Generalization of Lambert’s Reflectance Model

Michael Oren and Shree K. Nayar
Department of Computer Science, Columbia University
New York, NY 10027

Abstract

Lambert’s model for body reflection is widely used in computer
graphics. It is used extensively by rendering techniques such as
radiosity and ray tracing. For several real-world objects, however,
Lambert’s model can prove to be a very inaccurate approximation
to the body reflectance. While the brightness of a Lambertian sur-
face is independent of viewing direction, that of a rough surface
increases as the viewing direction approaches the light source di-
rection. In this paper, a comprehensive model is developed that
predicts body reflectance from rough surfaces. The surface is mod-
eled as a collection of Lambertian facets. It is shown that such a
surface is inherently non-Lambertian due to the foreshortening of
the surface facets. Further, the model accounts for complex geo-
metric and radiometric phenomena such as masking, shadowing,
and interreflections between facets. Several experiments have been
conducted on samples of rough diffuse surfaces, such as, plaster,
sand, clay, and cloth. All these surfaces demonstrate significant de-
viation from Lambertian behavior. The reflectance measurements
obtained are in strong agreement with the reflectance predicted by
the model.

CR Descriptors:  1.3.7 [Computer Graphics]:  Three-
Dimensional Graphics and Realism; 1.3.3 [Computer Graphics]:
Picture/lmage Generation; J.2 [Physical Sciences and Engineer-
ing]: Physics.

Additional Key Words: reflection models, Lambert’s model,
BRDF, rough surfaces, moon reflectance.

1 Introduction

An active area of research in computer graphics involves the cre-
ation of realistic images. Images are rendered using one of two
well-known techniques, namely, ray tracing [36] or radiosity [7].
The quality of a rendered image depends to a great extent on the
accuracy of the reflectance model used. In the past decade, com-
puter graphics has witnessed the application of several physically-
based reflectance models for image rendering (see [8], [17], [10],
[14]). Reflection from a surface can be broadly classified into
two categories: surface reflectance which takes place at the inter-
face between two media with different refractive indices and body
reflectance which is due to subsurfacescattering. Most of the pre-
vious work on physically-based rendering has focused on accurate
modeling of surface reflectance. They predict ideal specular reflec-

tion from smooth surfaces as well as wide directional lobes from
rougher surfaces [14]. In contrast, the body component has most
often been assumed to be Lambertian. A Lambertian surface ap-
pears equally bright from all directions. This model was advanced
by Lambert [20] more than 200 years ago and remains one of the
most widely used models in computer graphics.

For several real-world objects, however, the Lambertian model
can prove to be a poor and inadequate approximation to body re-
flection. Figure 1(a) shows a real image of a clay vase obtained
using a CCD camera. The vase is illuminated by a single distant
light source in the same direction as the sensor. Figure 1(b) shows
a rendered image of a vase with the same shape as the one shown
in Figure 1(a). This image is rendered using Lambert’s model, and
the same illumination direction as in the case of the real vase. As
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Figure 1: (a) Real image of a cylindrical clay vase. (b) Image of the vase

rendered using the Lambertian reflectance model. In both cases, illumination
is from the viewing direction.

expected, Lambert’s model predicts that the brightness of the cylin-
drical vase will decrease as we approach the occluding boundaries
on both sides. However, the real vase is very flat in appearance
with image brightness remaining almost constant over the entire
surface. The vase is clearly not Lambertian®. This deviation from
Lambertian behavior can be significant for a variety of real-world
materials, such as, concrete, sand, and cloth. An accurate model
that describes body reflection from such commonplace surfaces is
imperative for realistic image rendering.

What makes the vase shown in Figure 1(a) non-Lambertian?
We show that the primary cause for this deviation is the roughness
of the surface. Figure 2 illustrates the relationship between magnifi-
cation and reflectance (also see [17]). The reflecting surface may be
viewed as a collection of planar facets. At high magnification, each
picture element (rendered pixel) includes a single facet. At lower
magnification, each pixel can include a large number of facets.
Though the Lambertian assumption is often reasonable when look-

I Note that the real vase does not have any significant specular component, in which
case, a vertical highlight would have appeared in the middle of the vase.



ing at a single planar facet, the reflectance is not Lambertian when
a collection of facets is imaged onto a single pixel. This deviation
is significant for very rough surfaces, and increases with the angle
of incidence. In this paper, we develop a comprehensive model
that predicts body reflectance from rough surfaces, and provide ex-
perimental results that support the model. Lambert’s model is an
instance, or limit, of the proposed model.

pixel

e

Figure 2: The roughness of a surface causes its reflectance properties to
vary with image magnification.

The topic of rough surfaces has been extensively studied in
the areas of applied physics, geophysics and engineering. The
following is a brief summary of previous results on the subject. In
1924, Opik [25] designed an empirical model to describe the non-
Lambertian behavior of the moon. In 1941, Minnaert [21] modified
Opik’s model to obtain the following reflectance function:
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where, 8; and 4. are the polar angles of incidence and reflection, and
k is a measure of surface roughness. This function was designed to
obey Helmholtz’s reciprocity principle [2] but is not based on any
theoretical foundation. It assumes that the radiance is symmetrical
with respect to the surface normal. It will be shown in this paper
that this assumption is incorrect. Hapke and van Horn [13] also
obtained reflectance measurements from rough surfaces by varying
the source direction for a fixed sensor direction. They found the
peak of the radiance function to be shifted from the peak position
expected for a Lambertian surface. They interpreted this asa minor
discrepancy and concluded the Lambertian model to be a reason-
able approximation. Our own measurements demonstrate that this
non-Lambertian behavior is clearly noticeable and significant when
viewer direction is varied rather than source direction.

The studies cited above were attempts to design reflectance
models based on measured reflectance data. In contrast, Smith
[30] and Buhl et al. [4] attempted to develop theoretical models
for reflection from rough surfaces. These efforts were motivated
primarily by reflectance characteristics of the moon. Visible and
infrared emissions from the moon were recorded by a number of
researchers (for examples, see [26] and [29]). These measurements
indicate that the moon’s surface reflects more light back in the di-
rection of the source (the sun) than in the normal direction (like
Lambertian surfaces) or in the forward direction (like specular sur-
faces). This phenomenon is referred to as backscattering. > Smith
modeled the roughness of the moon as a random process and as-
sumed each point on the surface to be Lambertian in reflectance.
Smith’s analysis, however, was confined to the plane of incidence
and is not easily extensible to reflections outside this plane. More-
over, Smith’s model does not account for interreflection effects.

2 A different backscattering mechanism, called retroreflection or opposition effect,
produces a sharp peak close to the source direction (see [13, 19, 32, 24, 28, 12]). This
is not the mechanism discussed in this paper.

Buhl et al. [4] modeled the surface as a collection of spherical
cavities. They analyzed interreflections using this surface model,
but did not present a complete model that accounts for masking and
shadowing effects for arbitrary angles of reflection and incidence.
Subsequently, Hering and Smith [15] derived a detailed thermal
emission model for surfaces modeled as a collection of V-cavities.
However, all cavities are assumed to be identical and aligned in the
same direction, namely, perpendicular to the source-viewer plane.
Further, the model is limited to the plane of incidence.

