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0.1 Introduction
Illumination can have a significant impact on the appearance of surfaces, as the patterns of

shading, specularities and shadows change. For instance, some images of a face under different
lighting conditions are shown in figure 1. Differences in lighting can often play a much greater role
in image variability of human faces than differences between individual people. Lighting designers in
movies can often set the mood of a scene with carefully chosen lighting. To achieve a sinister effect,
for instance, one can use illumination from below the subject—a sharp contrast to most natural
indoor or outdoor scenes where the dominant light sources are above the person.

Characterizing the variability in appearance with lighting is a fundamental problem in many areas
of computer vision, face modeling, and computer graphics. One of the great challenges of computer
vision is to produce systems that can work in uncontrolled environments. To be robust, recognition
systems must be able to work oudoors in a lighting-insensitive manner. In computer graphics, the
challenge is to be able to efficiently create the visual appearance of a scene under realistic, possibly
changing, illumination.

At first glance, modeling the variation with lighting may seem intractable. For instance, a video
projector can illuminate an object like a face with essentially any pattern. In this chapter, we will
stay away from such extreme examples, making a set of assumptions that are approximately true
in many common situations. One assumption we make is that illumination is distant. By this, we
mean that the direction to, and intensity of, the light sources is approximately the same throughout
the region of interest. This explicitly rules out cases like slide projectors. This is a reasonably good
approximation in outdoor scenes, where the sky can be assumed to be far away. It is also fairly
accurate in many indoor environments, where the light sources can be considered much further away
relative to the size of the object.

Even under the assumption of distant lighting, the variations may seem intractable. The illumi-
nation can come from any incident direction, and can be composed of multiple illuminants including
localized light sources like sunlight and broad area distributions like skylight. In the general case, we
would need to model the intensity from each of infinitely many incident lighting directions. Thus,
the space we are dealing with appears to be infinite-dimensional. By contrast, a number of other
causes of appearance variation are low-dimensional. For instance, appearance varies with viewing
direction as well. However, unlike lighting, there can only be a single view direction. In general,
variation because of pose and translation can be described using only six degrees of freedom.

Given the daunting nature of this problem, it is not surprising that most previous analytic mod-
els have been restricted to the case of a single directional (distant) light source, usually without
considering shadows. In computer graphics, this model is sufficient (but not necessarily efficient) for
numerical Monte Carlo simulation of appearance, since one can simply treat multiple light sources
separately and add up the results. In computer vision, such models can be reasonable approxima-
tions under some circumstances, such as controlled laboratory conditions. However, they do not
suffice for modeling illumination variation in uncontrolled conditions like the outdoors.

Fortunately, there is an obvious empirical method of analyzing illumination variation. One can
simply record a number of images of an object under light sources from all different directions. In
practice, this usually corresponds to moving a light source in a sphere around the object or person,
while keeping camera and pose fixed. Because of the linearity of light transport—the image under
multiple lights is the sum of that under the individual sources—an image under arbitrary distant
illumination can be written as a linear combination of these source images. This observation in itself
provides an attractive direct approach for relighting in computer graphics. Furthermore, instead of
using the source images, we can try to find linear combinations or basis images that best explain the



Figure 1: Images of a face, lit from a number of different directions. Note the vast variation in
appearance due to illumination. Images courtesy of Debevec et al. [13].

variability due to illumination. This is the standard technique of finding low-dimensional subspaces
or principal components. The surprising result in these experiments is that most of the variability
due to lighting is modeled using a very low-dimensional subspace—usually only five basis functions.

Given the discussion about the infinite-dimensionality of illumination, this observation seems
strikingly counter-intuitive. However, some insight may be obtained by looking at an (untextured)
matte or diffuse surface. One will notice that even if the lighting is complicated, the surface has a
smooth appearance. In effect, it is blurring or low-pass filtering the illumination. In this chapter,
we will make these ideas formal, explaining previous empirical results. A diffuse or matte surface
(technically Lambertian) can be viewed as a low-pass filter acting on the incident illumination signal,
with the output image obtained by convolving the lighting with the surface reflectance. This leads
to a frequency-domain view of reflection, that has not previously been explored, and that leads to
many interesting insights. In particular, we can derive a product convolution formula using spherical
harmonic basis functions. The theoretical results have practical implications for computer graphics
rendering, illuminant estimation, and recognition and reconstruction in computer vision.

0.2 Background and Previous Work
Lighting and appearance have been studied in many forms almost since the beginning of research

in computer vision and graphics, as well as in a number of other areas. Horn’s classic text [27]
provides background on work in vision. In this section, we only survey the most relevant previous
work, that relates to the theoretical developments in this chapter. This will also be a vehicle to
introduce some of the basic concepts on which we will build.

0.2.1 Environment Maps in Computer Graphics
A common approximation in computer graphics, especially for interactive hardware rendering,

is to assume distant illumination. The lighting can then be represented as a function of direction,
known in the literature as an environment map. Practically, environment maps can be acquired by
photographing a chrome-steel or mirror sphere, that simply reflects the incident lighting. Environ-
ment mapping corresponds exactly to the distant illumination assumption we make in this chapter.
Another common assumption, which we also make, is to neglect cast shadows from one part of the
object on another. These should be distinguished from attached shadows when a point is in shadow
because the light source is behind the surface (below the horizon). We will explicitly take attached
shadows into account.

In terms of previous work, Blinn and Newell [7] first used environment maps to efficiently find
reflections of distant objects. This technique, known as reflection mapping, is still widely in use
today for interactive computer graphics rendering. The method was greatly generalized by Miller
and Hoffman [46] (and later Greene [21]). They introduced the idea that one could acquire a real en-
vironment by photographing a mirror sphere. They also precomputed diffuse and specular reflection
maps, for the corresponding components of surface reflection. Cabral et al. [9] later extended this gen-
eral method to computing reflections from bump-mapped surfaces, and to computing environment-
mapped images with more general reflective properties [10] (technically, the bi-directional reflectance



distribution function or BRDF [52]). Similar results for more general materials were also obtained by
Kautz et al. [32, 33], building on previous work by Heidrich and Seidel [25]. It should be noted that
both Miller and Hoffman [46], and Cabral et al. [9, 10] qualitatively described the reflection maps
as obtained by convolving the lighting with the reflective properties of the surface. Kautz et al. [33]
actually used convolution to implement reflection, but on somewhat distorted planar projections of
the environment map, and without full theoretical justification. In this chapter, we will formalize
these ideas, making the notion of convolution precise, and derive analytic formulas.

0.2.2 Lighting-Insensitive Recognition in Computer Vision
Another important area of research is in computer vision, where there has been much work

on modeling the variation of appearance with lighting for robust lighting-insensitive recognition
algorithms. Some of this prior work is discussed in detail in the excellent chapter on the effect of
illumination and face recognition by Ho and Kriegman in this volume. Illumination modeling is also
important in many other vision problems, such as photometric stereo and structure from motion.

The work in this area has taken two directions. One approach is to apply an image processing op-
erator that is relatively insensitive to the lighting. Work in this domain includes image gradients [8],
the direction of the gradient [11], and Gabor jets [37]. While these methods reduce the effects of
lighting variation, they operate without knowledge of the scene geometry, and so are inherently
limited in the ability to model illumination variation. A number of empirical studies have suggested
the difficulties of pure image-processing methods, in terms of achieving lighting-insensitivity [47].
Our approach is more related to a second line of work that seeks to explicitly model illumination
variation, analyzing the effects of the lighting on a 3D model of the object (here, a face).

Linear 3D Lighting Model Without Shadows: Within this category, a first important result
(Shashua [69], Murase and Nayar [48], and others) is that for Lambertian objects, in the absence
of both attached and cast shadows, the images under all possible illumination conditions lie in a
three-dimensional subspace. To obtain this result, let us first consider a model for the illumination
from a single directional source on a Lambertian object.

B = ρL(ω · n) = L · N , (1)

where L in the first relation corresponds to the intensity of the illumination in direction ω, n is the
surface normal at the point, ρ is the surface albedo and B is the outgoing radiosity (radiant exitance)
or reflected light. For a nomenclature of radiometric quantities, see a textbook, like McCluney [45]
or chapter 2 of Cohen and Wallance [12].1 It is sometimes useful to incorporate the albedo into the
surface normal, defining vectors N = ρn and correspondingly L = Lω, so we can simply write (for
Lambertian surfaces in the absence of all shadows, attached or cast) B = L · N .

