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Fig. 1. Our adaptive eigenvalue projection scheme stabilizes the projected Newton optimization of stable Neo-Hookean energy under high Poisson’s ratios
(PR) and large initial volume change while maintaining fast convergence in other cases. Here the fixed vertices are colored in yellow. Our method consistently
outperforms the other approaches.

We introduce a novel adaptive eigenvalue filtering strategy to stabilize and

accelerate the optimization of Neo-Hookean energy and its variants under

the Projected Newton framework. For the first time, we show that Newton’s

method, Projected Newton with eigenvalue clamping and Projected New-

ton with absolute eigenvalue filtering can be unified using ideas from the

generalized trust region method. Based on the trust-region fit, our model

adaptively chooses the correct eigenvalue filtering strategy to apply during

the optimization. Our method is simple but effective, requiring only two lines

of code change in the existing Projected Newton framework. We validate

our model outperforms stand-alone variants across a number of experiments

on quasistatic simulation of deformable solids over a large dataset.
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1 INTRODUCTION
Hyperelastic simulations are indispensable in capturing the rich

visual behaviors of deformable objects – from highly compressible

foam to nearly incompressible rubber and human tissues. However,

the numerical optimization of these energies can be notoriously chal-

lenging due to the non-convexity of the volume-preserving term.

This high non-convexity can lead to unstable and slow convergence

in commonly applied Projected Newton optimizers, especially un-

der high Poisson’s ratios (near 0.5) and large initial volume change.

This necessitates the use of eigenvalue filtering strategies to en-

force the positive definiteness of the Hessian matrix and guarantee

convergence of the optimization algorithm.

In this work we depart from the Projected Newton perspective

and show that (somewhat surprisingly), we can unify existing eigen-

value clamping and filtering strategies under the generalized trust
region formalism. This motivates us to rethink the eigenvalue filter-

ing step. Instead of a priori choosing eigenvalue filtering strategy
ahead of time, we show that a significant reduction in Newton iter-

ations can be obtained by adaptively choosing the correct strategy

based on how well a quadratic model fits the underlying nonlin-

ear energy in a particular trust-region. This leads to an extremely

elegant and effective solution that requires only two lines of code

change in an existing Projected Newton solver to implement our

more performant, trust-region-based approach (see Sec.4.3).
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We demonstrate the effectiveness and efficiency of our method

through a wide range of challenging examples, including different

deformations, physical parameters, geometries, mesh resolutions,

and elastic energies. Through extensive experiments, we show that

on average, our adaptive method outperforms all other stand-alone

variants in terms of stability and convergence speed in quasistatic

simulations. Our method is robust across different mesh resolutions

and Poisson’s ratios and highly distorted and inverted elements,

while maintaining the same per-iteration computational cost and

simplicity of implementation.

To summarize, our contributions are as follows:

(1) We offer a theoretical analysis of nonconvex optimization of

Neo-Hookean energy based on the generalized trust region

framework. For the first time, we show that Newton’s method,

Projected Newton with eigenvalue clamping and Projected

Newton with absolute eigenvalue filtering can be unified

based on insights from the generalized trust region method.

(2) Based on our analysis, we propose a novel adaptive eigen-

value filtering strategy which correctly chooses the strategy

to apply based on the trust-region fit. Our method is still

formally a (regularized) Projected Newton, where the regu-

larization parameter mimics the Lagrange multiplier arising

in trust-region subproblems. Our approach ensures stability

under high Poisson’s ratios and large initial volume change,

while still maintaining fast convergence in all other regimes.

2 RELATED WORK
Projected Newton’s method. Projected Newton’s methods rely on

projection strategies to restore the positive definiteness of the Hes-

sian matrix (to guarantee convergence to a local minimum). As an

example, Paternain et al. [2019] proposed projecting eigenvalues

of the global Hessian to a small positive value when its magnitude

is small, and to its absolute value otherwise. Due to the compu-

tational cost of a global eigendecomposition, in a finite element

setting, these projection often operate on the element-wise Hessian

submatrices. Choices of projection range from clamping negative

eigenvalues to a small positive number (or zero) [Teran et al. 2005],

adding a diagonal [Fu and Liu 2016] or setting negative eigenvalues

to their absolute values [Chen et al. 2024; Gill et al. 1981; Nocedal

and Wright 2006]. Some strategies eschewed eigenvalue filtering

which allows for modifications to the global hessian. For instance,

Longva et al. [2023] either suggested using the original Hessian

matrix whenever it is positive definite or adding multiples of the

mass matrix until Cholesky Factorization succeeds.