More recently, body reflection has emerged as a topic of interest
in the graphics community. Poulin and Fournier [27] derived a re-
flectance function for anisotropic surfaces modeled as a collection
of parallel cylindrical sections. Addressing a different cause for
non-Lambertian reflectance from the one discussed here, Hanrahan
and Krueger [11] used linear transport theory to analyze subsur-
face scattering from a multi-layered surface. Other researchers in
graphics have numerically pre-computed fairly complex reflectance
functions and stored the results in the form of look-up tables or co-
efficients of spherical harmonic expansion (for examples, see [5]
[17] [35]). Thisapproach, though practical in many instances, does
not replace the need for accurate analytical reflectance models.

The reflectance model developed here can be applied to isotropic
as well as anisotropic rough surfaces, and can handle arbitrary
source and viewer directions. Further, it takes into account com-
plex geometrical effects such as masking, shadowing, and inter-
reflections between points on the surface. We begin by modeling
the surface as a collection of long symmetric V-cavities. Each V-
cavity has two opposing facets and each facet is assumed to be
much larger than the wavelength of incident light. This surface
model was used by Torrance and Sparrow [31] to describe incoher-
ent directional component of surface reflection from rough surfaces.
Here, we assume the facets to be Lambertian 3. First, we develop
a reflectance model for anisotropic surfaces with one type (facet-
slope) of V-cavities, with all cavities aligned in the same direction
on the surface plane. Next, this result is used to develop a model
for the more general case of isotropic surfaces that have normal
facet distributions with zero mean and arbitrary standard deviation.
The standard deviation parameterizes the macroscopic roughness
of the surface. The fundamental result of our work is that the body
reflectance from rough surfaces is not uniform but increases as the
viewer moves toward the source direction. This deviation from
Lambert’s law is not predicted by any previous reflectance model.

We present several experimental results that demonstrate the
accuracy of our model. The experiments were conducted on real
samples such as sand, plaster and cloth. In all cases, reflectance
predicted by the model was found to be in strong agreement with
measurements. The derived model has been implemented as a
shading function in RenderMan [33]. We conclude by comparing
real and rendered images of a variety of objects. These results
demonstrate two points that are fundamental to computer graphics:
(a) Several real-world objects have body reflection components that
are significantly non-Lambertian. (b) The model presented in this
paper can be used to create realistic images of a variety of real-world
objects.

2 Radiometric Definitions

In this section, we define radiometric concepts that are used in the
remainder of this paper. These concepts are discussed in detail in
[23]. Figure 3 shows a surface element d A illuminated from the
direction § = (6:, ¢:) and viewed by a sensor (image pixel) in the
direction o = (9,, ¢,). We use 6 to denote polar angles and ¢ to

3This assumption does not limit the implications of the reflectance model presented
here. The non-Lambertianbehavior reported here is expected for a wide range of local
body reflectance models (see [6], for example) since surface roughness is shown to
play a dominantrole.



Figure 3: Geometry used to define radiometric terms.

denote azimuth angles. The sensor subtends an infinitesimal solid
angle dw, from any point on the surface.

The light energy reflected by the surface patch is proportional
to the light incident on the patch. Irradianceis defined as the light
flux incident per unit area of the surface:

d®;(8:, ¢i)

This is the directional irradiance of the surface as it represents light
energy incident from the direction (4, ¢;). The total irradiance
of the surface is the flux incident from all directions and may be
denoted simply as £. The brightness measured by the sensor is
proportional to the radiance of the surface patch in the direction
(8-, ¢»). Surface radiance is defined as:

E(8:,¢:) =
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It is the flux radiated by the surface per unit solid angle, per unit
foreshortened area. It depends on the direction of illumination
and the sensor direction. The relationship between irradiance and
radiance of a surface is determined by its reflectance properties. The
bi-directional reflectance distribution function (BRDF) is defined
as the ratio of radiance to irradiance:

dLr(er, ¢r1 ei, ¢z)
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All the above definitions are general, in that, they are valid for sur-
faces with any reflectance characteristics. For an isotropic surface,
radiance and BRDF do not change if the surface is rotated about its
normal vector. For such surfaces, the BRDF is simply:

dLr(er,ei, ¢r - ¢z)

fr(er,ei,¢r_¢i) = dE(Gz) (4)

A special type of reflectance that is widely used for image render-
ing is Lambertian reflectance. A Lambertian surface is an ideal
diffuser whose radiance is independent of the viewing direction of
the sensor; it appears equally bright from all directions. Its BRDF
is fr = £ where p is the albedo of the surface and represents the
fraction of incident energy that is reflected by the surface.

3 Surface Roughness Model

There are several ways of modeling surface roughness. The
general approach is to select a model that is capable of rep-
resenting real surfaces and at the same time easy to use dur-
ing the mathematical development of the reflectance model. All

surface models found in applied physics and geophysics liter-
ature can be divided into two broad categories. In the first
case, the surface is modeled as a random process (see [1, 34,
30]). Using this approach, it is difficult to derive a reflectance
model for arbitrary source and viewer directions as well as to
analyze interreflections. In the second category, surfaces are as-
sumed to be composed of several elements with some primitive
shape, for example, spherical cavities, VV-cavities, holes, etc (see [4,
31]). As shown in this paper, the effects of shadowing, mask-
ing, and interreflections need to be modeled to obtain an accurate
reflectance model. To achieve this, we use the roughness model
proposed by Torrance and Sparrow [31] that assumes the surface to
be composed of long symmetric V-cavities (see Figure 4) with their
upper edges in the same plane. Each cavity consists of two planar
facets. The width of each facet is assumed to be small compared
to its length. The roughness of the surface is specified using a
probability function for the distribution of facet slopes.
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Figure 4: Surface modeled as a collection of V-cavities.

The V-cavity roughness model can be used to describe surfaces
with both isotropic as well as anisotropic (directional) roughness.
We assume each facet area da is small compared to the area d A of
the surface patch that is imaged by a single sensor pixel. Hence,
each pixel includes a very large number of facets. Further, the facet
area is large compared to the wavelength X of incident light and
therefore geometrical optics can be used to derive the reflectance
model. The above assumptions can be summarized as:

N < da < dA (5)

The facets could be relatively small as in the case of sand and
plaster, or large as in the case of outdoor scenes of terrain.

Slope-Area Probability Distribution:

We denote the slope and orientation of each facet in the V-cavity
model as (8., ¢.). Torrance and Sparrow have assumed all facets
to have equal area da. They use the distribution N (8, ¢.) * to
represent the number of facets per unit surface area that have the
normal @ = (8., ¢.). Here, we use a probability distribution to
represent the fraction of the surface area that is occupied by facets
with a given normal. This is referred to as the slope-area distribu-
tion P(8a, ¢.). The facet-number distribution and the slope-area
distribution are related as follows:

P(8a, ¢a) == N(a, da) da COSO4 (6)

The slope-area distribution is easier to use than the facet-number
distribution in the following model derivation. For isotropic sur-
faces, N (84, ¢a) = N(8a) and P(8a,¢a) = P(8a), since the
distributions are rotationally symmetric with respect to the global

“Inf31L N (4., %fj igdenotez'byp(a) where 8, = « and ¢, = 0.