Now, consider illumination from a variety of light sources L1,L2 and so on. It is straighforward
to use the linearity of light transport to write the net reflected light as

B =
∑

i

Li · N =

(

∑

i

Li

)

· N = L̂ · N , (2)

where L̂ =
∑

i Li. But this has essentially the same form as equation 1. Thus, in the absence of
all shadows, there is a very simple linear model for lighting in Lambertian surfaces, where we can
replace a complex lighting distribution by the weighted sum of the individual light sources. We can
then treat the object as if lit by a single effective light source L̂.

Finally, it is easy to see that images under all possible lighting conditions lie in a 3D subspace,
being linear combinations of the cartesian components Nx, Ny, Nz, with B = L̂xNx + L̂yNy + L̂zNz.
Note that this entire analysis applies to all points on the object. The basis images of the 3D lighting
subspace are simply the Cartesian components of the surface normals over the objects, scaled by
the albedos at those surface locations2.

1In general, we will use B for the reflected radiance, and L for the incident radiance, while ρ will denote the BRDF.
For Lambertian surfaces, it is conventional to use ρ to denote the albedo (technically, the surface reflectance that lies
between 0 and 1), which is π times the BRDF. Interpreting B as the radiosity accounts for this factor of π.

2Color is largely ignored in this chapter; we assume each color band, such as red, green and blue, is treated
separately.



The 3D linear subspace has been used in a number of works on recognition, as well as other
areas. For instance, Hayakawa [24] used factorization based on the 3D subspace to build models
using photometric stereo. Koenderink and van Doorn [35] added an extra ambient term to make
this a 4D subspace. The extra term corresponds to perfectly diffuse lighting over the whole sphere
of incoming directions. This corresponds to adding the albedos over the surface themselves to the

previous 3D subspace, i.e. adding ρ =‖ N ‖=
√

N2
x + N2

y + N2
z .

Empirical Low-Dimensional Models: These theoretical results have inspired a number of
authors to develop empirical models for lighting variability. As described in the introduction, one
takes a number of images with different lighting directions, and then uses standard dimensionality
reduction methods like Principal Component Analysis. PCA-based methods were pioneered for faces
by Kirby and Sirovich [34, 72], and for face recognition by Turk and Pentland [78], but these authors
did not account for variations due to illumination.

The effects of lighting alone were studied in a series of experiments by Hallinan [23], Epstein
et al. [15], and Yuille et al. [80]. They found that for human faces, and other diffuse objects like
basketballs, a 5D subspace sufficed to approximate lighting variability very well. That is, with
a linear combination of a mean and 5 basis images, we can accurately predict appearance under
arbitrary illumination. Furthermore, the form of these basis functions, and even the amount of
variance accounted for, were largely consistent across human faces. For instance, Epstein et al. [15]
report that for images of a human face, three basis images capture 90% of image variance, while five
basis images account for 94%.

At the time however, these results had no complete theoretical explanation. Furthermore, they
indicate that the 3D subspace given above is inadequate. This is not difficult to understand. If we
consider the appearance of a face in outdoor lighting from the entire sky, there will often be attached
shadows or regions in the environment that are not visible to a given surface point (these correspond
to lighting below the horizon for that point, where ω · n < 0).

Theoretical Models: The above discussion indicates the value of developing an analytic model
to account for lighting variability. Theoretical results can give new insights, and also lead to simpler
and more efficient and robust algorithms.

Belhumeur and Kriegman [6] have taken a first step in this direction, developing the illumina-
tion cone representation. Under very mild assumptions, the images of an object under arbitrary
lighting form a convex cone in image space. In a sense, this follows directly from the linearity of
light transport. Any image can be scaled by a positive value simply by scaling the illumination.
The convexity of the cone is because one can add two images, simply by adding the corresponding
lighting. Formally, even for a Lambertian object with only attached shadows, the dimension of the
illumination cone can be infinite (this grows as O(n2), where n is the number of distinct surface
normals visible in the image). Georghiades et al. [19, 20] have developed recognition algorithms
based on the illumination cone. One approach is to sample the cone using extremal rays, corre-
sponding to rendering or imaging the face using directional light sources. It should be noted that
exact recognition using the illumination cone involves a slow complex optimization (constrained
optimization must be used to enforce a non-negative linear combination of the basis images), and
methods using low-dimensional linear subspaces and unconstrained optimization (which essentially
reduces to a simple linear system) are more efficient and usually required for practical applications.

Another approach is to try to analytically construct the principal component decomposition,
analogous to what was done experimentally. Numerical PCA techniques could be biased by the
specific lighting conditions used, so an explicit analytic method is helpful. It is only recently that
there has been progress in analytic methods for extending PCA from a discrete set of images to a
continuous sampling [40, 83]. These approaches demonstrate better generalization properties than
pure empirical techniques. In fact, Zhao and Yang [83] have analytically constructed the co-variance
matrix for PCA of lighting variability, but under the assumption of no shadows.



Summary: To summarize, prior to the work reported in this chapter, the illumination variability
could be described theoretically by the illumination cone. It was known from numerical and real
experiments that the illumination cone lay close to a linear low-dimensional space for Lambertian
objects with attached shadows. However, a theoretical explanation of these results was not available.
In this chapter, we develop a simple linear lighting model using spherical harmonics. These theoret-
ical results were first introduced for Lambertian surfaces simultaneously by Basri and Jacobs [2, 4]
and Ramamoorthi and Hanrahan [64]. Much of the work of Basri and Jacobs is also summarized in
an excellent book chapter on illumination modeling for face recognition [5].

0.2.3 Frequency-Space Representations: Spherical Harmonics

We show reflection to be a convolution and analyze it in frequency space. We will primarily be
concerned with analyzing quantities like the BRDF and distant lighting, which can be parameterized
as functions on the unit sphere. Hence, the appropriate frequency-space representations are spherical
harmonics [28, 29, 42]. Spherical harmonics can be thought of as signal-processing tools on the unit
sphere, analogous to the Fourier series or sines and cosines on the line or circle. They can be
written either as trigonometric functions of the spherical coordinates, or as simple polynomials of
the Cartesian components. They form an orthonormal basis on the unit sphere, in terms of which
quantities like the lighting or BRDF can be expanded and analyzed.

The use of spherical harmonics to represent the illumination and BRDF was pioneered in computer
graphics by Cabral et al. [9]. In perception, D’Zmura [14] analyzed reflection as a linear operator
in terms of spherical harmonics, and discussed some resulting ambiguities between reflectance and
illumination. Our use of spherical harmonics to represent the lighting is also similar in some respects
to previous methods such as that of Nimeroff et al. [56] that use steerable linear basis functions.
Spherical harmonics have also been used before in computer graphics for representing BRDFs by a
number of other authors [70, 79].

The results described in this chapter are based on a number of papers by us. This includes
theoretical work in the planar 2D case or flatland [62], on the analysis of the appearance of a
Lambertian surface using spherical harmonics [64], the theory for the general 3D case with isotropic
BRDFs [65], and a comprehensive account including a unified view of 2D and 3D cases including
anisotropic materials [67]. More details can also be found in the PhD thesis of the author [61].
Recently, we have also linked the convolution approach using spherical harmonics with principal
component analysis, quantitatively explaining previous empirical results on lighting variability [60].

0.3 Analyzing Lambertian Reflection using Spherical Harmonics

In this section, we analyze the important case of Lambertian surfaces under distant illumina-
tion [64], using spherical harmonics. We will derive a simple linear relationship, where the coeffi-
cients of the reflected light are simply filtered versions of the incident illumination. Furthermore, a
low frequency approximation with only 9 spherical harmonic terms is shown to be accurate.

Assumptions: Mathematically, we are simply considering the relationship between the irradiance
(a measure of the intensity of incident light, reflected equally in all directions by diffuse objects),
expressed as a function of surface orientation, and the incoming radiance or incident illumination,
expressed as a function of incident angle. The corresponding physical system is a curved convex
homogeneous Lambertian surface reflecting a distant illumination field. For the physical system, we
will assume that the surfaces under consideration are convex, so they may be parameterized by the
surface orientation, as described by the surface normal, and so that interreflection and cast shadowing
(but not attached shadows) can be ignored. Also, surfaces will be assumed to be Lambertian and
homogeneous, so the reflectivity can be characterized by a constant albedo. We will further assume
here that the illuminating light sources are distant, so the illumination or incoming radiance can be
represented as a function of direction only.

