Lexicalized Probabilistic Context-Free Grammars

Michael Collins

1 Introduction

In the previous lecture notes we introduced probabilistotext-free grammars
(PCFGs) as a model for statistical parsing. We introducedbisic PCFG for-
malism; described how the parameters of a PCFG can be estirfram a set of
training examples (a “treebank”); and derived a dynamigmmming algorithm
for parsing with a PCFG.

Unfortunately, the basic PCFGs we have described turn dug srather poor
model for statistical parsing. This note introdudedcalized PCFGswhich build
directly on ideas from regular PCFGs, but give much highesipg accuracy. The
remainder of this note is structured as follows:

e In section 2 we describe some weaknesses of basic PCFGstticulaa
focusing on their lack of sensitity to lexical information.

e In section 3 we describe the first step in deriving lexicaliBCFGs: the
process of adding lexical items to non-terminals in tre&ljzarses.

e In section 4 we give a formal definition of lexicalized PCFGs.

e In section 5 we describe how the parameters of lexicalizeBE&Ccan be
estimated from a treebank.

e In section 6 we describe a dynamic-programming algorithnmpéwsing with
lexicalized PCFGs.

2 Weaknesses of PCFGs as Parsing Models

We focus on two crucial weaknesses of PCFGs: 1) lack of sehsito lexical
information; and 2), lack of sensitivity to structural pgegnces. Problem (1) is the
underlying motivation for a move to lexicalized PCFGs. Iratet lecture we will
describe extensions to lexical PCFGs that address prol@gm (

2.1 Lack of Sensitivity to Lexical Information

First, consider the following parse tree:

s
/\
NP VP
| PR

NNP VB NP

| | |
IBM bought NNP

Lotus
Under the PCFG model, this tree will have probability

(S — NP VP) x ¢(VP — V NP) x ¢(NP — NNP) x ¢(NP — NNP)
Xq(NNP — IBM) x q(Vt — bought) x ¢q(NNP — Lotus)

Recall that for any rulex — 3, g(aw — () is an associated parameter, which can
be interpreted as the conditional probability of seeihgn the right-hand-side of
the rule, given that is on the left-hand-side of the rule.

If we consider the lexical items in this parse tree (iBM, bought andLotus,
we can see that the PCFG makes a very strong independencepdissu Intu-
itively the identity of each lexical item depends only on tfeet-of-speech (POS)
above that lexical item: for example, the choice of the wi&d depends on its tag
NNP, but does not depend directly on other information in the.tidore formally,
the choice of each word in the string is conditionally indegent of the entire tree,
once we have conditioned on the POS directly above the wohik i clearly a
very strong assumption, and it leads to many problems inrgargve will see that
lexicalized PCFGs address this weakness of PCFGs in a vexst dvay.

Let's now look at how PCFGs behave under a particular typendfiguity,
prepositional-phrase (PP) attachment ambiguity. Figusadws two parse trees
for the same sentence that includes a PP attachment angbigigitire 2 lists the set
of context-free rules for the two parse trees. A criticalasliation is the following:
the two parse trees have identical rules, with the exceptionf VP -> VP PP
intree (a), andNP - > NP PPin tree (b). It follows that the probabilistic parser,
when choosing between the two parse trees, will pick tred (a)

q(VP — VP PP > ¢(NP — NP PB
and will pick tree (b) if

g(NP — NP PB > ¢(VP — VP PP

2

(@) S

N

NP VP
| /\
NNS
| VP PP
workers
NP IN NP

| | N BN
dumped NNS into DT NN

sacks a bin

(b) S

T

NP VP

|
NNS
| VBD NP

orkers |
W dumped Np PP

| /\
NNS IN NP

| | PN
sacks into DT NN

a bhin

Figure 1: Two valid parses for a sentence that includes aopiggnal-phrase at-
tachment ambiguity.