4 Reflectance Model

In this section, we derive a reflectance model for body reflectance
from rough surfaces. The V-cavity model is used to describe surface
geometry and each facet on the surface is assumed to be Lambertian
in reflectance. The following three types of surfaces with different
slope-area distributions are examined. (a) Uni-directional Single-
Slope Distribution: This distribution results in a non-isotropic
surface where all facets have the same slope and all cavities are
aligned in the same direction. (b) Isotropic Single-Slope Distri-
bution: Here, all facets have the same slope but they are uniformly
distributed in orientation on the surface plane. (c) Gaussian Dis-
tribution: This is the most general case examined where the slope-
area distribution is assumed to be normal with zero mean. The
roughness of the surface is determined by the standard deviation of
the normal distribution. The reflectance model obtained for each of
the above surface types is used to derive the succeeding one.
Effect of Roughness on Body Reflectance:

Before we proceed to derive reflectance models for the above-
mentioned surface types, a brief illustration of the effect of rough-
ness on body reflection would be useful. Consider, for the purpose
of discussion, the single V-cavity shown in Figure 5. Both facets
of the cavity are fully illuminated by a distant source on the right
side. If the facets are Lambertian with equal albedo, the left facet
appears brighter than the right one as it receives more incident light.
If the V-cavity is viewed from the left side by a distant observer, a
larger fraction of the foreshortened cavity area is dark and a smaller
fraction is bright. As the observer moves to the right, towards the
source direction, the fraction of brighter area increases while that
of the darker area decreases. Consequently, the total brightness,
or radiance, of the cavity increases as the observer approaches the
source direction. Note that this results from the brightness dis-
parity between the two facets which increases with the angle of
incidence. This effect is in contrast to Lambertian surfaces whose
brightness does not vary with the viewing direction. The above
illustration demonstrates that rough diffuse surfaces are inherently
non-Lambertian in reflectance. Their radiance increases as the
viewer approaches the source direction. Now we present a formal
treatment of the above effects.
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Figure 5: The radiance of the V-cavity increases as the viewer moves
towards the illumination direction.

The Projected Radiance:

Consider surface area d A that is imaged by a single sensor ele-

ment in the direction o = (4., ¢,) and illuminated by a distant point
light source in the direction § = (6, ¢;). The aread A is composed
of a very large number of symmetric V-cavities. Each V-cavity is
composed of two facets with the same slope but facing in opposite
directions. Our approach is to compute the radiance contribution
of each facet on the surface. Then, the total radiance of the surface
patch can be determined as an aggregate of the contributions of
all facets. Consider the flux reflected by a facet with area da and
normal @ = (8., ¢.). The projected area on the surface occupied
by the facet is da cosé, (see Figure 4). Hence, while computing
the contribution of the facet to the radiance of the surface patch,
we need to use the projected area da cos 8 , and not the actual facet
areada. The radiance contribution thus determined is what we call
the projected radiance of the facet:

2D, (84, ba)

Lr ea, a) =
»{0a, ¢a) (da cosf,) cosb, dw.

(7

For ease of description, we have dropped the source and viewing
directions from the notations for projected radiance and flux.
Total Radiance:

Now consider the slope-area distribution of facets given by
P(8., ¢a). The total radiance of the surface can be obtained as the
average of L, (84, ¢) Of all facets on the surface:

Lr(er,¢r;6i,¢i) = (8)
z 2w
/2 / P(8a,da) Lrp(8a, da) SiNbade, db,
a=0 o =0

Thus, we have decomposed the problem of computing the radiance
of any rough surface to one of computing the projected radiance for
each facet on the surface. The total radiance of the surface is then
obtained by integrating the product of the projected radiance and
the slope-area distribution function over all facet normals.

4.1 Model for Uni-directional Single-Slope Distri-
bution

The first surface type we consider has all facets with the same slope
8. Further, all V-cavities are aligned in the same direction; azimuth
angles of all facets are either ¢, or ¢, + «. The results obtained for
this anisotropic surface will be used later in the analysis of isotropic
surfaces.

Radiance from a Lambertian Facet:

Consider a Lambertian facet that is fully illuminated (no shad-
owing) and is completely visible (no masking) from the sensor
direction. The radiance of the facet is proportional to its irradi-
ance and is equal to £F(f., ¢a). The irradiance of the facet is
E(8a,da) = Eo<3§,a>, where, Ey is the irradiance when the
facet is illuminated head-on (i.e. 5 =a), and <, > denotes the dot
product between two vectors. Using the definition of radiance, the
flux reflected by the facet in the sensor direction is obtained as:

PO, = 2Ey<3,a><8,a> dadw, (9)
Substituting the above reflected flux in (7), we get:

P <s,a><v,a>

Lrp(fa, da) = 7rE0<a,ﬁ><13,ﬁ> (10)
This expression clearly indicates that the projected radiance of a
tilted Lambertian facet is not equal in all viewing directions. Con-
sequently, a rough surface comprised of tilted Lambertian facets
is non-Lambertian; its radiance varies with the viewing direction.
Thisphenomenonis observed even in the absenceof masking, shad-
owing, and interreflection effects.



4.1.1 Geometric Attenuation Factor

If the surface is illuminated and viewed from the normal direction
(5 = 9 = 1), all facets are fully illuminated and visible. For larger
angles of incidence and reflection, however, facets are shadowed
and masked by adjacent facets (see Figure 6). In the case of shad-
owing, a facet is only partially illuminated as the adjacent facet on
the V-cavity casts a shadow on it. In the case of masking, the facet
is only partially visible to the sensor as its adjacent facet occludes
it. Both these geometrical phenomena affect the projected radiance
of the facet and hence must be taken into account. The result is a
geometrical attenuation factor (G.4F) that lies between zero and
unity (also see [31] [3]). Itis the reduction in the projected radiance
of a facet due to masking and shadowing effects; it equals the ratio
of the facet area that is both visible and illuminated, to the total
facet area. The details of the derivation of the G.4Fare given in
appendix A The final result can be compactly represented as:

GAF = Min |:17 Maz |:O7

The above G.AF is valid for any facet normal, @, not necessarily the
bisector of the angle between the source and the sensor direction.

x>
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Figure 6: (a) Shadowing and (b) masking in a V-cavity.

Projected Radiance and GAF:

The projected radiance of a Lambertian facet is obtained by
simply multiplying the geometric attenuation factor with the pro-
jected radiance (10) derived under the assumption of no masking
and shadowing. Table 1 details the G.AF and the corresponding
projected radiance for all cases of shadowing and masking. Note
that the projected radiance is denoted as Lip; the superscript is
used to indicate that the radiance is due to direct illumination by the
source. In the next section, we will use Lip to denote radiance due
to interreflections.

4.1.2 Interreflection Factor

In our reflectance model, we also account for interreflections; light
rays bouncing between adjacent facets. These effects are signifi-
cant for rough surfaces with relatively high albedo values. When
the surface is illuminated from large angles (¢;) and viewed from
the opposite side at large angles (¢ ,.), none of the facets that are vis-
ible to the sensor are illuminated by the source. If interreflections
are not considered, the radiance of the surface would be zero in this
case. However, the visible facets receive light from their adjacent
facets that face the source and hence are illuminated. These inter-
reflections result in non-zero surface radiance. Our analysis and
experimental results suggest that the contribution due to interreflec-
tions can be significant and cannot in general be ignored.

