allX ∈ N , h ∈ {i . . . j}, calculateπ(i, j, h,X) using the algorithm in
figure 8.

Output:
(X∗, h∗) = arg max

S∈N,h∈{1...n}
γ(X,h) × π(1, n, h,X)

Use backpointers starting atbp(1, n, h∗,X∗) to obtain the highest probability tree.

Figure 9: The CKY parsing algorithm for lexicalized PCFGs.

22