Notation used in the chapter (some of which pertains to later sections) is listed in table 2. A
diagram of the local geometry of the situation is shown in figure 3. We will use two types of
coordinates. Unprimed global coordinates denote angles with respect to a global reference frame.
On the other hand, primed local coordinates denote angles with respect to the local reference frame,



B Reflected radiance
Blmn,pq, Blmpq Coefficients of basis-function expansion of B
L Incoming radiance
Llm Coefficients of spherical-harmonic expansion of L
E Incident irradiance (for Lambertian surfaces)
Elm Coefficients of spherical-harmonic expansion of E
ρ Surface BRDF
ρ̂ BRDF multiplied by cosine of incident angle
ρ̂ln,pq, ρ̂lpq Coefficients of spherical-harmonic expansion of ρ̂
θ′i, θi Incident elevation angle in local, global coordinates
φ′

i, φi Incident azimuthal angle in local, global coordinates
θ′o, θo Outgoing elevation angle in local, global coordinates
φ′

o, φo Outgoing azimuthal angle in local, global coordinates
A(θ′i) Half-cosine Lambertian transfer function A(θ′i) = max(cos(θ′i), 0)
Al Spherical harmonic coefficients of Lambertian transfer function
x Surface position
α Surface normal parameterization—elevation angle
β Surface normal parameterization—azimuthal angle
γ Orientation of tangent frame for anisotropic surfaces
Rα,β,γ Rotation operator for tangent frame orientation (α, β, γ)
Ylm Spherical Harmonic
Y ∗

lm Complex Conjugate of Spherical Harmonic
Dl

mm′ Representation matrix of dimension 2l + 1 for rotation group SO(3)

Λl Normalization constant,
√

4π/(2l + 1)
I

√
−1

Figure 2: Notation

defined by the local surface normal and an arbitrarily chosen tangent vector. These two coordinate
systems are related simply by a rotation, and this relationship will be detailed shortly.

0.3.1 Reflection Equation
In local coordinates, we can relate the irradiance to the incoming radiance by

E(x) =

∫

Ω′

i

L(x, θ′i, φ
′

i) cos θ′i dΩ′

i, (3)

where E is the irradiance, as a function of position x on the object surface, and L is the radiance
of the incident light field. As noted earlier, primes denote quantities in local coordinates. The
integral is over the upper hemisphere with respect to the local surface normal. For the purposes
of this derivation, we will be interested in the relationship of the irradiance to the radiance. In
practice, the reflected light (here, radiant exitance or radiosity) can be related to the irradiance
using B(x) = ρE(x), where ρ is the surface reflectance or albedo that lies between 0 and 1. This
last relation also holds when we interpret ρ as the BRDF (obtained by scaling the reflectance by
1/π) and B as the reflected radiance (obtained by scaling the radiant exitance by 1/π).

We now manipulate equation 3 by performing a number of substitutions. First, the assumption of
distant illumination means the illumination field is homogeneous over the surface, i.e. independent
of surface position x, and depends only on the global incident angle (θi, φi). This allows us to replace
L(x, θ′i, φ

′

i) → L(θi, φi). Second, consider the assumption of a curved convex surface. This ensures
there is no shadowing or interreflection, so that the irradiance is only because of the distant illumi-
nation field L. This fact is implicitly assumed in equation 3. Furthermore, since the illumination
is distant, we may reparameterize the surface simply by the surface normal n. Equation 3 now
becomes

E(n) =

∫

Ω′

i

L(θi, φi) cos θ′i dΩ′

i. (4)
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Figure 3: Diagram showing the local geometry. Quantities are primed because they are all in local
coordinates.

To proceed further, we will parameterize n by its spherical angular-coordinates (α, β, γ). Here,
(α, β) define the angular coordinates of the local normal vector, i.e.

n = [sin α cosβ, sin α sin β, cos α] . (5)

γ defines the local tangent frame, i.e. rotation of the coordinate axes about the normal vector. For
isotropic surfaces—those where there is no preferred tangential direction, i.e. where rotation of the
tangent frame about the surface normal has no physical effect—the parameter γ has no physical
significance, and we have therefore not explicitly considered it in equation 5. We will include γ
for completeness in the ensuing discussion on rotations, but will eventually eliminate it from our
equations after showing mathematically that it does in fact have no effect on the final results.
Finally, for convenience, we will define a transfer function A(θ′

i) = cos θ′i. With these modifications,
equation 4 becomes

E(α, β, γ) =

∫

Ω′

i

L(θi, φi)A(θ′i) dΩ′

i. (6)

Note that local and global coordinates are mixed. The lighting is expressed in global coordinates,
since it is constant over the object surface when viewed with respect to a global reference frame,
while the transfer function A = cos θ′i is expressed naturally in local coordinates. Integration can
be conveniently done over either local or global coordinates, but the upper hemisphere is easier to
keep track of in local coordinates.

Rotations: Converting between Local and Global coordinates: To do the integral in
equation 6, we must relate local and global coordinates. The north pole (0′, 0′) or +Z axis in local
coordinates is the surface normal, and the corresponding global coordinates are (α, β). It can be
verified that a rotation of the form Rz(β)Ry(α) correctly performs this transformation, where the
subscript z denotes rotation about the Z axis and the subscript y denotes rotation about the Y
axis. For full generality, the rotation between local and global coordinates should also specify the
transformation of the local tangent frame, so the general rotation operator is given by Rα,β,γ =
Rz(β)Ry(α)Rz(γ). This is essentially the Euler-angle representation of rotations in 3D. Refer to
figure 4 for an illustration. The relevant transformations are given below,

(θi, φi) = Rα,β,γ(θ′i, φ
′

i) = Rz(β)Ry(α)Rz(γ) {θ′i, φ′

i}
(θ′i, φ

′

i) = R−1
α,β,γ(θi, φi) = Rz(−γ)Ry(−α)Rz(−β) {θi, φi} . (7)
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Figure 4: Diagram showing how the rotation corresponding to (α, β, γ) transforms between local
(primed) and global (unprimed) coordinates.

Note that the angular parameters are rotated as if they were a unit vector pointing in the appropriate
direction. It should also be noted that this rotation of parameters is equivalent to an inverse rotation
of the function, with R−1 being given by Rz(−γ)Ry(−α)Rz(−β).

Finally, we can substitute equation 7 into equation 6 to derive

E(α, β, γ) =

∫

Ω′

i

L (Rα,β,γ (θ′i, φ
′

i)) A(θ′i) dΩ′

i. (8)

As we have written it, this equation depends on spherical coordinates. It might clarify matters
somewhat to also present an alternate form in terms of rotations and unit vectors in a coordinate-
independent way. We simply use R for the rotation, which could be written as a 3 × 3 rotation
matrix, while ωi is a unit vector (3× 1 column vector) corresponding to the incident direction (with
primes added for local coordinates). Equation 8 may then be written as

E(R) =

∫

Ω′

i

L (Rω′

i) A(ω′

i) dω′

i, (9)

where Rω′

i is simply a matrix-vector multiplication.

Interpretation as Convolution: In the spatial domain, convolution is the result generated
when a filter is translated over an input signal. However, we can generalize the notion of convolution
to other transformations Ta, where Ta is a function of a, and write

(f ⊗ g)(a) =

∫

t

f (Ta(t)) g(t) dt. (10)

When Ta is a translation by a, we obtain the standard expression for spatial convolution. When Ta

is a rotation by the angle a, the above formula defines convolution in the angular domain, and is a
slightly simplified version of equations 8 and 9.

The irradiance can therefore be viewed as obtained by taking the incident illumination signal L
and filtering it using the transfer function A = cos θ′i. Different observations of the irradiance E,
at points on the object surface with different orientations, correspond to different rotations of the



Figure 5: The first 3 orders of real spherical harmonics (l = 0, 1, 2) corresponding to a total of 9
basis functions. In these images, we show only the front the sphere, with green denoting positive
values and blue denoting negative values. Also note that these images show the real form of the
spherical harmonics. The complex forms are given in equation 12.

transfer function—since the local upper hemisphere is rotated—which can also be thought of as
different rotations of the incident light field. We will see that this integral becomes a simple product
when transformed to spherical harmonics, further stressing the analogy with convolution.

0.3.2 Spherical Harmonic Representation

We now proceed to construct a closed-form description of the irradiance. Since we are dealing with
convolutions, it is natural to analyze them in the frequency domain. Since unit vectors correspond-
ing to the surface normal or the incident direction lie on a sphere of unit magnitude, the appropriate
signal-processing tools are spherical harmonics, which are the equivalent for that domain to the
Fourier series in 2D (on a circle). These basis functions arise in connection with many physical sys-
tems such as those found in quantum mechanics and electrodynamics. A summary of the properties
of spherical harmonics can therefore be found in many standard physics textbooks [28, 29, 42].