Rules Rules
S— NP VP S— NPVP
NP — NNS NP — NNS
VP — VP PP NP — NP PP
VP — VBD NP VP — VBD NP
NP — NNS NP — NNS
PP— IN NP PP— IN NP

@1 NP DT NN ®) | NP DT NN
NNS — workers NNS — workers
VBD — dumped VBD — dumped
NNS — sacks NNS — sacks
IN — into IN — into
DT —a DT — a
NN — bin NN — bin

Figure 2: The set of rules for parse trees (a) and (b) in figure 1

Notice that this decision igntirely independent of any lexical information (the
words) in the two input sentencdsor this particular case of ambiguity (NP vs VP
attachment of a PP, with just one possible NP and one posgibkttachment) the
parser will always attach PPs to VPgfVP — VP PP > ¢(NP — NP PB, and
conversely will always attach PPs to NR;(NP — NP PB > ¢(VP — VP PP.

The lack of sensitivity to lexical information in this pantilar situation, prepositional-
phrase attachment ambiguity, is known to be highly nonrogti The lexical items
involved can give very strong evidence about whether tehtta the noun or the
verb. If we look at the prepositionnto, alone, we find that PPs witinto as the
preposition are almost nine times more likely to attach taPargther than an NP
(this statistic is taken from the Penn treebank data). Athem@xample, PPs with
the prepositiorof are about 100 times more likely to attach to an NP rather than a
VP. But PCFGs ignore the preposition entirely in making ttiachment decision.

As another example, consider the two parse trees shown refgjuvhich is an
example of coordination ambiguity. In this case it can béfieefrthat the two parse
trees have identical sets of context-free rules (the orffgréince is in the order in
which these rules are applied). Hence a PCFG will assigrtim@mprobabilities to
these two parse trees, again completely ignoring lexidatmmation.

In summary, the PCFGs we have described essentially gerlexital items as
an afterthought, conditioned only on the POS directly alibeen in the tree. This
is a very strong independence assumption, which leads teoptimal decisions
being made by the parser in many important cases of amhiguity

€) NP

NP CcC NP

| |
NP PP and NNS
NNS IN NP cats

| | |
dogs in NNS

houses
(b) NP
NP PP
| /\
NNS

| IN NP

dogs iL
NP cC NP

| | |
NNS and NNS

houses cats

Figure 3: Two valid parses for a noun-phrase that includeisstance of coordi-
nation ambiguity.

(@)

NP

N

NP PP

N|N /\

(b) NP

T

PP
NP PP NN IN NP
DT NN IN NP president of DT NN
| | | | | |
a company in NN a company
|
Africa

Figure 4: Two possible parses fpresident of a company in Africa

2.2 Lack of Sensitivity to Structural Preferences

A second weakness of PCFGs is their lack of sensitivity tacstiral preferences.
We illustrate this weakness through a couple of examples.

First, consider the two potential parses foesident of a company in Africa
shown in figure 4. This noun-phrase again involves a caseepiggitional-phrase
attachment ambiguity: the R Africa can either attach tpresidentor a company
It can be verified once again that these two parse trees naactly the same set
of context-free rules, and will therefore get identicallmabilities under a PCFG.

Lexical information may of course help again, in this casewever another
useful source of information may be basic statistics abbuttiral preferences
(preferences that ignore lexical items). The first parse imeolves a structure of
the following form, where the final PRn(Africa in the example) attaches to the
most recent NPg company.

NP PP
/\
NP PN NP

|
NN

Africa

NP (1)

A
NP PP
NN N NP
/\
NP PP
| PN
NN IN NP
|
NN

This attachment for the final PP is often referred to akae attachmenbecause
the PP has attached to the closest possible preceding NBeThird parse structure
has the form

NP @)

NP PP IN NP

| N |
NN IN NP NN
|
NN

where the final PP has attached to the further pteqidentin the example).

We can again look at statistics from the treebank for theukeagy of structure 1
versus 2: structure 1 is roughly twice as frequent as stre@uSo there is a fairly
significant bias towards close attachment. Again, we stteighe PCFG assigns
identical probabilities to these two trees, because thdyde the same set of rules:
hence the PCFG fails to capture the bias towards closehattaat in this case.

There are many other examples where close attachment i cse in dis-
ambiguating structures. The preferences can be even straviten a choice is
being made between attachment to two different verbs. Fameile, consider the
sentence

John was believed to have been shot by Bill

Here the PRy Bill can modify either the verbhot(Bill was doing the shooting)
or believe(Bill is doing the believing). However statistics from thhe¢bank show
that when a PP can attach to two potential verbs, it is abouin®8s more likely

7

to attach to the most recent verb. Again, the basic PCFG vi#nogive equal
probability to the two structures in question, because tieeyain the same set of
rules.