Trust-region method. Trust-region methods have been extensively

studied in optimization literature [Conn et al. 2000; Nocedal and

Wright 2006] for its stability and robustness. In some sense it can be

viewed as the dual of line-search method: it first chooses a step size

and then picks a step direction within it. Sorensen [1982] first pro-

posed the trust region method by making a trust region modification

to Newton’s method. Moré and Sorensen [1983] studied the strategy

to pick the trust region step. Moré [1993] extended it to the gener-

alized trust region method, which has been actively studied until

today [Pong and Wolkowicz 2014; Wang and Kilinc-Karzan 2020].

Several works combined the idea of trust-region and line search
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Fig. 2. Our adaptive strategy stabilizes the optimization under large volume
changes and high Poisson’s ratios (PR), while maintaining fast convergence
in other cases. The three columns in the middle visualize the deformed
meshes after the energy minimization converges in our method (green),
absolute eigenvalue projection (blue), and eigenvalue clamping (red). The
number of iterations for each method until convergence is labeled on the
top. The last column shows the energy convergence curves with respect to
the number of iterations.

method and propose the regularized Newton’s method [Steck and

Kanzow 2023; Ueda 2014; Zhang and Ni 2015]. In machine learning,

Dauphin et al. [2014] introduced the saddle-free Newton method,

which is a generalized trust region method with a first-order model

and a quadratic constraint.

Neo-Hookean Energy. Several recent works have focused on im-

proving the stability of Neo-Hookean energy [Ogden 1997]. To

improve robustness to mesh inversion and rest-state stability, Smith

et al. [2018] proposed the stable Neo-Hookean energy and applied

their analysis to stabilize other hyperelastic variants [Kim and Eberle

2022; Lin et al. 2022]. Chen et al. [2024] further showed the high

non-convexity of the stable Neo-Hookean energy stems from high

Poisson’s ratio and large volume change, and proposed an eigen-

value filtering scheme to stabilize the optimization.

3 BACKGROUND
In many computer graphics applications, such as quasistatic hyper-

elastic simulation, an optimization problem arises:

min

x
𝑓 (x) , (1)
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where 𝑓 denotes a (twice differentiable) energy with parameters x.
We start by briefly reviewing two seemingly separate methods for

solving this optimization problem—namely, the projected Newton’s
method and trust-region method—to lay out the foundation for our

contributions, which revolve around a formal connection between

these twomethods (whichwewill develop in Sec. 4). Readers familiar

with these methods may directly jump to Sec. 4 instead.

Newton’s method. In many cases, one can solve Eq. (1) with New-

ton’s method by taking the second-order Taylor expansion of 𝑓 (x):

˜𝑓 (x + u) ≈ 𝑓 (x) + g⊤u + 1

2

u⊤Hu, (2)

where g = ∇𝑓 (x) and H = ∇2 𝑓 (x) are the gradient and the Hessian

of 𝑓 , respectively. Then, the optimal update u based on the quadratic

approximation
˜𝑓 can be obtained by solving a linear system

u = −H−1g. (3)

It is assumed that u is an update direction that leads to a decrease

of the energy 𝑓 , and thus iterations between the above two steps

will converge to a local minimum. More precisely, this assumption

requires that 1) the Hessian H to be positive definite and 2) the
second-order expansion

˜𝑓 being a close quadratic approximation of

the energy function 𝑓 . Unfortunately, these requirements do not

always hold in practice.

3.1 Projected Newton’s Method
Regarding the requirement 1), if H is indefinite or negative definite,

even if
˜𝑓 is a close approximation of 𝑓 , the update u may still be

an ascent direction, because their critical points 𝜕 ˜𝑓/𝜕u = 0 are not at

the minimum of
˜𝑓 .

As a response to this situation, the Projected Newton’s method
approximates H in Eq. (2) with a positive definite matrix. A straight-

forward approach performs eigenvalue analysis on H, modifies the

negative eigenvalues to positive ones, and then reconstructs a pos-

itive definite matrix using the updated eigenvalues. Yet, for large

matrices, this process is computationally intractable.

Eigenvalue clamping. In finite element simulations, a more effi-

cient approach exists: Notice that the (global) HessianH is assembled

by summing up the Hessian matrix H𝑖 from each finite element 𝑖 ,

that is,

H =
∑︁
𝑖

P⊤𝑖 H𝑖P𝑖 , (4)

where P𝑖 denotes the selection matrix that maps the per-element

indices to the global indices. Leveraging this property, Teran et al.