Key properties of spherical harmonics: The spherical harmonic Ylm is given by (see figure 5
for an illustration)

Nlm =

√

2l + 1

4π

(l − m)!

(l + m)!

Ylm(θ, φ) = NlmPlm(cos θ)eImφ, (11)

where Nlm is a normalization factor. In the above equation, the azimuthal dependence is expanded in
terms of Fourier basis functions. The θ dependence is expanded in terms of the associated Legendre
functions Plm. The indices obey l ≥ 0 and −l ≤ m ≤ l. Thus, there are 2l + 1 basis functions for
given order l. They may be written either as trigonometric functions of the spherical coordinates
θ and φ or as polynomials of the cartesian components x, y and z, with x2 + y2 + z2 = 1. In
general, a spherical harmonic Ylm is a polynomial of maximum degree l. Another useful relation is
that Yl−m = (−1)mY ∗

lm, where Y ∗

lm denotes the complex conjugate. The first 3 orders (we give only
terms with m ≥ 0) may be written as



Y00 =

√

1

4π

Y10 =

√

3

4π
cos θ =

√

3

4π
z

Y11 = −
√

3

8π
sin θeIφ = −

√

3

8π
(x + Iy)

Y20 =
1

2

√

5

4π

(

3 cos2 θ − 1
)

=
1

2

√

5

4π

(

3z2 − 1
)

Y21 = −
√

15

8π
sin θ cos θeIφ = −

√

15

8π
z (x + Iy)

Y22 =
1

2

√

15

8π
sin2 θe2Iφ =

1

2

√

15

8π
(x + Iy)

2
.

(12)

The spherical harmonics form an orthonormal and complete basis for functions on the unit sphere,

∫ 2π

φ=0

∫ π

θ=0

Y ∗

lm(θ, φ)Yl′m′(θ, φ) sin θ dθdφ = δll′δmm′ . (13)

To find the spherical harmonic coefficients of an arbitrary function f , we simply integrate against
the complex conjugate, as with any orthonormal basis set. That is,

f(θ, φ) =
∞
∑

l=0

l
∑

m=−l

flmYlm(θ, φ)

flm =

∫ 2π

φ=0

∫ π

θ=0

f(θ, φ)Y ∗

lm(θ, φ) sin θ dθdφ. (14)

Let us now build up the rotation operator on the spherical harmonics. Rotation about the z axis
is simple, with

Ylm (Rz(β){θ, φ}) = Ylm(θ, φ + β) = exp(Imβ)Ylm(θ, φ). (15)

Rotation about other axes is more complicated, and the general rotation formula can be written as

Ylm (Rα,β,γ(θ, φ)) =

l
∑

m′=−l

Dl
mm′(α, β, γ)Ylm′(θ, φ). (16)

The important thing to note here is that the m indices are mixed—a spherical harmonic after rotation
must be expressed as a combination of other spherical harmonics with different m indices. However,
the l indices are not mixed; rotations of spherical harmonics with order l are composed entirely
of other spherical harmonics with order l. For given order l, Dl is a matrix that tells us how a
spherical harmonic transforms under rotation, i.e. how to rewrite a rotated spherical harmonic as
a linear combination of all the spherical harmonics of the same order. In terms of group theory,
the matrix Dl is the (2l + 1)-dimensional representation of the rotation group SO(3). A pictorial
depiction of equation 16 as a matrix multiplication is found in figure 6. An analytic form for
the matrices Dl can be found in standard references, such as Inui et al. [28]. In particular, since
Rα,β,γ = Rz(β)Ry(α)Rz(γ), the dependence of Dl on β and γ is simple, since rotation of the
spherical harmonics about the z−axis is straightforward, i.e.

Dl
mm′(α, β, γ) = dl

mm′(α)eImβeIm′γ , (17)

where dl is a matrix that defines how a spherical harmonic transforms under rotation about the
y−axis. For the purposes of the exposition, we will not generally need to be concerned with the
precise formula for the matrix dl. The analytic formula is rather complicated, and is derived in
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Figure 6: Depiction of equation 16 as a matrix equation. Note the block-diagonal nature of the
matrix, with only spherical harmonics of the same order (i.e. l = 0, 1, 2) mixed. The matrix elements
D are functions of the angles of rotation.

equation 7.48 of Inui et al. [28], To derive some of the quantitative results, we will require one
important property of the representation matrices Dl (see for instance the appendix in [67]),

Dl
m0(α, β, γ) = dl

m0(α)eImβ =

√

4π

2l + 1
Ylm(α, β). (18)

Decomposition into Spherical Harmonics: We now have the tools to expand equation 8 in
spherical harmonics. We first expand the lighting in global coordinates,

L(θi, φi) =
∞
∑

l=0

l
∑

m=−l

LlmYlm(θi, φi). (19)

To obtain the lighting in local coordinates, we must rotate the above expression. Using equa-
tion 16, we get,

L(θi, φi) = L (Rα,β,γ(θ′i, φ
′

i)) =

∞
∑

l=0

+l
∑

m=−l

l
∑

m′=−l

LlmDl
mm′(α, β, γ)Ylm′(θ′i, φ

′

i). (20)

Since the transfer function A(θ′i) = cos θ′i has no azimuthal dependence, terms with m′ 6= 0
will vanish when we perform the integral in equation 8. Therefore, we will be most interested in
the coefficient of the term with m′ = 0. We have already seen (equation 18) that in this case,

Dl
m0(α, β, γ) =

(

√

4π/(2l + 1)
)

Ylm(α, β).

We now expand the transfer function in terms of spherical harmonics. Since we are expanding
over the full spherical domain, we should set A(θ′i) = 0 in the invisible lower hemisphere. Thus,
we define A(θ′i) as the half-cosine function, A(θ′i) = max(cos θ′i, 0). Since this has no azimuthal
dependence, terms Aln with n 6= 0 will vanish. Therefore, we can write

A(θ′i) = max(cos θ′i, 0) =
∞
∑

l=0

AlYl0(θ
′

i). (21)

Note that the modes Yl0 depend only on θ′i and have no azimuthal dependence.
Finally, we can also expand the irradiance in terms of spherical harmonics. In order to do so, we

ignore the tangential rotation γ, that has no physical significance, and write

E(α, β) =

∞
∑

l=0

l
∑

m=−l

ElmYlm(α, β). (22)
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Figure 7: The solid line is a plot of Al versus l. It can be seen that odd terms with l > 1 have
Al = 0. Also, as l increases, the BRDF coefficient or transfer function rapidly decays.

Spherical Harmonic Reflection Equation: We can now write down the reflection equation,
as given by equation 8, in terms of the expansions just defined. To do so, we multiply the expansions
for the lighting and BRDF, and integrate. By orthonormality of the spherical harmonics, we require
m′ = 0. Hence, we obtain

E(α, β, γ) =

∞
∑

l=0

l
∑

m=−l

AlLlmDl
m0(α, β, γ)

E(α, β) =
∞
∑

l=0

l
∑

m=−l

√

4π

2l + 1
AlLlmYlm(α, β). (23)

Note that, as expected, the tangential rotation γ, that has no physical meaning here, has vanished
from the equations.

Finally, we can equate spherical harmonic coefficients of the irradiance, and use a symbol for the
normalization, Λl =

√

4π/(2l + 1), to obtain the key equation for Lambertian reflection,

Elm = ΛlAlLlm. (24)

This equation states that the standard direct illumination integral in equation 8 can be viewed as a
simple product in terms of spherical harmonic coefficients. This is not really surprising3, considering
that equation 8 can be interpreted as showing that the irradiance is a convolution of the incident
illumination and the transfer function. We have simply derived the product formula for convolution
in the frequency domain, analogous to the standard formula in terms of Fourier coefficients.