3 Lexicalization of a Treebank

We now describe how lexicalized PCFGs address the first fuedtal weakness of
PCFGs: their lack of sensitivity to lexical information. &first key step, described
in this section, is tdexicalizethe underlying treebank.

Figure 5 shows a parse tree before and after lexicalizafitwe. lexicalization
step has replaced non-terminals suctSas NP with new non-terminals that in-
clude lexical items, for examplg(quest i oned) or NP(| awyer) .

The remainder of this section describes exactly how trex$eaicalized. First
though, we give the underlying motivation for this step. Haesic idea will be to
replace rules such as

S— NP VP

in the basic PCFG, with rules such as
S(questioned)+ NP(lawyer) VP(questioned)

in the lexicalized PCFG. The symbols S(questioned), NBfgapand VP (questioned)
are new non-terminals in the grammar. Each non-terminal inoludes a lexical
item; the resulting model has far more sensitivity to lekinformation.

In one sense, nothing has changed from a formal standpoiatwil sim-
ply move from a PCFG with a relatively small number of norigrals S, NP,
etc.) to a PCFG with a much larger set of non-termin&équesti oned) ,
NP(| awyer) etc.) This will, however, lead to a radical increase in thenau
ber of rules and non-terminals in the grammar: for this reage will have to take
some care in estimating the parameters of the underlying® @¥Fe describe how
this is done in the next section.

First, however, we describe how the lexicalization prodesarried out. The
key idea will be to identify for each context-free rule of tioem

XY .Y,

an indexh € {1...n} that specifies théeadof the rule. The head of a context-
free rule intuitively corresponds to the “center” or the miagportant child of the
rule! For example, for the rule

S— NP VP

The idea of heads has a long history in linguistics, whicteigdmd the scope of this note.

(@) S (b)

T

NP VP

RN
DT NN

the lawyer

Vit NP

| P
questioned DT NN
| |

the witness
S(questioned)

NP(lawyer) VP(questioned)

DT(the) NN(lawyer) __ _ _
| | Vt(questioned) NP(witness)
the lawyer |
questioned prihe) NN(witness)

the witness

Figure 5: (a) A conventional parse tree as found for examptee Penn treebank.
(b) A lexicalized parse tree for the same sentence. Notestiett non-terminal in
the tree now includes a single lexical item. For clarity werkrtae head of each
rule with an overline: for example for the rudP — DT NNthe childNNis the
head, and hence tidN symbol is marked aBIN.

the head would bé = 2 (corresponding to th&P). For the rule
NP — NP PP PP PP
the head would bé = 1 (corresponding to thiIP). For the rule
PP— IN NP

the head would bé = 1 (corresponding to theN), and so on.

Once the head of each context-free rule has been identieidal information
can be propagated bottom-up through parse trees in theattkeBor example, if
we consider the sub-tree

NP

RN
DT NN

the lawyer
and assuming that the head of the rule

NP — DT NN

is h = 2 (theNN), the lexicalized sub-tree is
NP (lawyer)

DT(the) NN(lawyer)
tr|1e Iavxlyer

Parts of speech such B8 or NN receive the lexical item below them as their
head word. Non-terminals higher in the tree receive thecédxiem from their
head child: for example, theP in this example receives the lexical itdrawyer ,
because this is the lexical item associated withNhewhich is the head child of
the NP. For clarity, we mark the head of each rule in a lexicalizets@dree with
an overline (in this case we hal). See figure 5 for an example of a complete
lexicalized tree.

As another example consider th® in the parse tree in figure 5. Before lex-
icalizing theVP, the parse structure is as follows (we have filled in lexitenis
lower in the tree, using the steps described before):

10

VP

Vt(questioned) NP(witness)
B
questioned pT(the) NN(witness)
| |

the withess
We then identifyWt as the head of the rule VPR Vt NP, and lexicalize the tree as
follows:
VP(questioned)

Vt(questioned) NP(witness)
N
questioned prihe) NN(witness)
| |

the witness

In summary, once the head of each context-free rule has Heatified, lexical
items can be propagated bottom-up through parse treesyddayicalized trees
such as the one shown in figure 5(b).