[2005] proposed to project each per-element HessianH𝑖 to a positive

definite one H+
𝑖
. Their approach clamps the eigenvalues 𝜆𝑘 of each

H𝑖 to zero (or a small positive value 𝜖) using

𝜆+
𝑘
=

{
𝜖 if 𝜆𝑘 ≤ 𝜖,

𝜆𝑘 otherwise,

(5)

and computes H+
𝑖
with the clamped eigenvalues. This approach

requires only a tiny eigenvalue analysis for each finite element,
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Fig. 3. Two other examples in experiments similar to Fig. 2. Here we com-
pare our method with others under bending (top) and twisting (bottom)
deformations. In all cases, our method requires the least number of itera-
tions to converge.

all of which can be computed in parallel, and it guarantees the

reconstructed global Hessian H+
from

H+ =
∑︁
𝑖

P⊤𝑖 H
+
𝑖 P𝑖 , (6)

to be positive definite [Rockafellar 1970], leading to a more stable

Newton’s solver for minimizing 𝑓 . Even though the negative eigen-

values of per-element Hessian are clamped to zero, the additive

contributions of neighboring elements and boundary conditions

always lead to a positive-definite global Hessian [Teran et al. 2005].

Absolute eigenvalue projection. For a highly nonconvex energy

landscape—such as one that arises in simulation of nearly incom-

pressible materials, eigenvalue clamping (Eq. (5)) could lead to un-

stable search directions and an excessively large number of iteration

steps [Chen et al. 2024].

This issue stems from the violation of the requirement 2) stated

above. For a highly nonconvex energy function 𝑓 , the quadratic

approximation
˜𝑓 tends to be a poor approximation of 𝑓 . Chen et al.

[2024] further proposed a remedy for this issue by projecting the

negative eigenvalues of each H𝑖 to their absolute values:

𝜆+
𝑘
= |𝜆𝑘 | . (7)

They demonstrated that this absolute-value projection strategy leads

to orders of magnitude speed-up in the best case. But in other nearly

convex cases (e.g., materials involving minor volume changes), this

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



4 • Honglin Chen, Hsueh-Ti Derek Liu, Alec Jacobson, David I.W. Levin, and Changxi Zheng

strategy can slightly damp the convergence along the negative

curvature directions.

In short, how to choose the projection strategy for any given

simulation scenario remains to be an open question.

3.2 (Generalized) Trust-Region Method
Separate from the projected Newton’s method, Trust-region meth-
ods [Conn et al. 2000; Sorensen 1982] were proposed in response

to the violation of the requirement 2) stated above. The key idea

here is to identify a radius around the current solution x where the

quadratic function
˜𝑓 is a sufficiently tight approximation of 𝑓 . Then,

the update u (including both the update direction and the step size)

is computed to be the optimal solution within this “trust-worthy”

region [Moré and Sorensen 1983]. Formally, the trust region method

can be written as a constrained optimization problem:

min

u
˜𝑓 (x + u) = 𝑓 (x) + g⊤u + 1

2

u⊤Hu

s.t. ∥u∥2 = u⊤u ≤ Δ
(8)

where Δ ∈ R denotes the squared ball radius of the trust region. A

key component in trust region methods lies in dynamic adjustment

of the trust region size Δ to ensure sufficiently small error coming

from the quadratic approximation.

Vanilla trust region methods measure the radius based on the

Euclidean ball distance ∥u∥2 = u⊤u. But in practice, many problems

favor measuring distance by an underlying (Riemannian or non-

Riemannian) metric. In other words, the bound should adapt to

the underlying energy landscape. This observation motivates the

developement of the generalized trust region method [Moré 1993;

Pong and Wolkowicz 2014] which replace the Euclidean distance

∥u∥ constraint by a quadratic measure:

min

u
˜𝑓 (x + u) = 𝑓 (x) + g⊤u + 1

2

u⊤Hu

s.t. Δ
lower

≤ u⊤Au + u⊤b ≤ Δupper .

(9)

where A is a symmetric matrix that could be non-positive definite

and Δ
lower

/Δupper denote the lower/upper bound of the trust region.

4 OUR METHOD
The efficacy of eigenvalue filtering strategies discussed in Sec. 3.1

depends on specific simulation scenarios [Chen et al. 2024]. Interest-

ingly, we discover that these strategies are fundamentally connected,

and they can be viewed in an unified framework, which in turn en-

ables automatic adaptation of eigenvalue filtering strategy during

the Newton’s iterations. We now describe this unified framework.

4.1 Per-element Generalized Trust-region Newton Method
The starting point of our development is the generalized trust-region

method (Sec. 3.2). Consider a specific instance of the generalized

trust-region problem (9), wherein the lower and upper bounds have

the same value but with opposite signs (i.e., Δupper = −Δ
lower

= Δ).
This trust-region problem has the following form:

min

u
𝑓 (x) + g⊤u + u⊤Hu

s.t. − Δ ≤ u⊤Au + u⊤b ≤ Δ.
(10)
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Fig. 4. We demonstrate the effectiveness of our descent direction through
the line search step size during the optimization. Our trust-region based
adaptive scheme often requires only few iterations of line search to find a
suitable step size.