Representing the Transfer Function: The one remaining component is to explicitly find
the spherical harmonic coefficients of the half-cosine or clamped-cosine transfer function Al. The
coefficients are given by

Al = 2π

∫ π

2

0

Yl0(θ
′

i) cos θ′i sin θ′idθ′i, (25)

where the factor of 2π comes from integrating 1 over the azimuthal dependence. It is important to
note that the limits of the integral range from 0 to π/2 and not π because we are considering only

3Basri and Jacobs [2, 4] have noticed that this result follows directly from equation 8 by the Funk-Hecke theorem (as
stated, for instance in Groemer [22], page 98). However, that theorem does not generalize to more complex materials
(where the BRDF lobe is not radially symmetric, as the half-cosine function is). The derivation above enables us to
easily generalize the results to arbitrary materials, as discussed later in the chapter.
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the upper hemisphere (A(θ′i) = 0 in the lower hemisphere). The expression above may be simplified
by writing in terms of Legendre polynomials P (cos θ′i). Putting u = cos θ′i in the above integral and
noting that P1(u) = u and that Yl0(θ

′

i) =
√

(2l + 1)/(4π)Pl(cos θ′i), we obtain

Al = 2πΛ−1
l

∫ 1

0

Pl(u)P1(u) du. (26)

To gain further insight, we need some facts regarding the Legendre polynomials. Pl is odd if l is
odd, and even if l is even. The Legendre polynomials are orthogonal over the domain [−1, 1] with
the orthogonality relationship being given by

∫ 1

−1

Pa(u)Pb(u) =
2

2a + 1
δa,b (27)

From this, we can establish some results about equation 26. When l is equal to 1, the integral eval-
uates to half the norm above, i.e. 1/3. When l is odd but greater than 1, the integral in equation 26
vanishes. This is because for a = l and b = 1, we can break the left-hand side of equation 27 using
the oddness of a and b into two equal integrals from [−1, 0] and [0, 1]. Therefore, both of these
integrals must vanish, and the latter integral is the right-hand integral in equation 26. When l is
even, the required formula is given by manipulating equation 20 in chapter 5 of MacRobert[42].
Putting it all together, we have,

l = 1 Al =

√

π

3

l > 1, odd Al = 0

l even Al = 2π

√

2l + 1

4π

(−1)
l

2
−1

(l + 2)(l − 1)

[

l!

2l( l
2 !)2

]

.

(28)

We can determine the asymptotic behavior of Al for large even l by using Stirling’s formula. The
bracketed term goes as l−1/2, which cancels the term in the square root. Therefore, the asymptotic
behavior for even terms is Al ∼ l−2. A plot of Al for the first few terms is shown in figure 7, and
approximation of the clamped cosine by spherical harmonic terms as l increases is shown in figure 8.

Since Al vanishes for odd values of l > 1, as seen in equation 28, the irradiance (per equation 24)
has zero projection onto odd-order modes, i.e. Elm = 0 when l > 1 and odd. In terms of the filtering



analogy in signal-processing, since the filter corresponding to A(θ′

i) = cos θ′i destroys high-frequency
odd terms in the spherical harmonic expansion of the lighting, the corresponding terms are not found
in the irradiance. Further, for large even l, the asymptotic behavior of Elm ∼ l−5/2 since Al ∼ l−2.
The transfer function A acts as a low pass filter, causing the rapid decay of high-frequency terms in
the lighting.

It is instructive to explicitly write out numerically the first few terms for the irradiance per
equations 24 and 28,

E00 = πL00 ≈ 3.142L00

E1m = 2π
3 L1m ≈ 2.094L1m

E2m = π
4 L2m ≈ 0.785L2m

E3m = 0

E4m = − π
24L4m ≈ −0.131L4m

E5m = 0

E6m = π
64L6m ≈ 0.049L6m. (29)

We see that already for E4m, the coefficient is only about 1% of what it is for E00. Therefore,
in real applications, where surfaces are only approximately Lambertian, and there are errors in
measurement, we can obtain good results using an order 2 approximation of the illumination and
irradiance. Since there are 2l + 1 indices (values of m, which ranges from −l to +l) for order l,
this corresponds to 9 coefficients for l ≤ 2—1 term with order 0, 3 terms with order 1, and 5 terms
with order 2. Note that the single order 0 mode Y00 is a constant, the 3 order 1 modes are linear
functions of the Cartesian coordinates—in real form, they are simply x, y, and z—while the 5 order
2 modes are quadratic functions of the Cartesian coordinates.

Therefore, the irradiance—or equivalently, the reflected light field from a convex
Lambertian object—can be well approximated using spherical harmonics up to order 2
(a 9 term representation), i.e. as a quadratic polynomial of the Cartesian coordinates
of the surface normal vector. This is one of the key results of this chapter. By a careful formal
analysis, Basri and Jacobs [2, 4] have shown that over 99.2% of the energy of the filter is captured in
orders 0,1 and 2, and 87.5% is captured even in an order 1 four term approximation. Furthermore,
by enforcing non-negativity of the illumination, one can show that for any lighting conditions, the
average accuracy of an order 2 approximation is at least 98%.

0.3.3 Explanation of Experimental Results
Having obtained the theoretical result connecting irradiance and radiance, we can now address

the empirical results on low dimensionality we discussed in the background section. First, consider
images under all possible illuminations. Since any image can be well described by a linear combina-
tion of 9 terms—the images corresponding to the 9 lowest frequency spherical harmonic lights—we
expect the illumination variation to lie close to a 9-dimensional subspace. In fact, a 4D subspace
consisting of the linear and constant terms itself accounts for almost 90% of the energy. This 4D sub-
space is exactly that of Koenderink and van Doorn [35]. Similarly, the 3D subspace of Shashua [69]
can be thought of as corresponding to the lighting from order 1 spherical harmonics only. However,
this neglects the ambient or order 0 term, which is quite important from our analytic results.

There remain at this point two interesting theoretical questions. First, how does the spherical
harmonic convolution result connect to principal component analysis? Second, the 9D subspace
predicted by the above analysis does not completely agree with the 5D subspace observed in a
number of experiments [15, 23]. Recently, we have shown [60] that under appropriate assumptions,
the principal components or eigenvectors are equal to the spherical harmonic basis functions and the
eigenvalues, corresponding to how important a principal component is in explaining image variability,
are equal to the spherical harmonic coefficients ΛlAl. Furthermore, if we see only a single image, as
in previous experimental tests, only the front-facing normals, and not the entire sphere of surface
normals is visible. This allows approximation by a lower-dimensional subspace. We have shown how
to analyze this effect with spherical harmonics, deriving analytic forms for the principal components
of canonical shapes. The results for a human face are shown in figure 9, and are in qualitative and
quantitative agreement with previous empirical work, providing the first full theoretical explanation.



Figure 9: The first 5 principal components of a face, computed by our method [60] for analyti-
cally constructing the PCA for lighting variability using spherical harmonics. The form of these
eigenmodes is strikingly similar to those derived empirically by previous researchers (see figure 1
in Hallinan [23]). The corresponding eigenvalues are in the ratio of .42, .33, .16, .035, .021 and
are in agreement with empirical observation. The first 3 and 5 eigenmodes respectively account for
91% and 97% of the variance, compared to empirical values of 90% and 94% respectively [15]. The
slight discrepancy is likely due to specularities, cast shadows, and noisy or biased measurements.
The principal components contain both positive values (bright regions) and negative values (dark
regions), with zero set to the neutral grey of the background. The face is an actual range scan
courtesy of Cyberware.

0.4 Applications of Lambertian 9 Term Spherical Harmonic Model

In the previous section, we have derived an analytic formula for the irradiance, or reflected light
from a Lambertian surface, as a convolution of the illumination and a low-pass filter corresponding to
the clamped cosine function. Though the mathematical derivation is rather involved, the final result
is very simple, as given in equations 24 and 28. This simple 9 term Lambertian model allows one
to reduce the effects of very complex lighting distributions, involving multiple point and extended
sources, to a simple quadratic formula. It therefore enables computer vision applications, that had so
far to rely on the simple point or directional light source model, to handle arbitrary distant lighting
with attached shadows. In computer graphics, lighting calculations that had previously required
expensive finite element or Monte Carlo integration, can now be done with a simple analytic formula.
Because of the simplicity and effectiveness of the final model, it has been widely adopted in both
graphics and vision for a number of practical applications.

0.4.1 Computer Vision: Recognition

In computer vision, a critical problem is being able to recognize objects in a way that is lighting-
insensitive. This is especially important to build robust face detection and recognition systems. In
fact, face recognition was the first application of the Lambertian 9 term model (Basri and Jacobs [2])
to vision. To apply the results of the previous section, we assume the availability of 3D geometric
models and albedos of the faces of interest. With the ready availability of range scanners that give
detailed 3D models, this is an increasingly reasonable assumption.