The remaining question is how to identify heads. Ideallg kiead of each
rule would be annotated in the treebank in question: in m®diowever, these
annotations are often not present. Instead, researchexgbnerally used a simple
set of rules to automatically identify the head of each carfiee rule.

As one example, figure 6 gives an example set of rules thatifigsrthe head
of rules whose left-hand-side MP. Figure 7 shows a set of rules used d?s.
In both cases we see that the rules look for particular ailde.g. NN for the NP
caseVi for theVP case). The rules are fairly heuristic, but rely on some lisig
guidance on what the head of a rule should be: in spite of #igiplicity they
work quite well in practice.

4 Lexicalized PCFGs

The basic idea in lexicalized PCFGs will be to replace rulehsas
S— NP VP
with lexicalized rules such as

S(examined)— NP(lawyer) VP (examined)

11

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else Choose the rightmost child

Figure 6: Example of a set of rules that identifies the headpfrale
hand-side is an NP.

Else If the rule contains a JJ: Choose the rightmost JJ

If the rule contains Vi or Vt: Choose the leftmost Vi or

Else If the rule contains a VP: Choose the leftmost VH

Else Choose the leftmost child

Figure 7: Example of a set of rules that identifies the headpfrale
hand-side is a VP.

12

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a CD: Choose the rightmost|CD

whose left-

Vi

whose left-

Thus we have replaced simple non-terminals such@s\P with lexicalized non-
terminals such aS(examni ned) or NP(| awyer) .

From a formal standpoint, nothing has changed: we can theahé¢w, lexi-
calized grammar exactly as we would a regular PCFG. We hatejpanded the
number of non-terminals in the grammar from a fairly smalintner (say 20, or
50) to a much larger number (because each non-terminal neva hexical item,
we could easily have thousands or tens of thousands of moririzs).

Each rule in the lexicalized PCFG will have an associatedmater, for ex-
ample the above rule would have the parameter

q(S(examined) NP(lawyer) VP (examined)

There are a very large number of parameters in the model, andillvhave to
take some care in estimating them: the next section desquidi@ameter estimation
methods.

We will next give a formal definition of lexicalized PCFGsGimomsky normal
form. First, though, we need to take care of one detail. Ealehin the lexicalized
PCFG has a non-terminal with a head word on the left hand ditleearule: for
example the rule

S(examined)— NP(lawyer) VP (examined)

hasS(exam ned) on the left hand side. In addition, the rule has two children.
One of the two children must have the same lexical item asdfiehnd side:

in this exampleVP(examni ned) is the child with this property. To be explicit
about which child shares the lexical item with the left hamswe will add an
annotation to the rule, using to specify that the left child shares the lexical item
with the parent, ané>5 to specify that the right child shares the lexical item with
the parent. So the above rule would now be written as

S(examined)—, NP(lawyer) VP(examined)

The extra notation might seem unneccessary in this casaubedt is clear
that the second child is the head of the rule—it is the onlydcto have the same
lexical item,examinedas the left hand side of the rule. However this information
will be important for rules where both children have the sdemecal item: take for
example the rules

PP(in)—1 PP(in) PP(in)

and
PP(in)—2 PP(in) PP(in)

13

where we need to be careful about specifying which of the twiolien is the head
of the rule.
We now give the following definition:

Definition 1 (Lexicalized PCFGs in Chomsky Normal Form) A lexicalized PCFG
in Chomsky normal form is a 6-tupleé = (V, X, R, S, q,y) where:

N is afinite set of non-terminals in the grammar.

3 is a finite set of lexical items in the grammar.

Ris a set of rules. Each rule takes one of the following thres$o

1. X (h) =, Yi(h) Ya(m) whereX,Y;,Yo € N, h,m € .
2. X(h) =2 Y1(m) Ya(h) whereX,Y1,Ys € N, h,m € .
3. X(h) - hwhereX € N, h € X.

For each ruler € R there is an associated parameter
q(r)

The parameters satisfy(r) > 0, and for anyX € N,h € 3,

>, aln=1

reR:LHS(r)=X(h)
where we usé H S(r) to refer to the left hand side of any rute

e ForeachX € N, h € 3, there is a parametet(X, h). We havey(X,h) >
0, andZXtheZ ’Y(X, h) =1.