where the energy is the quadratic approximation of a simulation

energy 𝑓 (see Eq. (2)). We use g to denote the gradient and H to

denote the Hessian. If we choose b = 0,A = H, the two inequalities

(lower and upper bounds) can be re-written as a single inequality

with the absolute value. These specifications lead to the following

instance of generalized trust-region problem:

min

u
𝑓 (x) + g⊤u + u⊤Hu

s.t. |u⊤Hu| ≤ Δ.
(11)

In finite element simulation, the Hessian H can often be con-

structed by summing up per-element Hessians H𝑖 from each tetra-

hedral element 𝑖 . Leveraging this property, we can re-write the

constraint in (11) using the following lemma:

Lemma 4.1. Let |A𝑒 | be the matrix obtained by performing per-
element absolute eigenvalue projection of A, i.e., |A𝑒 | =

∑
𝑖 P⊤𝑖 |A𝑖 |P𝑖 ,

where |A𝑖 | are the matrix obtained by taking the absolute value of
each of the eigenvalues of A𝑖 . Then it holds that

��x⊤Ax�� ≤ x⊤ |A𝑒 |x.

Proof. See App. A. □

By applying Lemma A.1, we have the following relationship:

u⊤ |H𝑒 |u ≤ Δ =⇒ |u⊤Hu| ≤ Δ, (12)

from which Eq. (11) can be re-written as

min

u
𝑓 (x) + g⊤u + u⊤Hu

s.t. u⊤ |H𝑒 |u ≤ Δ.
(13)

This reformulation is a more conservative version of Eq. (11); it

“tightens” the size of trust region, but still ensures that the search ra-

dius imposed by the constraint satisfies the original problem Eq. (11).

During Newton’s iterations, the trust-region size Δ may change.

When Δ is sufficiently large, the minimum point of the uncon-

strained quadratic approximation is within the trust region, and this

step is the same as the original Newton step. But more often, the un-

constrained quadratic minimizer lies outside the trust region. Then,

the constrained minimizer will occur on the trust-region boundary.

Suppose Δ is sufficiently small so that the constrained minimizer

occurs on the trust-region boundary. In this situation, we can replace

the inequality constraint in Eq. (13) with an equality constraint

u⊤ |H𝑒 |u = Δ, and use Lagrangian multipliers to obtain its solution:

g + 2Hu + 2𝜆 |H𝑒 |u = 0. (14)
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axis) needed for convergence in our method and the comparing methods.
Across the entire range of Poisson’s ratios, out method consistently outper-
forms others.

Here, the Lagrangian multiplier 𝜆 must satisfy 𝜆 ≥ 0. It can be

shown that 𝜆 = 0 corresponds to the original Newton step Eq. (3)

after a line search (see more details in Sec. 4.2.1). In other words,

although we arrive Eq. (14) by assuming the constrained minimizer

occurs on the trust-region boundary, Eq. (14) itself also covers the

case where the unconstrained minimizer is within the trust region.

Solving for Eq. (14) gives a Newton step of the following form

(up to a scalar folded into line search):

u = −(H + 𝜆 |H𝑒 |)−1g

= −
(
(1 + 𝜆)

(
1

1 + 𝜆
H + 𝜆

1 + 𝜆
|H𝑒 |

))−1
g

(15)

With a change of variable𝑤 = 𝜆
1+𝜆 (and folding (1 + 𝜆) into the

line search), we can see that the step is a linear combination of the

unprojected Newton step and the per-element absolute eigenvalue

projected Newton step:

u = −((1 −𝑤)H +𝑤 |H𝑒 |)−1g (16)

As the Lagrangian multiplier 𝜆 must satisfy 𝜆 ≥ 0, the weight𝑤

must satisfy 0 ≤ 𝑤 ≤ 1. To ensure the resulting Newton step is a

descent direction, we also require (1 −𝑤)H +𝑤 |H𝑒 | to be positive

definite.

Our derivation above can be interpreted as a generalized trust-

region Newton method [Boyd and Vandenberghe 2004; Nocedal and

Wright 2006] with the per-element extension, equality constraint

enforcement and an additional line search, or a regularized Newton’s

method [Steck and Kanzow 2023; Ueda 2014; Zhang and Ni 2015]

regularized by a generalized trust region. These extensions retain

the same computational cost as the original Newton iteration while

benefiting from the stability of the trust-region based method.

4.2 Generalized Trust-region Newton Step
Perhaps surprisingly, different choices of𝑤 in Eq. (16) lead to differ-

ent pre-existing eigenvalue filtering strategies. Here, we enumerate

three typical choices of𝑤 and their corresponding eigenvalue filter-

ing strategies:

4.2.1 Unprojected Newton step. When 𝑤 = 0, i.e., 𝜆 = 0, and the

positive-definiteness constraint is satisfied, the step reduces to the

traditional (unprojected) Newton step:

u = −H−1g (17)
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Fig. 6. We plot the number of iterations needed for convergences with
respect to different mesh resolutions. Note that in the simple case (bottom
plot), our method may takes one more Newton iteration than eigenvalue
clamping, simply because our method always starts from the absolute
eigenvalue projection in its first Newton iteration.