Once the position of the object and pose have been estimated, the lighting-insensitive recognition
problem can be stated as follows. Given a 3D geometric model and albedos for an object, determine
if the query image observed can correspond to the object under some lighting condition. To solve
this problem, we note that images of a Lambertian object lie close to a 9D subspace. We simply
need to take the query image and project it onto this subspace, to see if it lies close enough4.
Furthermore, our spherical harmonic formula gives an easy way of analytically constructing the
subspace, simply by analytically rendering images of the object under the 9 spherical harmonic
basis lighting conditions, using equation 24. This approach is efficient and robust, compared to
numerical PCA methods. The results are excellent (recognition rates > 95% on small datasets),
indicating that human faces are reasonably well approximated as Lambertian convex objects for the
purpose of modeling illumination variation in recognition. Hence, the Lambertian 9 term model has
significant practical relevance for robust face modeling and recognition systems.

4In practice, the object that lies closest to the subspace can be chosen—we recognize the best matching face.



Figure 10: Some of the objects which we have been able to recognize [57], using a combination of
the Lambertian 9 term model, and compact light source models to account for specularities.

Recent work has addressed a number of subproblems in recognition. Lee et al. [39] show how
to construct the 9D Lambertian subspace using nine images taken with point light sources, while
Zhang and Samaras [82] have shown how to learn spherical harmonic subspaces for recognition. Ho
et al. [26] have used the harmonic subspace for image clustering. We (Osadchy et al. [57]) have also
built on the spherical harmonic representation, combining it with compact models for light sources
to tackle the problem of recognizing specular and transparent objects (figure 10).

0.4.2 Modeling

An understanding of lighting is also critical for many modeling problems. For instance, in com-
puter vision, we can obtain the shape of an object to build 3D models using well known and well
studied techniques like photometric stereo, stereo, or structure from motion. However, all of these
methods usually make very simple assumptions about the lighting conditions, such as point light
sources without shadows. Our Lambertian results enable solving these problems under realistic
complex lighting, which has implications for shape modeling in uncontrolled environments.

In photometric stereo, we have a number of images under different lighting conditions (previously,
these were always point sources). We seek to determine the shape (surface normals). Basri and
Jacobs [3] have shown how to solve this problem for the first time under unknown complex (but
distant) illumination, under the assumption of Lambertian reflectance and convex objects.

The mathematics of their solution is conceptually simple. Consider taking f images of p pixels
each. One can create a large matrix M of size f × p holding all the image information. The low-
dimensional Lambertian results indicate that this matrix can be approximated as M ≈ LS, where
L is a f × 9 lighting matrix, that gives the lowest-frequency lighting coefficients for the f images,
and S is a 9×p matrix, that corresponds to the spherical harmonic basis images of the object under
the 9 lighting conditions. Of course, once the basis images are recovered, the surface normals and
albedos can be trivially estimated from the order 0 and order 1 terms, which are simply the albedos
and scaled surface normals themselves. The computation of M ≈ LS can be done using singular
value decomposition, but is not generally unique. Indeed, there is a 9 × 9 ambiguity matrix (4 × 4
if using a linear 4D subspace approximation). Basri and Jacobs [3] analyze these ambiguities in
some detail. It should be noted that their general approach is quite similar to previous work on
photometric stereo with point sources, such as the factorization method proposed by Hayakawa [24].
The Lambertian low-dimensional lighting model enables much of the same machinery to be used,
now taking complex illumination and attached shadows into account.

In photometric stereo, we assume the scene is static, and only the lighting changes. This is not
always practical, for instance when building models of human faces. A far less restrictive acquisition
scenario is to directly model objects from video, where the subject is moving normally. We would
like to take your home videos, and construct a 3D geometric model of your face. This problem
also relates to structure from motion, a classic computer vision method. Simakov et al. [71] have
recently addressed this problem. They assume the motion is known, such as from tracking features
like the eyes or nose. They then seek to recover the 3D shape and albedos of the rigid moving
object, as well as a spherical harmonic description of the illumination in the scene. They use the
Lambertian spherical harmonic model to create a consistency measure within a stereo algorithm.
Zhang et al. [81] do not assume known motion, but assume infinitesimal movement between frames.



Figure 11: The diffuse shading on all the objects is computed procedurally in real-time using the
quadratic formula for Lambertian reflection [63]. The middle sphere, armadillo and table are diffuse
reflectors. Our method can also be combined with standard texture mapping, used to modulate the
albedo of the pool ball on the right, and reflection mapping, used for specular highlights on the pool
ball and mirror sphere on the left. The environment is a light probe of the Grace Cathedral in San
Francisco, courtesy Paul Debevec.

0.4.3 Inverse Problems: Estimating Illumination
An important theoretical and practical problem is to estimate the illumination from observations.

Once we have done this, we can add synthetic objects to a real scene with realistic lighting for
computer graphics, or use knowledge of the lighting to solve computer vision problems. The study
of inverse problems can be seen in terms of our results as a deconvolution.

For estimating the illumination from a convex Lambertian object, our theoretical results give a
simple practical solution. We just need to use equation 24, solving for lighting coefficients using
Llm = Λ−1

l Elm/Al. The form of the Lambertian filter coefficients indicates that inverse lighting
is ill-posed (numerator and denominator vanish) for odd illumination frequencies greater than one.
These frequencies of the signal are completely annihilated by the Lambertian filter, and do not
appear in the output irradiance at all. Furthermore, inverse lighting is an ill-conditioned inverse
problem, because the Lambertian filter is low-pass, and the irradiance cannot easily be deconvolved.
In fact, we will be able to reliably estimate only the first 9 low-order spherical harmonic terms of
the incident lighting from images of a Lambertian surface.

These results settle a theoretical question on whether radiance and irradiance are equivalent [64],
by showing formally that irradiance is not invertible, since the Lambertian kernel has zero entries.
This corrects a long-standing (but incorrect) conjecture(Preisendorfer [58], vol. 2, pp 143–151) in
the radiative transfer community. It also explains the ill-conditioning in inverse lighting calculations
observed by previous authors like Marschner and Greenberg [44]. Finally, the results are in accord
with important perceptual observations like the retinex theory [38]. Since lighting cannot produce
high-frequency patterns on Lambertian surfaces, such patterns must be attributable to texture,
allowing perceptual separation of illumination effects and those due to texture or albedo.

0.4.4 Computer Graphics: Irradiance Environment Maps for Rendering
The OpenGL standard for graphics hardware currently has native support only for point or

directional light sources. The main reason is the lack of simple procedural formulas for general
lighting distributions. Instead, the lighting from all sources must be summed or integrated. Our
Lambertian 9 term model makes it straightforward to compute, represent and render with the
irradiance environment map E(α, β). This was our first practical application of the Lambertian 9
term model in computer graphics [63].

First, we prefilter the environment map, computing the lighting coefficients Llm. From this, we can



compute the 9 irradiance coefficients Elm per equation 24. This computation is very efficient, being
linear in the size of the environment map. We can now adopt one of two approaches. The first is to
explicitly compute the irradiance map E(α, β) by evaluating it from the irradiance coefficients. Then,
for any surface normal (α, β), we can simply look up the irradiance value and multiply by the albedo
to shade the Lambertian surface. This was the approach taken in previous work on environment
mapping [21, 46]. Those methods needed to explicitly compute E(α, β) with a hemispherical integral
of all the incident illumination for each surface normal. This was a slow procedure (it is O(n2) where
n is the size of the environment map in pixels). By contrast, our spherical harmonic prefiltering
method is linear time O(n). Optimized implementations can run in near real-time, enabling our
method to potentially be used for dynamically changing illumination. Software for preconvolving
environment maps is available on our website and widely used by industry.

However, we can go much further than simply computing an explicit representation of E(α, β)
quickly. In fact, we can use a simple procedural formula for shading. This allows us to avoid using
textures for irradiance calculations. Further, the computations can be done at each vertex, instead
of at each pixel, since irradiance varies slowly. They are very simple to implement in either vertex
shaders on the graphics card, or in software. All we need to do is explicitly compute

E(α, β) ≈
2
∑

l=0

l
∑

m=−l

ElmYlm(α, β). (30)

This is straightforward, because the spherical harmonics up to order 2 are simply constant, linear
and quadratic polynomials. In fact, we can write an alternative simple quadratic form,

E(n) = ntMn, (31)

where n is the 4× 1 surface normal in homogeneous cartesian coordinates and M is a 4× 4 matrix.
Since this involves only a matrix-vector multiplication and dot-product, and hardware is optimized
for these operations with 4 × 4 matrices and vectors, the calculation is very efficient. An explicit
form for the matrix M is given in [63]. The image in figure 11 was rendered using this method,
which is now widely adopted for real-time rendering in video games.