Given a left-most derivationy, 5, . .. v under the grammar, where eachis a
member ofR, the probability of the derivation is

N

Y(LHS(r1)) % [T a(r:)
i=1

As an example, consider the parse tree in figure 5, repeated he

14

S(questioned)

NP(lawyer) VP(questioned)

DT(the) NN(lawyer) __
(|) (|wy) Vi(questioned) NP(witness)
the lawyer |.
questioned pr(the) NN(witness)

the witness
In this case the parse tree consists of the following sequehuules:

S(questioned)+» NP (lawyer) VP(questioned)
NP(lawyer)—5 DT(the) NN(lawyer)

DT(the)— the

NN(lawyer) — lawyer

VP(questioned)-; Vt(questioned) NP(witness)
NP(witness)—, DT(the) NN(witness)
DT(the)— the

NN(withess)— witness

The probability of the tree is calculated as

~(S, questioneg

x q(S(questioned)-2 NP(lawyer) VP(questioned)
x q(NP(lawyer)—< DT(the) NN(lawyer)

x q(DT(the)— the)

x ¢(NN(lawyer) — lawyer)

x q(VP(questioned)-; Vt(questioned) NP(witnesg)
x q(NP(witness)—o DT(the) NN(witness)

x q(DT(the)— the)

x ¢(NN(witness)— witnesg

Thus the model looks very similar to regular PCFGs, wheretbbability of a
tree is calculated as a product of terms, one for each rukeitrée. One difference
is that we have the/(S, questionegiterm for the root of the tree: this term can
be interpreted as the probability of choosing the nonteairfdifquestioned) at the

15

root of the tree. (Recall that in regular PCFGs we specifiatl dhparticular non-
terminal, for examplé&s, always appeared at the root of the tree.)

5 Parameter Estimation in Lexicalized PCFGs

We now describe a method for parameter estimation withircddized PCFGs.
The number of rules (and therefore parameters) in the medadry large. How-
ever with appropriate smoothing—using techniques desdréarlier in the class,
for language modeling—we can derive estimates that arestand effective in
practice.

First, for a given rule of the form

X(h) =1 Yi(h) Ya(m)
or
X(h) =2 Yi(m) Ya(h)

define the following variablesX is the non-terminal on the left-hand side of the
rule; H is the head-word of that non-terminat;is the rule used, either of the form
X =1 YT Ys0r X —5 Y] Yy, M is the modifier word.

For example, for the rule

S(examined)—, NP(lawyer) VP(examined)
we have
= S
= examined

S—9 NP VP
= lawyer

S moTm o=
I

With these definitions, the parameter for the rule has tHeviahg interpreta-
tion:
q(S(examined)-, NP(lawyer) VP(examined)
= P(R=S—9NPVP, M =lawyeiX =S, H = examined

The first step in deriving an estimateg@S(examined)—2 NP (lawyer) VP(examined)
will be to use the chain rule to decompose the above expres#io two terms:

P(R=S—3 NP VP, M = lawyelX = S, H = examine(
= P(R=S—3NPVPX =S H = examined (3)
xP(M = lawyelR =S —9 NP VP, X =S H = examined (4)

16

This step is exact, by the chain rule of probabilities.
We will now derive separate smoothed estimates of the diemin Eqgs. 3
and 4. First, for Eq. 3 define the following maximum-likeldgtestimates:

counfR =S—3 NP VP, X = S H = examined
coun{X = S, H = examined

counfR =S—3 NP VP, X =9)
coun{ X = S)

qmL(S—2 NP VRS, examineyl =

qML(S —9 NP VHS) =

Here the courit . .) expressions are counts derived directly from the trainamg-s
ples (the lexicalized trees in the treebank). Our estimfbte o

P(R=S—3NPVPX =S, H = examined
is then defined as
A1 % qurn(S—2 NP VPS, examinedl+ (1 — A1) x qarr.(S—2 NP VP|S)

where)\; dictates the relative weights of the two estimates (we lfase); < 1).
The value for\; can be estimated using the methods described in the notes on
language modeling for this class.