4.2.2 Projected Newton with eigenvalue clamping [Teran et al. 2005].

Lemma 4.2. Let A+
𝑒 be the matrix obtained by performing eigen-

value clamping (with threshold 0) of each A𝑖 , i.e., A+
𝑒 =

∑
𝑖 P⊤𝑖 A

+
𝑖
P𝑖 ,

where A+
𝑖
are the matrix obtained by clamping each eigenvalue of A𝑖

to 0. Then it holds that u⊤Au + u⊤ |A𝑒 |u = 2u⊤A+
𝑒 u.

Proof. See App. B. □

When𝑤 = 0.5, i.e., 𝜆 = 1, using Lemma B.1, the step reduces to

the projected Newton step with eigenvalue clamping:

u = −( 1
2

H + 1

2

|H𝑒 |)−1g

= −(H+
𝑒 )−1g

(18)

4.2.3 Projected Newton with absolute eigenvalue projection [Chen
et al. 2024]. When 𝑤 = 1, i.e., 𝜆 → ∞, the step reduces to the

projected Newton step with absolute eigenvalue projection:

u = −|H𝑒 |−1g (19)

Note that is also equivalent to using the first-order model and

quadratic constraint with Hessian distance measure:

min

u
𝑓 (x) + g⊤u

s. t. u⊤ |H𝑒 |u ≤ Δ.
(20)

which, following a derivation similar to [Dauphin et al. 2014], leads

to a step in the form Eq. (19).

4.3 Adaptive Per-element Projection
Now, how should we choose the weight 𝑤 in Eq. (16) to achieve

stable energy descent? To address this question, we seek inspiration

from how the trust-region size is adjusted in trust-region method lit-

erature [Nocedal and Wright 2006]. A typical strategy is to increase

the trust region size when original function is well-approximated

by the quadratic form, and decrease the trust region size otherwise.

In light of this, we choose 𝑤 based on how well the quadratic

form (in Eq. (13)) approximates the original energy function 𝑓 :

(1) If the quadratic form approximates the original energy well,

then it is safe to allow a large trust-region size. In the most

extreme case where an infinite trust-region size is used, we

can just remove the trust-region constraint in Eq. (13), which

corresponds to the unprojected Netwon step in Sec. 4.2.1 (i.e.,

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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𝑤 = 0). However, to apply𝑤 = 0, we need to ensure the global

Hessian to be PSD. Therefore, we slightly relax it and apply

𝑤 = 0.5, which corresponds to eigenvalue clamping—the

strategy that ensures a PSD Hessian.

(2) If the quadratic fitting quality is inadequate, then a small trust

region size should be used. In the most extreme case where

a near-zero trust region size is used, we will have 𝜆 → ∞
and thus the approximation model falls back to the first-order

model, which corresponds to the absolute eigenvalue projec-

tion strategy. This ensures sufficient regularization along the

negative eigenvalue directions when the quadratic approxi-

mation is far from the original function.

Therefore, we look for a ratio to quantify the agreement between

the quadratic model and the original function, and adaptively ad-

just the weight𝑤 based on this ratio. In the trust region literature

[Conn et al. 2000; Sorensen 1982], a classic choice to measure this

agreement is to use the ratio

𝜌 =
𝑓 (x) − 𝑓 (x + u)
˜𝑓 (x) − ˜𝑓 (x + u)

(21)

where
˜𝑓 (x) = 𝑓 (x) + g⊤x + 1

2
x⊤Hx is the quadratic approximation

of 𝑓 (x). When 𝜌 is close to 1, the quadratic model is a good approx-

imation of the original function, and a large trust region size can be

allowed. When 𝜌 is far from 1 (e.g., close to zero or even negative),

the quadratic model cannot accurately estimate the local landscape

of the original function, and a small trust region size should be used.

Inspired by this, we propose to use the ratio 𝜌 to adaptively

adjust the weight𝑤 in Eq. (16) based on the quality of the quadratic

approximation:

𝑤 =

{
0.5, |𝜌 − 1| ≤ 𝜖

1, |𝜌 − 1| > 𝜖
, (22)

where 𝜖 is a small positive constant between 0.01 and 0.1.

Our discrete 𝑤 is a practical design choice for computational

efficiency. Computing the optimal 𝑤 from Eq. (13) would require

solving a trust-region subproblem per Newton iteration, which

involves an expensive iterative solve (see Sec 4.3 of [Nocedal and

Wright 2006]). Therefore, instead of solving the exact trust-region

subproblems, we opt to focus on a discrete set of classical 𝑤 and

pick one based on the trust region ratio.