We have the task of modeling interreflections in the presence
of masking and shadowing effects. In the case of Lambertian
surfaces, the energy in an incident light ray diminishes rapidly with
each interreflection bounce. Therefore, we model only two-bounce

interreflections and ignore subsequent bounces. Simulations of the
interreflection process were used to verify that this approximation
is good.

In the following discussion, we refer to surface radiance due to
direct illumination by the source as L% and radiance due to inter-
reflections as 2. We will use the same superscripts for projected
radiance. The two-bounce interreflection component for a Lamber-
tian facet can be expressed as [29] [18] [9] [22]:

i@ =2 [ [ (12

where X is a point on the facet whose interreflection component
is determined as an integral of the radiance of all points ¥ on the
adjacentfacet. K (X, ¥) is the kernel and represents the geometrical
relationship between % and ¥. Since the V-cavity is long compared
to its width, it can be viewed as a one-dimensional shape with trans-
lational symmetry. For such shapes, the interreflection component
can be determined as an integral over the one-dimensional cross-
section of the shape. The above interreflection equation is therefore
reduced to:

1) =2 [ Kt (13

where z and y are the shortest distances of points X and ¥ from the
intersection of the two facets (see Figure 7). K is the kernel for
the translational symmetry case and is derived in [16] and [9] to be:

7 sin? (26.) Ty (14)
2 (22 + 2zycos(28,) + y2)3/2

K'(z,y) =

We know that the normal of the considered facetis @ = (84, ¢a)

Figure 7: Interreflections in a V-cavity.

and the normal of the adjacent facet is &' = (84, ¢ + 7). The
limits of the integral in the interreflection equation are determined
by the masking and shadowing of these facets. As before, let m .,
be the width of the facet which is visible to the viewer. Let m ® be
the width of the adjacent facet that is illuminated. As in Section
4.1.1, expressions can be obtained for the visible and illuminated
sections:

M _ Mag [O,Min [1, —wn (15)
w <a,v>

™ _ Mag [o, Min [1, —<“,75>H (16)
w <a,s>

From the definition of projected radiance (7) and expression (13)
we have:

2 <a,v>

= /w L2(z)ds = 7

P da <a,n><9,n>

(£)2E01<a',§><a,ﬁ> s s
T da <a,n><0,n> o=y

y=m?s

K'(2,y)dy do
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Table 1: Projected radiance of a facet

Using the following change of variables: ¢ = & ; r = £, the
radiance due to two-bounce interreflections given by (17) can be
written as:
(18)
Lip:(£)2E0<(f ><il ? / / t r)dr dt
T <a,n><v,n> f _ my m

Using (14), the above integral is evaluated as:

1 1
/ / K'(r, t)dr dt = (19)
t=Tu Sy mE

O S
5|:d(’ ’w)+d(1’ w) d(w’ w) d(l’l):|
where:
d(z,y) = \/xz + 2zycos(20.) + y? (20)

We refer to the right hand side of equation (19) as the interreflection
factor (ZF). The total projected radiance of the facet is the sum of
the projected radiance due to source illumination (given in Table 1)
and the above interreflection component:

Lrp(ea,¢a) = Lip(ea,(ﬁa) + Lip(ea,¢a) (21)

The uni-directional single-slope surface we have considered in this
section has only two types of facets with normals (8., ¢.) and
(84, ¢a + ). Hence, the radiance of the surface for any given
source direction and sensor direction is simply the average of the
projected radiances of the two facet types:

LT(HT, (br;ei’ ¢i;6a, ¢a) — Lrp(eaa ¢a) + é/rp(eaa ¢a + 7T) (22)

4.2 Model for Isotropic Single-Slope Distribution
We now consider a surface with V-cavities that have facets with

the same slope (), but uniformly distributed in orientation (¢.)
in the plane of the surface. The result is a surface with isotropic
roughness. The reflectance model derived for this surface is based
on the results obtained in the previous section for the single-slope
surface. The results obtained in this section are important as they
can be used to derive a reflectance model for any isotropic surface.

From the previous section, we know the radiance L 1p(ea, da)
of a facet with normal @ = (6., ¢.). Therefore, the radiance of
the single-slope isotropic surface due to direct source illumination
is determined as an integral of the projected radiance over ¢ ,:

2w

1 1
g 600 Lrp(ea,¢a)d¢a (23)

Lip(ea) =

for different masking/shadowing conditions.

Given source direction (¢;, ¢;) and sensor direction (8., ¢,), we
first need to find the ranges of facet orientation ¢, for which the
facets are masked, shadowed, masked and shadowed, and neither
masked nor shadowed®. The radiance for each range is given in Ta-
ble 1. The problem then is to decompose the above integral into dif-
ferent parts, each corresponding to a different masking/shadowing
range. We refer the interested reader to Appendix B.1 for details
on the evaluation of integral (23). The final expression for surface
radiance is found to be:

Lyp(8a) = £ Eocosf;cosf, |1+ (24)

cos(¢r — ¢:) (A1(a;9a)tan6 + A28, dr — ¢i;6a)) +
(1—fcos(¢r — ¢i)|)A3(6r,6i;0a)]

where, « = Max[6;,6.-] and § = Min[6;,6.]. The expressions
for the coefficients A1, A,, and Az are givenin Appendix B.1. Note
that the above PrOJected radiance is the same as the total radiance of
the surface (L (8;, 8:, ¢r — ¢i;0a4) = Lip(ea)) since all facets on
the surface have identical slope, 8 .. The derivation in Appendix B.1
does not consider multiple reflections, as the interreflection compo-
nent (19) is difficult to intergrate over all cavity orientations ¢ . In
Appendix B.2, an approximation to the interreflection component
(L2885, 6r — ¢i38a) = L2,(64)) is given.

Once again, it is important to note that the radiance of the rough
surface considered here is not constant with respect to the viewing
direction (6,, ¢, ); itis non-Lambertian. We will study this behavior
more closely in the following section.

4.3 Model for Gaussian Slope-Area Distribution
The surface considered above consists of \/-cavities with equal facet

slope. Realistic surfaces can be modeled only if the slope-area
distribution P(f., ¢.) includes a variety of different facet slopes.
If the surface roughness is isotropic, the slope-area distribution can
be described using a single parameter namely ¢ ,, since the facets are
uniformly distributed in ¢,. The radiance of any isotropic surface
can therefore be determined as:

i

Lr(er,ei,¢r - ¢z) = / ’ P(ea)Lrp(ea) Sin Ha d@a (25)
0

where the source illumination (no interreflection) component of
L.(64) isgivenby (24). We assume the isotropic distribution to be
Gaussian with mean g and standard deviation o, i.e. P(64; 0, 1t).

SImagine a V-cavity rotated about the global surface normal for any given source
and sensor direction. Various masking/shadowing scenarios can be visualized.



Reasonably rough surfaces can be described using a zero mean
(¢ = 0) Gaussian distribution:

P(8,) = ce 27 (26)

where the normalization constant c is:

T o8
1/c= / / e 252 sinf, dpo df.
a=0 e =0

The reflectance model is to be obtained by substituting the
radiance L7, (6.) given by (24) and the Gaussian distribution
P(8.; 0,0) inintegral (25). The resulting integral cannot be easily
evaluated. Therefore, we pursued a functional approximation to the
integral that is accurate for arbitrary surface roughnessand angles of
incidence and reflection. In deriving this approximation, we care-
fully studied the functional form of L}, (6.) given by (24). This
enabled us to identify basis functions that can be used in the approx-
imation. Then, we conducted a large set of numerical evaluations
of the integral in (25) by varying surface roughness o, the angles
of incidence (4, ¢;) and reflection (6, ¢,). These simulations
and the identified basis functions were used to arrive at an accurate
functional approximation for surface radiance. This procedure was
applied independently to the direct illumination component as well
as the interreflection component.