Note the duality between forward and inverse problems. The inverse problem, inverse
lighting, is ill-conditioned, with high frequencies of the lighting not easy to estimate. Conversely, the
forward problem, irradiance environment maps, can be computed very efficiently, by approximating
only the lowest frequencies of the illumination and irradiance. This duality between forward and
inverse problems has rarely been used before, and we believe it can lead to many new applications.

0.5 Specularities: Convolution Formula for General Materials
In this section, we discuss the extension to general materials, including specularities, and briefly

explore the implications and practical applications of these general convolution results. We first
briefly derive the fully general case with anisotropic materials [61, 67]. An illustrative diagram is
found in figure 12. For practical applications, it is often convenient to assume isotropic materials.
The convolution result for isotropic BRDFs, along with implications are developed in [65, 67], and
we will quickly derive it here as a special case of the anisotropic theory.

0.5.1 General Convolution Formula
The reflection equation, analogous to equation 8 in the Lambertian case, now becomes

B(α, β, γ, θ′o, φ
′

o) =

∫

Ω′

i

L (Rα,β,γ (θ′i, φ
′

i)) ρ̂(θ′i, φ
′

i, θ
′

o, φ
′

o) dω′

i, (32)

where the reflected light field B now also depends on the (local) outgoing angles θ′

o, φ
′

o. ρ̂ is a
transfer function (the BRDF multiplied by the cosine of the incident angle ρ̂ = ρmax(cos θ′

i, 0)),
which depends on local incident and outgoing angles.

The lighting can be expanded as per equations 19 and 20 in the Lambertian derivation. The
expansion of the transfer function is now more general than equation 21, being given in spherical
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Figure 12: Schematic of reflection in 2D. On the left, we show the situation with respect to one
point on the surface (the north pole or 0◦ location, where global and local coordinates are the
same). The right figure shows the effect of the surface orientation α. Different orientations of
the surface correspond to rotations of the upper hemisphere and BRDF, with the global incident
direction θi corresponding to a rotation by α of the local incident direction θ′

i. Note that we also
keep the local outgoing angle (between N and B) fixed between the two figures.

harmonics by

ρ̂(θ′i, φ
′

i, θ
′

o, φ
′

o) =

∞
∑

l=0

l
∑

n=−l

∞
∑

p=0

p
∑

q=−p

ρ̂ln,pqY
∗

ln(θ′i, φ
′

i)Ypq(θ
′

o, φ
′

o), (33)

where the complex conjugate for the first factor is to simplify the final results.
Finally, we need to expand the reflected light field in basis functions. For the Lambertian case, we

simply used spherical harmonics over (α, β). In the general case, we must consider the full tangent
frame (α, β, γ). Thus, the expansion is over mixed basis functions, Dl

mn(α, β, γ)Ypq(θ
′

o, φ
′

o). With
the correct normalization(equation 7.73 of [28]),

B(α, β, γ, θ′o, φ
′
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∞
∑

l=0

l
∑

m=−l

l
∑

n=−l

∞
∑

p=0

p
∑

q=−p

Blmn,pqClmn,pq(α, β, γ, θ′o, φ
′

o)

Clmn,pq(α, β, γ, θ′o, φ
′

o) =

√

2l + 1

8π2
Dl

mn(α, β, γ)Ypq(θ
′

o, φ
′

o). (34)

We can now write down the reflection equation, as given by equation 32, in terms of the expansions
just defined. As in the Lambertian case, we multiply the expansions for the lighting (equation 20)
and BRDF (equation 33) and integrate. To avoid confusion between the indices in this intermediate
step, we will use Llm and ρ̂l′n,pq to obtain

B(α, β, γ, θ′o, φ
′

o) =

∞
∑

l=0

l
∑

m=−l

l
∑

m′=−l

∞
∑
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∑
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∞
∑

p=0

p
∑
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∫ 2π
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∫ π
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i
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Ylm′(θ′i, φ
′

i)Y
∗

l′n(θ′i, φ
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i) sin θ′i dθ′idφ′

i

= δll′δm′n. (35)

The last line follows from orthonormality of the spherical harmonics. Therefore, we may set l′ = l
and n = m′ since terms not satisfying these conditions vanish. We then obtain

B(α, β, γ, θ′o, φ
′

o) =
∞
∑

l=0

l
∑

m=−l

l
∑

n=−l

∞
∑

p=0

p
∑

q=−p

Llmρ̂ln,pq

(

Dl
mn(α, β, γ)Ypq(θ

′

o, φ
′

o)
)

. (36)

Finally, equating coefficients, we obtain the spherical harmonic reflection equation or convolution
formula, analogous to equation 24. The reflected light field can be viewed as taking the incident



illumination signal, and filtering it with the material properties or BRDF of the surface,

Blmn,pq =

√

8π2

2l + 1
Llmρ̂ln,pq. (37)

Isotropic BRDFs: An important special case are isotropic BRDFs, where the orientation of the
local tangent frame γ does not matter. To consider the simplifications that result from isotropy, we
first analyze the BRDF coefficients ρ̂ln,pq. In the BRDF expansion of equation 33, only terms that
satisfy isotropy, i.e. are invariant with respect to adding an angle 4φ to both incident and outgoing
azimuthal angles, are nonzero. From the form of the spherical harmonics, this requires that n = q
and we write the now 3D BRDF coefficients as ρ̂lpq = ρ̂lq,pq.

Next, we remove the dependence of the reflected light field on γ by arbitrarily setting γ = 0. The
reflected light field can now be expanded in coefficients [65],

B(α, β, θ′o, φ
′

o) =

∞
∑

l=0

l
∑

m=−l

∞
∑

p=0

min(l,p)
∑

q=−min(l,p)

BlmpqClmpq(α, β, θ′o, φ
′

o)

Clmpq(α, β, θ′o, φ
′

o) =

√

2l + 1

4π
Dl

mq(α, β, 0)Ypq(θ
′

o, φ
′

o). (38)

Finally, the convolution formula for isotropic BRDFs becomes

Blmpq = ΛlLlmρ̂lpq. (39)

Finally, it is instructive to derive the Lambertian results as a special case of the above formulation.
In this case, p = q = 0 (no exitant angular dependence), and equation 24 is effectively obtained
simply by dropping the indices p and q in the above equation.

0.5.2 Implications
We now briefly discuss the theoretical implications of these results. A more detailed discussion

can be found in [65, 67]. First, we consider inverse problems like illuminant and BRDF estimation.
From the formula above, we can solve them simply by dividing the reflected light field coefficients
by the known lighting or BRDF coefficients, i.e. Llm = Λ−1

l Blmpq/ρ̂lpq and ρ̂lpq = Λ−1
l Blmpq/Llm.

These problems will be well conditioned when the denominators do not vanish and contain high
frequency elements. In other words, for inverse lighting to be well conditioned, the BRDF should
be an all-pass filter, ideally a mirror surface. Mirrors are delta functions in the spatial or angular
domain, and include all frequencies in the spherical harmonic domain. Estimating the illumination
from a chrome-steel or mirror sphere is in fact a common approach. On the other hand, if the filter
is low-pass, like a Lambertian surface, inverse lighting will be ill-conditioned. Similarly, for BRDF
estimation to be well conditioned, the lighting should include high frequencies like sharp edges. The
ideal is a directional or point light source. In fact, Lu et al. [41] and Marschner et al. [43] have
developed image-based BRDF measurement methods from images of a homogeneous sphere lit by a
point source. More recently, Gardner et al. [17] have used a linear light source. On the other hand,
BRDF estimation is ill-conditioned under soft diffuse lighting. On a cloudy day, we will not be able
to estimate the widths of specular highlights accurately, since they will be blurred out.

Interesting special cases are Lambertian, and Phong and Torrance-Sparrow [77] BRDFs. We have
already discussed the Lambertian case in some detail. The frequency domain filters corresponding to
Phong or microfacet models are approximately Gaussian [65]. In fact, the width of the Gaussian in
the frequency domain is inversely related to the width of the filter in the spatial or angular domain.
The extreme cases are that of a mirror surface, that is completely localized (delta function) in the
angular domain and passes through all frequencies (infinite frequency width), and of a very rough or
near-Lambertian surface that has full width in the angular domain, but is a very compact low-pass
filter in the frequency domain. This duality between angular and frequency-space representations
is similar to that for Fourier basis functions. In some ways, it is also analogous to the Heisenberg
uncertainty principle—we cannot simultaneously localize a function in both angular and frequency



domains. For representation and rendering however, we can turn this to our advantage, using
either the frequency or angular domain, wherever the different components of lighting and material
properties can be more efficiently and compactly represented.