In other words, let Λ be the eigenvalues of the per-element Hes-

sian, we perform the following element-wise projection:

Λ+ =

{
max(Λ, 0), |𝜌 − 1| ≤ 𝜖

|Λ|, |𝜌 − 1| > 𝜖
, (23)

Our method adaptively chooses between the absolute eigenvalue

projection and eigenvalue clamping strategy based on the current en-

ergy landscape, ensuring sufficient regularization in the highly non-

convex regime while maintaining fast convergence in the (nearly)

convex scenario.

For simplicity, we always start from the clamping strategy |Λ| for
the first Newton iteration, and then use the trust region ratio 𝜌𝑘
computed using x𝑘 and x𝑘−1 to pick the projection strategy for the

𝑘-th Newton iteration.

Implementation. Our method requires only two lines of code

change in the existing Projected Newton frameworkwith line search.
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abs
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Fig. 7. We visualize the trust-region ratio 𝜌 (for all strategies) and strategy
switching trend (for adaptive) during the optimization under different de-
formations and Poisson’s ratios. While the trust region ratio can change
drastically in the early stage of optimization for the highly nonconvex en-
ergy landscape—e.g., large deformation and high Poisson’s ratio, it usually
approaches 1 near convergence. Thus the adaptive strategy often starts
from abs strategy for the first few iterations, alternates between abs and
clamp during the optimization, and falls back to clamp near convergence.
On the contrary, solely using the abs strategy may excessively damp the
descent direction when the quadratic approximation is still acceptable (e.g.,
small PR or volume change) or later becomes good (e.g., near convergence).

For completeness, we provide the full algorithm of our adaptive

eigenvalue projection as below:

1 initialize H_proj to empty sparse matrix

2 # compute the trust region ratio

3 rho = (f(x_prev)-f(x))/( f_tilde(x_prev)-f_tilde(x))

4 foreach element i:

5 # Pi*x selects element i's local variables from x

6 either:
7 Hi = constructLocalHessian(i,Pi*x)

8 Λ,U = eig(Hi)

9 or:
10 Λ,U = analyticDecomposition(i,Pi*x)

11 # our adaptive eigenvalue projection

12 Λ = (|rho - 1|<epsilon) ? max(Λ,0) : abs(Λ)
13 # compute the projected local Hessian

14 Hi_proj = U*Λ*U'
15 # accumulate into global Hessian

16 H_proj += Pi*Hi_proj*Pi '
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Fig. 8. We compare the energy convergence curve in our approach,
the Projection-On-Demand (POD) [Longva et al. 2023] and per-element
Tikhonov regularization. We also note that, separate from the optimization
convergence performance, POD may require additional Cholesky decompo-
sitions to check the positive definiteness of the Hessian.

1e-3 1e-1 1e1 1e3 1e5

60

0
1e-3 1e-1 1e1 1e3 1e5

60

0

4x

abs clampadaptive (Ours)Iters

Eigenvalue projection threshold for [Paternain et al. 2019]

[Paternain et al. 2019]

0.5x

PR = 0.495 PR = 0.4

Fig. 9. We compare our method to a per-element version of the eigenvalue
projection scheme in [Paternain et al. 2019]. Due to the large variation across
local elements’ eigenvalue magnitudes (under different deformations and
Poisson’s ratios), it is unclear how to set an eigenvalue projection threshold
for [Paternain et al. 2019]. Here, we sweep through a range of threshold
values (x-axis) and plot the needed number of iterations in each setting. Our
method is consistently more efficient.

5 RESULTS
We evaluate our method on a diverse set of examples, including

different deformations, physical parameters, geometries, mesh res-

olutions, and elastic energies. Furthermore, we perform extensive

experiments on the TetWild Thingi10k dataset [Hu et al. 2018; Zhou

and Jacobson 2016] to demonstrate our speedup over existing Hes-

sian projection schemes (Fig. 13 and Fig. 14).

We implement our method in C++ using the TinyAD library

[Schmidt et al. 2022] for automatic differentiation, and perform our

experiments using a MacBook Pro with an Apple M2 processor and

24GB of RAM.

In our hyperelastic simulation, we use the stable Neo-Hookean

energy [Kim and Eberle 2022; Smith et al. 2018] with a Young’s

Modulus of 10
8
and different Poisson’s ratios. We run the Projected

Newton’s method for a maximum of 200 iterations with a conver-

gence criteria of 10
−5

on the Newton decrement 0.5u⊤g. Since the
mesh’s initial large deformation may invert some finite elements,

we perform a backtracking line search without inversion check to

find a suitable step size, iteratively shrinking the step size by 0.8

(starting from step size 1) until Armijo condition is satisfied. We

set the trust-region ratio threshold 𝜖 in Eq. (23) to be 0.01 for all the

examples (except compression for which 𝜖 is set to be 0.1).