The final approximation results are given below. Once again,
leta = Maxz[d,,60;]and 8 = Min[6,,6;]. Thedirectillumination
component of radiance of a surface with roughness o is:

o7

LY(0r,0i, 67 — ¢i50) = £ Egcosd; [OI(U) + (27)
Cos (pr — ¢:)Ca(or; B dr — diy0)tan g +

(1 — |cos (¢y — ¢i)|) C3(a; B;0) tan (a;—ﬁ)]

where the coefficients are:
2

¢1 = 1-05—0——
o2 +0.33
2 . .
0.45m sin o if cos(¢r — ¢;) > 0
Chr =

2 . 2 .
04577555 (sm o — (?’3)3) otherwise

2
o2 dap
0y = 0125 —2 )| X2E
8 <02+o.09 72

Using a similar approach, an approximation to the interreflection
component was also derived. In this case, the interreflection com-
ponent for the single-slope isotropic surface (Appendix B.2) was
used to guess the basis functions. The final approximation to the
interreflection component of radiance for a surface with roughness
o is:

L3 (8:,8i,6r — ¢i;0) = (28)
2 2

2
P o _ o[ 28
0.17 - Epcosé; 1013 [1 oS (¢ ¢z)< - ) ]

The two components are combined to obtain the total surface radi-
ance:

Lr(er,ei,¢r_¢i;a): (29)
LY (8r,0i, 60 — ¢i:0) + L2(8y,8i, 6 — i3 0)

If the surface is extremely rough, causing the zero-mean Gaussian
model to be an inaccurate approximation, an additional param-
eter can be used to weight the interreflection component. Our
simulations show that this enables the model to stretch a bit be-
yond its theoretical limits. Finally, the BRDF of the surface is ob-
tained from its radiance and irradiance as f (8, 8;, ¢, — ¢i;0) =
L. (6r,0i, ¢, — ¢i;0) / Egcosd,. Itis important to note that the
above model obeys Helmholtz’s reciprocity principle (see [2]). Also
notethat the model reducesto the Lambertian model ® when o = 0.
Note that by substituting the albedo as function of the wavelength,
p(X), the dependency of the model on the wavelength comes out
explicitly.

In the next section, we present several experimental results
that verify the derived reflectance model. Here, we give a brief
illustration of the main characteristics of the model. Figure 8 shows
the reflectance predicted by the model for a very rough surface with
o = 30° and p = 0.9. The radiance L, in the plane of incidence
(¢r = ¢4, ¢: + m) is plotted as a function of the reflection angle
6, for incidence angle #; = 75°. Two curves are shown in the
figure, both obtained by numerical evaluation of the integral in
(25). Shortly, we shall examine the accuracy of the functional
approximation.

The first curve (solid line) includes both direct illumination
and interreflection components of radiance, while the second (thin
line) is only the direct illumination component. Notice that these

L strong
r i masking

0.125 |

Lambertian

strong
interreflection

0.025

-90 -75 -60  -45 -30 -15 15 30 45 60 75 50 I

forward backward

Figure 8: Diffuse reflectance in the plane of incidence for a surface with
o = 30° p = 0.90, and incidence angle 8; = 75°. The thin line is
radiance due to direct illumination (without interreflections).

radiance plots deviate substantially from Lambertian reflectance.
Surfaceradianceincreasesasthe viewing direction approachesthe
sourcedirection. The curves can be divided into three sections. In
the backward (source) direction, the radiance is maximum and gets
“cut-off” due to strong masking effects when 6, exceeds #;. This
cut-off occurs exactly at §, = 6, and is independent of roughness.
In the middle section of the plot, radiance varies approximately
as a scaled tan 8, function with constant offset. Finally, inter-
reflections dominate in the forward direction where most facets are
self-shadowed and the visible facets receive light primarily from
adjacent facets. This is illustrated by the difference between the
two curves.

Figure 9 shows the effect of varying surface roughness. When
o = 0, the model predicts exactly Lambertian reflectance. The
deviation from Lambertian behavior increases dramatically with
roughness. In Figure 10, the effect of varying the incidence angle
#; is shown. Here we have chosen to plot B RD F rather than ra-
diance to better illustrate the effect of varying ;. It is interesting

®Wheno = 0,C1 = 1,C, = 0,and C3 = 0, yielding L% = £ Egcos é;.
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Figure 9: Effect of roughness & on surface radiance (¢, = 75° and

Figure 10: BRDF for different angles of incidence. & = 40° and
p=0.9.

to note that the model predicts near-Lambertian behavior for very
small incidence angles (8; ~ 0). This results from both facets
of a V-cavity having nearly equal irradiance for small angles of
incidence. As the incidence angle increases, the backscatter phe-
nomenon begins to dominate. Figure 11 shows the effect of placing
the sensor outside the plane of incidence. When the sensor-normal
plane is perpendicular to the source-normal plane, the rough surface
again exhibits near-Lambertian characteristics.

Figure 12 shows comparisons between radiance values com-
puted by numerical evaluation of (25) (thick line) and the functional
approximation (thin line) given by (27) and (28). Once again, radi-
ance is measured in the plane of incidence (¢ » = ¢:, ¢: + =). In
all cases, the functional approximation proves to be very accurate.

4.4 Qualitative Model

In this section, we propose a further simplification to the reflectance
model presented in the previous section. In order to obtain this
simplification, a slight sacrifice in accuracy must be made. In
return, some computations can be saved during image rendering.
The following simplified model was arrived at by studying, through
numerous simulations, the relative significance of various terms
in the functional approximation given by (27). The simulations
showed that coefficient C's makes a relatively small contribution to
the total radiance. A simpler model is thus obtained by discarding
(3 and ignoring interreflections:

Lr(er,ei,¢r_¢i;a): (30)

q)i_q)r:O

¢i - ¢r: 60

q)i_q)r: 90

0.075 |

0.025 |

Figure 11: Radiance outside the plane of incidence. & = 40 ° and
p=0.9.

2 E cosd;(A+ BMax [0, oS (¢r — ¢i)] sina tan 3)
T

2

a

2

a

The two coeffcients A and B are obtained directly from C'1 and C»,
respectively. Note that the qualitative model also reduces to the
Lambertian model when & = 0. In Figure 13, we have compared
the qualitative model with the numerical evaluation of the model”.
This model can be of significant practical value in applications
where high accuracy is not critical.