Another interesting theoretical question concerns factorization of the 4D reflected light field,
simultaneously estimating the illumination (2D) and isotropic BRDF (3D). Since the lighting and
BRDF are lower-dimensional entities, it seems that we have redundant information in the reflected
light field. We show [65] that an analytic formula for both illumination and BRDF can be derived
from reflected light field coefficients. Thus, up to a global scale and possible ill-conditioning, the
reflected light field can in theory be factored into illumination and BRDF components.

0.5.3 Applications
Inverse Rendering: Inverse rendering refers to inverting the normal rendering process to es-
timate illumination and materials from photographs. Many previous inverse rendering algorithms
have been limited to controlled laboratory conditions using point light sources. The insights from our
convolution analysis have enabled the development of a general theoretical framework for handling
complex illumination. We [61, 65] have developed a number of frequency domain and dual angu-
lar and frequency-domain algorithms for inverse rendering under complex illumination, including
simultaneous estimation of the lighting and BRDFs from a small number of images.

Forward Rendering (Environment Maps with Arbitrary BRDFs): In the forward problem,
all of the information on lighting and BRDFs is available, so we can directly apply the convolution
formula [66]. We have shown how this can be applied to rendering scenes with arbitrary distant
illumination (environment maps) and BRDFs. As opposed to the Lambertian case, we no longer have
a simple 9 term formula. However, just as in the Lambertian case, convolution makes prefiltering
the environment extremely efficient, three to four orders of magnitude faster than previous work.
Furthermore, it allows us to use a new compact and efficient representation for rendering, the
Spherical Harmonic Reflection Map or SHRM. The frequency domain analysis helps to precisely set
the number of terms and sampling rates and frequencies used for a given accuracy.

Material Representation and Recognition: Nillius and Eklundh [54, 55] derive a low-
dimensional representation using PCA for images with complex lighting and materials. This can be
seen as a generalization of the PCA results for diffuse surfaces (to which they have also made an
important contribution [53]). They can use these results to recognize or classify the materials in an
image, based on their reflectance properties.

0.6 Relaxing and Broadening the Assumptions: Recent Work
So far, we have seen how to model illumination, and the resulting variation in appearance of

objects using spherical harmonics. There remain a number of assumptions as far as the theoretical
convolution analysis is concerned. Specifically, we assume distant lighting and convex objects without
cast shadows or interreflections. Furthermore, we are dealing only with opaque objects in free space,
and are not handling translucency or participating media. It has not so far been possible to extend
the theoretical analysis to relax these assumptions. However, a large body of recent theoretical and
practical work has indicated that the key concepts from the earlier analysis—such as convolution,
filtering and spherical harmonics—can be used to analyze and derive new algorithms for all of the
effects noted above. The convolution formulas presented earlier in the chapter will of course no
longer hold, but the insights can be seen to be much more broadly applicable.

Cast Shadows: For certain special cases, it is possible to derive a convolution result for cast
shadows (though not in terms of spherical harmonics). For parallel planes, Soler and Sillion [75]
have derived a convolution result, using it as a basis for a fast algorithm for soft shadows. We [68]
have developed a similar result for V-grooves to explain lighting variability in natural 3D textures.

An alternative approach is to incorporate cast shadows in the integrand of the reflection equation.
The integral then includes three terms, instead of two—the illumination, the BRDF (or Lambertian
half-cosine function), and a binary term for cast shadows. Since cast shadows vary spatially, reflection
is no longer a convolution in the general case. However, it is still possible to use spherical harmonics



to represent the terms of the integrand. Three term or triple product integrals can be analyzed
using the Clebsch-Gordan series for spherical harmonics [28], that is common for analyzing angular
momentum in quantum mechanics. A start at working out the theory is made by Thornber and
Jacobs [76]. Most recently, we [51] have investigated generalizations of the Clebsch-Gordan series
for other bases, like Haar wavelets, in the context of real-time rendering with cast shadows.

Pre-Computed Light Transport: Sloan et al. [74] recently introduced a new approach to real-
time rendering called precomputed radiance transfer. Their method uses low-frequency spherical
harmonic representations (usually order 4 or 25 terms) of the illumination and BRDF, and allows
for a number of complex light-transport effects including soft shadows, interreflections, global il-
lumination effects like caustics, and dynamically changing lighting and viewpoint. Because of the
high level of realism these approaches provide compared to standard hardware rendering, spherical
harmonic lighting is now widely used in interactive applications like video games, and is incorporated
into Microsoft’s DirectX API.

We introduce the theory only for Lambertian surfaces—relatively straightforward extensions are
possible for complex materials, including view-dependence. The basic idea is to define a transport
operator T that includes half-cosine, visibility and interreflection effects. We can then write, in
analogy with equations 3 and 6,

E(x) =

∫

Ωi

L(ωi)T (x,ωi) dωi, (40)

where T denotes the irradiance at x due to illumination from direction ωi, and incorporates all
light-transport effects including cast shadows and interreflections. An offline precomputation step
(that may involve ray-tracing for instance) is used to determine T for a static scene. We can expand
all quantities in spherical harmonics, to write

E(x) ≈
l∗
∑

l=0

l
∑

m=−l

Tlm(x)Llm, (41)

where l∗ denotes the maximum order used for calculations (2 would be sufficient in the absence of cast
shadows). We repeat this calculation for each vertex x for rendering. The expression above is simply
a dot product which can be implemented efficiently in current programmable graphics hardware,
allowing real-time manipulation of illumination. Somewhat more complicated, but conceptually
similar expressions, are available for glossy materials. For real-time rendering with varying lighting
and viewpoint, Sloan et al. [73] precompute a view-dependent operator (a 25×25 matrix of spherical
harmonic coefficients at each vertex) and compress the information over the surface using clustered
principal component analysis.

New Basis Functions: Spherical harmonics are the ideal signal-processing representation when
we have a convolution formula or want to analyze functions in the frequency domain. However,
they are not the best representation for “all-frequency” effects—an infinite number of spherical
harmonics will be needed to accurately represent a point source or delta function. Furthermore,
some quantities like the BRDF are better defined over the hemisphere rather than the full sphere. In
cases where cast shadows and interreflections are involved, we no longer have a convolution formula,
so spherical harmonics are sometimes not the preferred representation. Recently, we [50, 51] have
introduced all-frequency relighting methods using Haar wavelets. These methods can be orders
of magnitude more efficient than previous precomputed light transport techniques using spherical
harmonics. Hemispherical basis functions for BRDF representation have been proposed by Gautron
et al. [18] and Koenderink and van Doorn [36].

Near-Field Illumination: Recent theoretical work [16] has tried to remove the limitation of
distant illumination, by showing a convolution result (with a different kernel) to also hold for near-
field lighting under specific assumptions for Lambertian surfaces. A practical solution using spherical
harmonic gradients for rendering is proposed by Annen et al. [1].



Translucency and Participating Media: Like most of computer vision and graphics, we have
so far assumed clear-day conditions, without translucent materials like marble and skin, or partici-
pating media like milk, smoke, clouds or fog. Both spherical harmonics and convolution are popular
tools for subsurface scattering, volumetric rendering and radiative transport problems. Practical
methods that conceptually use convolution of the incident irradiance with a point-spread function
have been employed successfully for subsurface scattering [30, 31], and we have recently developed
such methods for rendering multiple scattering effects in volumetric participating media [49, 59].

0.7 Conclusion
Much of the richness of the visual appearance of our world arises from the effects of illumination,

and the varying appearance of surfaces with lighting. In this chapter, we have seen that there are
many situations in the real world, such as for diffuse Lambertian surfaces, where the appearance
of an object can be relatively simple to describe, even if the lighting is complicated. We have
introduced new tools to model illumination and appearance using spherical harmonics. With these
tools, we can derive a signal-processing approach to reflection, where the reflected light can be
thought of as obtained by filtering or convolving the incident illumination signal by the material
properties of the surface. This insight leads to a number of new results, and explanations of previous
experimental work, such as the 9 parameter low-dimensional subspace for Lambertian objects. There
are implications for face modeling, recognition and rendering, as well as a number of other problems
in computer vision, graphics and perception. Already, a number of new algorithms have been
developed in computer vision for recognition and modeling, and in computer graphics for both
forward and inverse problems in rendering, with the promise of many further developments in the
near future.
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