Next, consider our estimate of the expression in Eq. 4. Wedsdime the
following two maximume-likelihood estimates:

coun{M = lawyer, R = S —3 NP VP, H = examined
coun{R = S—2 NP VP, H = examined
coun{M = lawyer, R = S —3 NP VP)
coun{R = S—2 NP VP)

gy (lawyelS —4 NP VP, examinegd =

g (lawyerS —, NP VP) =

The estimate of
P(M = lawyerlR = S—9 NP VP, X = S, H = examined
is then
X2 x gz (lawyellS —9o NP VP, examinefl+ (1 — \2) x gz (lawyerS —o NP VP)

where0 < A\, < 1is a parameter specifying the relative weights of the twmger
Putting these estimates together, our final estimate ofuleeparameter is as
follows:
q(S(examined)—, NP(lawyer) VP(examined)
= (M X qur(S—2 NP VPS, examinedl+ (1 — A1) x qumr(S—2 NP VRS))
X (A2 x gurr(lawyelS —o NP VP, examinefl+ (1 — A2) x garr(lawyerS —o NP VP))

17

It can be seen that this estimate combines very lexicaligifip information, for
example the estimates

qmr(S—2 NP VPSS, examinedl

gy (lawyerS —4 NP VP, examined

with estimates that rely less on lexical information, foample
qmr(S—2 NP VPS)

qML(IawyeqS —9 NP VP)

The end result is a model that is sensitive to lexical infdroma but which is never-
theless robust, because we have used smoothed estimatesvefy large number
of parameters in the model.

6 Parsing with Lexicalized PCFGs

The parsing algorithm for lexicalized PCFGs is very simtlathe parsing algo-
rithm for regular PCFGs, as described in the previous lechates. Recall that
for a regular PCFG the dynamic programming algorithm fosjpay makes use of

a dynamic programming table(i, j, X'). Each entryr (i, j, X) stores the high-
est probability for any parse tree rooted in non-termikialspanning words. . . j
inclusive in the input sentence. Thevalues can be completed using a recursive
definition, as follows. Assume that the input sentence tatbperithm isz; . .. z,,.
The base case of the recursion isfet 1...n, forall X € N,

(1,1, X) = q¢(X — x;)

where we defing(X — z;) = 0 if the rule X — z; is not in the grammar.
The recursive definition is as follows: for any non-termifglfor anyi, j such
thatl <i < j <n,

(1,7, X) qX =Y Z)xn(i,s,Y) xmw(s+1,j,7)

= max
X—Y Zseli..(j-1)}

Thus we have aax over all rulesX — Y Z, and all split-pointss € {i...(j —
1)}. This recursion is justified because any parse tree root&d 8panning words
i...Jj, must be composed of the following choices:

e Arule X — Y Z atthe root of the tree.

e Asplitpoints € {i...(j —1)}.

18

e A sub-tree rooted iy, spanning wordgi . . . s}.

e A sub-tree rooted i, spanning word$(s + 1) ... j}.

Now consider the case of lexicalized PCFGs. A key differeiscihat each
non-terminal in the grammar includes a lexical item. A kepeaation is that
for a given input sentence, ... x,,, parse trees for that sentence can only include
non-terminals with lexical items that are onexgf. . . z,,.

Following this observation, we will define a dynamic programg table with
entriesw(i,j,h, X)for1 <i<j<mn,he{i...j}, X € N,whereN is the set
of unlexicalized non-terminals in the grammar. We give thitofving definition:

Definition 2 (Dynamic programming table for lexicalized PCFGs.) (i, j, h, X)
is the highest probability for any parse tree with non-taradiX and lexical item
h at its root, spanning words. . . j in the input.

As an example, consider the following sentence from earliénis note:
workers dumped the sacks into a bin

In this case we have = 7 (there are seven words in the sentence). As one example
entry,
w(2,7,2,VP)

will be the highest probability for any subtree rootedVitP (dumped), spanning
words2 ... 7 in the sentence.
The 7 values can again be completed using a recursive definitidre base
case is as follows:
(i1, X) = (X (25) = ;)

where we defing/(X (xz;) — =z;) = 0 if the rule ¢(X(z;) — =) is not in the
lexicalized PCFG. Note that this is very similar to the bassedor regular PCFGs.
As one example, we would set

m(1,1,1,NNS) = q(NNS(workers)— workersg

for the above example sentence.