5 Experimental Verification

We have conducted several experiments to verify the accuracy of
the reflectance model. The experimental set-up used to measure the
radiance of samples is shown in Figure 14. In the case of outdoor
scenes, each sensor element (pixel) typically includes a large surface
area (several inches in dimensions and often more). Commercially
available reflectance measurement devices are applicable only to
small samples. Consequently, we developed our own measurement
device. Each sample is approximately 2x2 inches. It is imaged
using a 512x480 pixel CCD camera that is mounted at the end
of a 6 foot long beam. The other end of the beam is attached to
a rotary stage to facilitate precise variation of the viewing angle
8. The sample is illuminated using a 300 Watt incandescent light
source. The solid angles subtended by the sensor and source from
the sample are approximately dw; = 0.003 steradians and dw, =
0.0009 steradians, respectively. The illumination direction (6, ¢;)
is adjusted manually. Images of the sample are digitized and the
radiance is computed as the average brightness over all pixels within
an image window that lies on the sample. The image window size
is varied as a function of sensor direction to ensure that the same
area on the sample is always used.

Figure 15 shows results obtained for a sample of wall plas-
ter. The sample has matte local reflectance properties but is very
rough; it is exactly the type of surface that our reflectance model
characterizes. Reflectance is represented by the normalized radi-
ance L,(8,)/L(0) where L,(0) is the radiance measured when
the sample is viewed from the normal direction. The normalized

"Discrepancies caused by the lack of the interreflection componentin the qualitative
model can be partially compensated by replacing the constant 0.33 in coefficient A
with 0.57.
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Figure 12: Comparison between numerical evaluation of the model (thick line) and functional approximation (thin line) for a surface with = 30 ° and

p = 0.90.

radianceis also equal to the normalized BRDF f(8,)/ f-(0). The
radiance of each sample is plotted as a function of the sensor direc-
tion 8, for different angles of incidence §;. These measurementsare
made in the plane of incidence (¢ » = ¢; = 0). The dots represent
measured radiance values while the solid lines are predictions ob-
tained using the reflectance model for Gaussian surface roughness.
In these initial experiments, o was empirically selected to obtain
the best match between measured and predicted reflectance. Here,
we have used the numerical evaluation of the model (equation 25).
This was done to demonstrate not only the accuracy of the model
but also the validity of all assumptions made while developing the
model.

Similar results are presented in Figures 16 and 17 for sample B
(painted sand paper) and sample C (white sand). For all three sam-
ples, radiance increases as the viewing direction 6 - approaches the
source direction #; (backward reflection). This is in contrast to the
behavior of rough specular surfaces that reflect more in the forward
direction, or Lambertian surfaces where radiance does not vary with
viewing direction. For all three samples, the model predictions and
experimental measurements match remarkably well. In all cases, a
small peak is noticed near the source direction. This phenomenon
was discussed earlier in the paper and is different from the one de-
scribed by our model; it is the backscatter peak studied by several
researchers [13] [24] [12] [19] [32] and discussed in the context of
graphics rendering by [28]. Some of the discrepancies between the
model and measured data in the forward direction can be attributed
to the long V-cavity assumption. In the case of sample C (sand),
we see a small specular component in the forward direction. This
is due to the specular characteristics of individual sand particles.
In Figure 18, we have shown measurements obtained outside the

plane of incidence (¢ # 0) for sample C. These measurementsare
a critical measure of the accuracy of any reflectance model but are
seldom found in reflectance literature. Once again, the model and
measured data are in strong agreement.

Figures 19 through 21 show results for samples that have not
only a body reflectance component but also a significant surface
reflection component. These samples are included to show that
surfaces with a surface reflection component can also exhibit the
backscattering phenomenon that the new model describes. In these
experiments, the reflectance model used is a linear combination of
new model and the Torrance-Sparrow model [31] that describes the
incoherent directional component of surface of reflection. We se-
lected this model as it is based on exactly the same surface roughness
assumptions (symmetric, long, V-cavities) as the present model.
The radiance predicted by the model is:

. Fm)GAF s
= Cosl, cosf, © * (31)

T

where, F' is the Fresnel reflection coefficient, and = is the refractive
index of the surface medium. The cosé . in the denominator results
from using the slope-area distribution instead of the facet-number
distribution (see Section 3). This model predicts a peak in the for-
ward direction (close to the specular direction) and the distribution
of the reflected radiance gets wider with increase in surface rough-
ness o. The total radiance is expressed as a linear combination of
the body and surface components:

Ly = kL7 + k. L} (32)

where the body reflectance component I ? is predicted by the model
proposed in this paper. In these experiments, we used the functional
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Figure 13: Comparison between numerical evaluation (thick line) and the
qualitative model (thin line): (a) in the plane of incidence (¢ » — ¢; = 0°),
and (b) outside the plane of incidence. In both cases, & = 30 °, p = 0.90,
and §; = 75°.

approximation (27) instead of the numerical evaluation of integral
(25). Moreover, the reflectance parameters o, p, ks, and k. were es-
timated by fitting (using non-linear optimization) the above model
to measured data. Since it is difficult to obtain meaningful esti-
mates of n for the synthetic samples we have used, the effect of the
Fresnel coefficient was ignored by assuming F' = 1. Note that for
all three samples, the proposed model does very well in describing
the increase in radiance as the viewer approaches the source, as
well as the cut-off in radiance that takes place in the source direc-
tion. This despite the fact that the three samples have roughness
characteristics that differ from the V-cavity model. For the foam
sample, the surface reflectance component (radiance increase in
the forward direction) is described well by the Torrance-Sparrow
model. The Torrance-Sparrow model does only reasonably well for
the cloth towel and not very well for the wood-shaving sample. The
main reason is the following: while the Gaussian roughness model
appears explicitly in the Torrance-Sparrow model, it is integrated
over all facet orientations in our case. As a result, our model is
less sensitive to the actual surface roughness distribution than the
Torrance-Sparrow model.

6 Implications for Graphics

In this section, we describe the implications of the proposed model
for realistic rendering. Figure 22(a) shows a real image of the
rough cylindrical clay vase discussed in the introduction. Figure
22(b) shows a rendered image of the vase using the Lambertian
model and its known geometry. Clearly, this rendered image does
not match the real image of the vase. On the other hand, the
appearance of the rendered vase using the proposed reflectance

?
light source

(a) (b)

Figure 14: (a) Sketch and (b) photograph of the set-up used to measure
reflectance.

model, shown in Figure 22(c), closely resembles the real vase. The
model parameters p = 0.7 and & = 40° were chosen empirically
to obtain the best fit to the measured brightness values. Figure
23(a) compares brightness values along the cross-section of the
three different vase images in Figure 22. It is interesting to note
that the brightness of the real vase remains nearly constant over
most of the cross-section and drops quickly to zero very close to
the limbs. The proposed model does very well in predicting this
behavior, while the Lambertian model produces large brightness
errors. Figure 23(b) shows similar plots for illumination from 20°
to the right of the sensor. In this case, brightness variation on the
real vase is asymmetric. Once again, the proposed model closely
matches the real image. However, the Lambertian model forces the
brightness close to the right limb of the vase to drop much faster
than in the real image. As a result, the brightness peak predicted by
the Lambertian model is significantly away from the actual peak.

The functional approximation, given by equation (27), and the
qualitative model, given by (30), are easily used for realistic ren-
dering. We have implemented the functional approximation as a
“shader” using the RenderMan shading language [33]. The ren-
dered figures are provided as additional tiff files. The first image
(in the file “spheres.tif”) shows spheres rendered using the shader.
In all four cases, the sphere is illuminated from the viewer direc-
tion. In the first case (the leftmost sphere), & = 0°, and hence the
sphere appears Lambertian. The roughness parameters of the other
spheresto right are: & = 10°, o = 20° and ¢ = 40°, in that order.
As the roughness increases, the sphere begins to appear flatter. In
the extreme roughness case, as in the rightmost sphere, the sphere
appears like a flat disc with near constant brightness. This phe-
nomenon has been widely observed and reported in the case of the
full moon ([26],[29]).