Convergence and Stability. Our method achieves consistent

speedup over existing eigenvalue projection schemes across a wide

range of deformations (Fig. 2 and Fig. 3), Poisson’s ratios (Fig. 5),

Table 1. We report the average line search iterations per Newton iteration
of the teaser (Fig. 1) and the horse (Fig. 2) example. Our adaptive method
maintains low line search iterations across different Poisson’s ratios and
deformation sizes.

large deformation

teaser: Fig. 1 (top) horse: Fig. 2 (top)

adaptive abs clamp adaptive abs clamp

PR = 0.495 1.0 1.0 7.5 1.8 1.0 7.4

PR = 0.3 1.0 1.0 4.0 1.5 1.0 5.0

small deformation

teaser: Fig. 1 (bottom) horse: Fig. 2 (bottom)

adaptive abs clamp adaptive abs clamp

PR = 0.495 1.4 1.0 4.1 1.0 1.0 1.0

PR = 0.3 1.0 1.0 1.0 1.0 1.0 1.0

Table 2. We measure the average per-iteration cost (including all PR and
deformation combinations) in wall-clock time on the teaser example (12𝑘
vertices, 44𝑘 tetrahedrons). Here we provide the statistics of the average
time per Newton iteration, and the percentage of time spent on computing
the Newton direction (including the linear solve), line search and (optionally)
computing the trust-region (TR) ratio for one Newton iteration.

adaptive abs clamp

Newton

direction

88.6%

(solve: 76.2%)

94.6%

(solve: 81.7%)

80.5%

(solve: 69.4%)

line search 5.4% 5.4% 19.5%

TR ratio 6.0% / /

avg time per

Newton iter

0.117 sec 0.107 sec 0.126 sec

mesh resolutions (Fig. 6), tetrahedralizations (Fig. 11), and hypere-

lastic models (Fig. 10). Our approach adaptively chooses between

absolute eigenvalue projection and clamping at each iteration. In the

case where a specific eigenvalue projection strategy performs domi-

nantly better than the other throughout the optimization, our adap-

tive approach performs at least comparable to the best-performing

eigenvalue projection strategy. Note that in the case where eigen-

value clamping performs consistently better than absolute eigen-

value projection, our adaptive approach can takes one more Newton

iteration than eigenvalue clamping (Fig. 6 bottom). This is just be-

cause we always start from the absolute eigenvalue projection in

the first Newton iteration. Our trust-region based strategy also en-

ables us to obtain more effective descent directions that require

much fewer line search iterations to find a suitable step size (Fig. 4).

We provide the statistics of the trust-region ratio trend, line search

iterations, and timings in Fig. 7, Table 1 and Table 2, respectively.

Generality. In Fig. 13 and Fig. 14, we provide the statistics of our

speedup over [Teran et al. 2005] and [Chen et al. 2024] under diverse

deformations on 254 high-resolution, closed, genus-0 tetrahedral

meshes with more than 5000 vertices. These meshes are randomly

chosen from the TetWild Thingi10k dataset [Zhou and Jacobson

2016]. Our method achieves significant speedup under high Pois-

son’s ratios and large deformations, while still being comparable to

the existing eigenvalue projection schemes under small deforma-

tions and low Poisson’s ratios.
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abs

clamp
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rest

adaptive
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Fig. 10. Our adaptive strategy generalizes across different Neo-Hookean
variants. Here in the last three columns, we experiment with different strain
energies, including Mooney-Rivlin, ARAP, and Symmetric Dirichlet energy,
each augmented with a volume-preservation term ( 𝐽 − 1)2.

59 iters 22 iters20 iters

27 iters21 iters 32 iters

Original Initial abs clampadaptive 
(Ours)PR=0.495

Fig. 11. Our method is robust to different tetrahedralizations. Here we
tetrahedralize the same cylinder to two different tetrahedral meshes. The
meshes on the top and bottom row have 6.1k and 6.6k vertices, respectively.
In both settings, our method outperforms existing strategies.

Comparison. Last but not least, we compare our method with

another two Hessian projection strategies, namely, the Projection-

On-Demand (POD) strategy [Longva et al. 2023] in Fig. 8 and the per-

element Tikhonov regularization [Paternain et al. 2019] in Fig. 9. As

the POD strategy is mostly designed for dynamic simulation where

the Hessian can be close to positive-definite given a small timestep,

its convergence is similar to eigenvalue clamping in the quasistatic

setting, but it suffers from additional Cholesky decomposition cost

for the positive-definiteness check. Moreover, Tikhonov regulariza-

tion [Paternain et al. 2019] requires the eigendecomposition on the

global Hessianmatrix, which is computationally intractable for large

meshes. Therefore, we compare our approach to the per-element

version of [Paternain et al. 2019] (see Fig. 9), where the local ele-

ment’s eigenvalues are projected to their absolute values when large

than a threshold and clamped otherwise. As the eigenvalues can

have drastically different magnitudes under different deformations

and Poisson’s ratios, it is challenging to set a universal projection

threshold for local eigenvalue projection in [Paternain et al. 2019].