We now consider the recursive definition. As an example,idengompleting
the value ofr (2, 7,2,V P) for our example sentence. Consider the following sub-
tree that spans words. .. 7, has lexical iteney = dumped and label VP at its
root:

19

VP(dumped)

VP (dumped) PP(into)

IN(into) NP(bin)

- |t /\
into DT(a) NN(bin
dumped pr(the) NNS(sacks) |() (|)

| | a bin
the sacks

We can see that this subtree has the following sub-parts:

VBD(dumped) NP(sacks)

e A choice of split-points € {1...6}. In this case we choose= 4 (the split
between the two subtrees under the rule VP(dumped)/BD(dumped) PP(into)
is afterz4 = sacks).

¢ A choice of modifier wordn. In this case we choose = 5, corresponding
to x5 = into, becauser; is the head word of the second child of the rule
VP(dumped)—; VBD(dumped) PP(into).

e Achoice of rule at the root of the tree: in this case the ruléR¢dumped)—; VBD(dumped) PP(into).

More generally, to find the value for amy(i, j, h, X'), we need to search over
all possible choices fof, m, and all rules of the fornX (z;) —1 Yi(zp) Yao(z)
or X (zp) —2 Yi(zm) Yo(zy,). Figure 8 shows pseudo-code for this step. Note
that some care is needed when enumerating the possiblesyalueandm. If sis
in the rangé . .. (j — 1) then the head word must come from the left sub-tree; it
follows thatm must come from the right sub-tree, and hence must be in tlgeran
(s +1)...5. Conversely, ifs is in the range ... (h — 1) thenm must be in the
left sub-tree, i.e., in the range. . s. The pseudo-code in figure 8 treats these two
cases separately.

Figure 9 gives the full algorithm for parsing with lexicadd PCFGs. The
algorithm first completes the base case of the recursiveitigfifior the = values.
It then fills in the rest of ther values, starting with the case where- ¢ + 1, then
the casg = i + 2, and so on. Finally, the step

(X*,h") = argXeN{%&eL?{il...n}v(X’ h) x 7(1,n,h, X)

finds the paitX™* (h*) which is at the root of the most probable tree for the input sen
tence: note that theterm is taken into account at this step. The highest proibabil
tree can then be recovered by following backpointers stsibp(1,n, h*, X*).

20

1. 7(i,j,h, X) =0
2. Fors=h...(j—1),form = (s+1)...4,for X(z,) =1 Y(xp)Z(zm) €
R,
@) p=q(X(zp) =1 Y(xp)Z(xm)) x w(i,s,h,Y) x w(s+1,5,m, Z)

(b) If p > m(i. j,h, X),
7T(Z.7j7 h7X) :p

bp(i, j, h, X) = (s,m,Y, Z)
3. Fors=i...(h—1),form=i...s,for X(xp) =2 Y(x,)Z(zp) € R,

(a) b= Q(X(ﬂi'h) 72 Y(xm)Z(:L'h)) X ﬂ-(iv s,m,Y) X 7T(S +1,7, hv Z)

(b) If p > (i, j. b, X),
w(i,j,h, X) =p

bp(i,j, h7X) = <37m7Y7 Z>

Figure 8: The method for calculating an entryi, j, h, X) in the dynamic pro-
gramming table. The pseudo-code searches over all sjfitspg over all mod-
ifier positionsm, and over all rules of the fornX (z,) —1 Y (zn) Z(zn) OF
X(xp) —2 Y(xm) Z(zr). The algorithm stores backpointer valdesi, j, h, X).

21

Input: a sentence = z; ... x,, alexicalized PCFG& = (N, %, S, R,q,7).

Initialization:
Foralli € {1...n},forall X € N,

(i i, X) = (X (z;) = x;) if X(2;) > 2, €R
T N 0 otherwise

Algorithm:
e Forl=1...(n—1)

—Fori=1...(n—1)
x Setj =1+1

x ForallX € N, h e {i...j}, calculater(i, 7, h, X) using the algorithm i

figure 8.

Output:

X* h*) = X.h 1.n, h, X
(X*,h%) argseﬁ?ﬁ..n}”(h) x m(1,n,h, X)

Use backpointers starting &t(1,n, h*, X*) to obtain the highest probability tree.

Figure 9: The CKY parsing algorithm for lexicalized PCFGs.

22