Finally, the four images named “scene” (in the files named:
“scene.l.tif”,.. ., “scene.4.tif”) show rendered images of a scene
with three matte objects, a vase, cylindrical block and a cube.
In the first image, (file “scene.1.tif”), all three objects have zero
macroscopic roughness, i.e. they are Lambertian. lllumination
in this case is from the viewer direction. Note that the vase and
the cylinder have strong brightness variations, and the three visible
faces of the cube have distinctly different brightness values. In
the second image (file “scene.2.tif”"), the scene is again illuminated
from the viewer direction, but the three objects have roughness
o = 30°. Consequently, the shading over the vase and the cylinder
is diminished considerably. Furthermore, the contrast between the
flat and curved sections of the cylindrical block and also the contrast
between the three faces of the cube are reduced substantially. It is
important to note that the moderate shading is achieved without any
ambient component in the illumination, but rather from modeling
of roughness effects. In the third and the fourth images (files
“scene.3.tif” and “scene.4.tif”), the three objects have the same
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Figure 15: Reflectance measurement and reflectance model (using o =
30°, p = 0.90) plots for wall plaster (sample A). Radiance is plotted
as a function of sensor direction (¢,) for different angles of incidence
(6; = 30°,45°,60°).
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Figure 16: Reflectance measurement and reflectance model (using o =
40°, p = 0.80) plots for painted sand-paper (sample B).
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Figure 17: Reflectance measurement and reflectance model (using o =
35°, p = 0.80) plots for white sand (sample C).

roughness values as in the first and second images respectively, but
the scene is illuminated from 20 degrees to the right of the viewing
direction. Again, shading differences are seen in the two images,
though less than when the scene is illuminated from the viewing
direction.

7 Summary

In conclusion, we have developed a comprehensive model for body
reflectance from surfaces with macroscopic roughness. A model
was first derived for anisotropic surfaces that have facets with only
one slope. This result was used to develop a model for isotropic
surfaces with Gaussian slope-area distribution. We have also pre-
sented a qualitative model for diffuse reflection that has a simple
functional form. Numerous experiments were conducted to ver-
ify the reflectance mechanism described in this paper. Real and
rendered images of diffuse objects were compared to demonstrate
that the proposed model has important implications for computer
graphics.

(b)

Figure 18: Reflectance measurement and reflectance model plots for
sample C. These measurements were obtained for sensor directions
outside the plane of incidence: (a) #; = 60° and ¢, = 45° ; and
(b) ; = 75° and ¢, = 60°.

Appendix

A Derivation of the Geometric Attenuation Factor

In this appendix we present the details of the derivation of the
geometric attenuation factor for arbitrary source, viewer and facet
normal directions.

GAF for Perpendicular V-Cavities:

We first restrict ourselves to VV-cavities that are oriented perpen-
dicular to the sensor-source plane. Later, the analysis is extended
to arbitrary sensor and source directions. Figure 6 illustrates the
masking and shadowing phenomena for the case of perpendicular
V-cavities. Our objective is to determine, for a given source di-
rection § and sensor direction » the fraction of facet area that is
illuminated and visible. If the visible area is smaller than the illu-
minated area, masking dominates. Likewise, if the illuminated area
is smaller than the visible area, shadowing dominates. We denote
the length (extent on the surface plane) and width of the facet by |
and w, respectively. Further, m . and m., are sections of the facet
that are shadowed and masked, respectively. The area of a facet
that is both illuminated and visible is - Min[w — m s, w — my].
The G.AF is obtained by dividing this expression by the area w I of
the facet:
ms

al_
w

My

GAF = Min |1— (33)

We would like to express the G.AF in terms of the angles of inci-
dence (source) and reflection (sensor). Fromthe triangle (w; m «; n)



Figure 19: Reflectance measurement and reflectance model (¢ = 20 °,
p = 0.8, ks /ky = 0.019) plots for foam (sample D).
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Figure 20: Reflectance measurement and reflectance model (¢ = 42 °,
p = 0.75, k.« / ky, = 0.085) plots for a cotton towel (sample E).

Wood Shaving

Figure 21: Reflectance measurement and reflectance model (using o =
26°, p = 0.7, ks / ky = 0.043) plots for fine wood shavings (sample F).

in Figure 6, we have:
nsSingd; = m<C0SH, + wCosH, (34)
ncosd; = —meSinf, + wsind,

By multiplying the first expression by cosé; and the second by
—sin g, and adding the results we get:

ms _ C0s(fo +6)
w  cos(fa. —8;)
or

1—

(3%)

ms _ 2C0Sf,C0SH,
w oS8, —8;)

In the above expression, the angles #; and 8, are positive in the
counter-clockwise direction and negative in the clockwise direction.
It can be easily shown that there is no shadowingwhen | § , + 6; |<
Zand|6,—6; |< Z,i.e. 1—"= > 1. Onthe other hand, the entire
facet is shadowed if | 8, — 6, |> 7, i.e. 1 — == < 0. Asimilar
result is obtained for masking. All these conditions are included in
the following G.AF expression for perpendicular VV-cavities:

GAF = Min [l, Mazx [O, 2cosd;cosd,, ZCOSHTcosga:H (36)

cos(6; —8,)’ cos(f, — ba)

2 o

(a) Image (b) Lambertian (c) Model
Figure 22: Real image of a cylindrical clay vase compared with images
rendered using the Lambertian and proposed models. Illumination is from

the camera direction.

@6 = 0°

Brightness
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Figure 23: Comparison between image brightness along the cross-section
of the real vase, and vases rendered using the Lambertian and proposed
models.

GAF for the General Case:

In the general case, source and sensor directions are arbitrary and
can lie outside the plane perpendicular to the V-cavity. To make the
masking/shadowing calculations tractable, we invoke the assump-
tion that the length of facets is large compared to their width®, i.e.
| > w. Then, the analysis of masking and shadowing is reduced to
the perpendicular V-cavity case by projecting the source direction
5 and sensor direction % onto the plane perpendicular to the cavity.
These projections are done using basic trigonometry as shown in
Figure 24. The projected angles are then substituted into (36), in
place of §; and .., to obtain the general G.AF expression:

GAF = Min [1, Mazx [o, (37)

2c0s6; cost,
€0s8; cosf, + sind; sinf, COS (¢; — da)

)

8When facet length is much larger than facet width, the exact shape of the cast
shadow at the two ends of the facet can be ignored.
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Figure 24: Relationship between projected and actual angles.
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Alternatively, the G.AF can be expressed in terms of the source,
sensor, facet normal, and surface normal vectors:

s
GAF = Min [1,Max [0, <81 ><
5,a

n> 2<0,1n><
< a

a’7
> < ?

B Radiance of Isotropic Surface with Single-Slope
Distribution

In this appendix, we outline derivations for the direct illumina-
tion and interreflection components of projected radiance for the
isotropic surface discussed in Section 4.2. These results are used
in Section 4.3 to derive the reflectance model for a surface with
Gaussian slope-area distribution.

B.1 Radiance due to Direct lllumination

Our objective here is to evaluate the integral in (23). For any
given source direction (8, ¢;) and sensor direction (8, ¢, ), facets
on the isotropic surface could be masked, shadowed, masked and
shadowed, or neither masked nor shadowed. The radiance for each
of these cases is given in Table 1. The problem therefore is to
decompose the integral in (23) into parts, each corresponding to
a different masking/shadowing range. Using basic geometry, we
have identified the limits of the integrals corresponding to different
ranges of shadowing/masking. These limits are represented by
the critical angles ¢, (for shadowing) and ¢ (for masking). The
critical angle ¢, is related to the slope 8, of surface facets:

; cos™t (1) if (tanf,tand;) > 1
- tan 6, tan 6; a v
¢ { 0 otherwise (39)

The angle ¢, is determined using the same expression by replac-
ing 6; with 6,. These critical angles are related to the mask-
ing/shadowing ranges as shown in Table 2.

Using the above critical angle expressions, Table 2, and Table
1, we decompose (23) into the sum of several integrals. Each
integral can be evaluated for any fixed viewer direction. However,
for arbitrary directions several cases arise and the results are not
easy to use in practice. Therefore, we have chosen to express the
radiance of the surface for any arbitrary viewing direction (¢, ¢)
as a weighted sum of the radiance L ip” in the plane of incidence

(¢r = s, ¢; + =), and the radiance Liu in the perpendicular
plane (¢ = ¢: £ 7).

Radiance in the Plane of Incidence:

There are two cases to consider. In the first, ¢ . = ¢;. Without
loss of generality, we can assume ¢ . = ¢; = 0. When 6; > 4.,
radiance is obtained as:

1
Lyp(8a) = £Eocosé; C0 0= (40)
é.
/ 2(1+4tanfd,tané, cosda)dg. +
—de

=gt
2/, (1+tanf.tand; cos¢a)
¢

7
c

(1+tanf. tanéd, cos¢a)d¢a]

= LEycosdicosta 1+ 2tan6, tang, SN0 |
26 4 sin (24!
L a4, a0, tand, (1 - M)]
T

When§, > 8;, the sensorand source directions are simply switched
in the expression inside the square brackets.

In the second case, ¢, = ¢; + =. Again, without loss of
generality, we can assume ¢; = 0, ¢, = =. When 8; > 6,, we
get:

Lyp(8a) = £ Focost; cosea% [ (41)

de
2/ 2(1+tanf, tan b, cos(m — ¢a))dda +
A

-
).

(1+tanf.tand; cos¢a)

©-

(1+tanf,tané, cos(w — c;&a))dqﬁa] =
£ [ cosf;cosf, [1 _ 2% +
T

sing” —sin ¢’
T

2tand, tan 4,

% tan® ¢, tan ; tan §,.(1 — M)]
™



Partial Shadow | No Shadow Complete Self-Shadow
[6a — di[ < 9t | 92 < [Pa—0i[ <7 — 9t | [$a— (i + T < 00
Partial Masking | No Masking Complete Self-Masking
|pa — ¢r| <60 | 60 <|¢pa—6:| <7 —¢L | [ba— (¢r +7)[ < dC

Table 2: Masking/shadowing and the critical angles.

Once again, when 8, > 6,, the sensor and source directions are
switched in the term inside the square brackets.

Radiance in the Perpendicular Plane:

We now calculate radiance for the case where the viewer is in
the plane perpendicular to the plane of incidence; i.e. ¢, = ¢: £ 7.
Again, there are two cases to be considered. In the first case,
ée+ ¢z < 7. Here, the regions of shadowing and masking do not
overlap. Using these limits, the integral in (23) is evaluated as:

Ly, (8a) = £Eycosd; cosd, (42)

In the second case, we have ¢ ; + ¢; > 7. Here, the regions of
masking and shadowing do overlap. Without loss of generality, we
canchoose¢,; = 0and ¢, = 7. Wedefinetheangley,0 < v < 7,
that separates the regions of shadowing (— 5 + ¢ < ¢, < ) and

masking (v < ¢a < ® — ¢). 7 is determined as: tan 6, cosy =
tan g, cos (§ — v). Then, the expression for radiance is:

1 1
Lyp (8a) = £ Eocost; cosfa—— [ (43)

-
/ 2(1+tand, tan b, cos(po — 5 ))dda +
-Z+60

=gt
/ 2(1+tand; tanf, cos¢a)d¢a] =
-

£ [y cos 9, cos 0, [1 + % A +
T

Vian? 6. tan? 6, — 1 n Vian? 6, tan?6, — 1 3

T

T
tan g, v/tan29; + tan? 9, ]
T

Radiance in Arbitrary Azimuth Angles:

We have determined via simulations that the radiance of the
isotropic surface in any arbitrary direction is well-approximated by
the following weighted sum of Lip” (8a)and Ly, | (8a):

Lyp(8a) x| COS(¢r — ¢i) | Lrp”(ea) + (44)
(1=l cos(¢r = ¢:) ) Lrp  (Ba)

This approximation was obtained by studying the expressions for
the radiance components in the two planes. It is in general very
accurate, with a slight over-estimation only for 6, =~ 6, and §; —
/2.

Using the above linear combination of radiance in the two
planes, we obtain the final expression for projected radiance.
The following notation is used: « = Maz[6;,0,] and § =
Min[0;,0:]; if o = 6;, ¢2 = ¢, else ¢2 = ¢r; and the same
rules apply to ¢ 2.

Ly,(84) = £Eqocos8; cosb |1+ (45)

005(6r — 6) (Aa(ai0) 10§ + Aa(B, 6, — 91304) ) +
(1 —|cos(¢r — ¢:)]) As(6r, 91‘;9(1)]

where the coefficients are:

Al(a/;ea) =
tan6a28|n¢c _|_ %tanzeatana(l_ %—1—57”1(2(;56))
™
A2(6,¢r - ¢z16a) =
B8 B
2‘% —tand, tan 8 % if cos(¢r — ¢i) <0
0 if cos (¢, —¢:i) >0
AE(HT,Hi;ea) =
o if o + 97 < 7
ctde
; _ ¢ 7-r¢ +
4/ tan2 QTTtran2 Qa—1+
4/tan2 @; tan2 Ba—1
tan Qa\/tan;9,+tan2 6, if ¢lc+ ¢Z > %

B.2 Radiance due to Interreflections:

To calculate the radiance component due to interreflections, we
need to evaluate the following integral:

2w

1

2 j— -
L) = 5 |

Lip(eaa ¢G)d¢a (46)

=0

In Section 4.1.2, we found the interreflection factor (ZF) to be :

m m° My

IF=12 [d(l, Ty a1, )—d(1,1)] (47)

w w w w

The above factor cannot be easily integrated. Therefore, we use the
following approximation:

IF 2 w(1—cosba)(1—m®)(1—m.) (48)

As in Appendix B.1, the regions of shadowing and masking were
identified and the above approximation to ZF was used to evaluate
(46). The final expression for projected radiance of the isotropic
surface due to interreflections is:

2
12,(8.) ~ £ Eycosf; cosf,(1 — cosd,) [1 - (49)
T
B in % _ cin b?
cos(¢r — ¢i) <% + 2tan6atan6w +
T T

% tan® 4, tan o tan B(1 — w))]
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