6 CONCLUSION & FUTURE WORK
We introduce a novel adaptive eigenvalue filtering strategy for Pro-

jected Newton’s method to stabilize and accelerate the minimization

of Neo-Hookean energy. Our method is simple to implement and

requires only two lines of code change in the Projected Newton

framework, making it easy to integrate into existing simulation

pipelines. Our trust-region based framework opens up the possi-

bility of analyzing different eigenvalue projection schemes while

taking the quality of the quadratic approximation into account.

54
iters

58
iters

46
iters

34
iters

63
iters

28
iters

Initial abs clamp
adaptive 

(Ours)

Original
0 60Iters

10⁶

10⁸

1010
Energy

0 70Iters

10⁷

108

Energy

PR=0.3

PR=0.495

collisions
start

collisions
start

Fig. 12. We perform a collision experiment using Incremental Potential
Contact (IPC) [Li et al. 2020] by placing a cylinder (orange) above the
back of a horse. Note that IPC’s intersection-aware line search dominates
convergence and step size after collisions happen. Extending our framework
to accelerate the convergence of barrier functions could be an interesting
future direction.

We primarily experiment on the quasistatic simulation of stable

Neo-Hookean energy in this work. Extending our framework to

other hyperelastic models, collisions (Fig. 12) and dynamic simula-

tion, such as combining our work with [Longva et al. 2023], could be

a promising direction. Our choice of𝑤 eliminates the need of check-

ing the positive-definiteness of the global Hessian, and is well-suited

for quasistatic simulation where the energy is highly nonconvex.

For other more convex scenarios (e.g., dynamic simulation with a

small timestep), the global Hessian can sometimes be serendipitously
positive definite even if some local Hessians are indefinite, in which

case setting𝑤 ∈ [0, 0.5] could potentially lead to faster convergence
[Longva et al. 2023].

Exploration of having 𝑤 as a continuous function in [0, 1] for
more fine-grained control could be another interesting future di-

rection. Computing the trust-region ratio and projection strategy

independently for each element could potentially further improve

the convergence. Our method requires picking a threshold 𝜖 for

the trust region ratio. Further investigation on the choice of this

threshold could be beneficial, especially for the case of small com-

pression (see Fig. 14). Our approach always starts from the absolute

eigenvalue projection for the first Newton iteration. Deriving a bet-

ter strategy for the initial eigenvalue projection could potentially

further improve the performance.

ACKNOWLEDGMENTS
This work is funded in part by two NSERC Discovery grants, the On-

tario Early Research Award program, the Canada Research Chairs

Program, a Sloan Research Fellowship, the DSI Catalyst Grant pro-

gram, SoftBank and gifts by Adobe Research and Autodesk. We

thank Silvia Sellán, Otman Benchekroun, Abhishek Madan for help

with the rendering of the teaser, all the artists for sharing the 3D

models and anonymous reviewers for their helpful comments and

suggestions.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



Trust-Region Eigenvalue Filtering for Projected Newton • 9

Stretch 1x Compress 0.5xBend 90ᵒ Twist 90ᵒPercentage

Percentage

Speedup:   log10(Iterclamp / Iterours)

Speedup:   log10(Iterabs / Iterours)

Speedup:   log10(Iterclamp / Iterours)

Speedup:   log10(Iterabs / Iterours)

PR=0.495

PR=0.3

Slower Faster

Large Deformation

Fig. 13. Histogram of the speedup of our adaptive method over the absolute eigenvalue projection [Chen et al. 2024] and eigenvalue clamping [Teran et al.
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A PROOF OF LEMMA 4.1
Lemma A.1. Let |A𝑒 | be the matrix obtained by performing per-

element absolute eigenvalue projection of A, i.e., |A𝑒 | =
∑
𝑖 P⊤𝑖 |A𝑖 |P𝑖 ,

where |A𝑖 | are the matrix obtained by taking the absolute value of
each of the eigenvalues of A𝑖 . Then it holds that

��x⊤Ax�� ≤ x⊤ |A𝑒 |x.

��x⊤Ax�� = �����x⊤
(∑︁

𝑖

P⊤𝑖 A𝑖P𝑖

)
x

�����
=

�����∑︁
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�����
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(P𝑖x)

)
= x⊤

(∑︁
𝑖

P⊤𝑖 |A𝑖 |P𝑖

)
x

= x⊤ |A𝑒 |x
□

B PROOF OF LEMMA 4.2
Lemma B.1. u⊤Hu + u⊤ |H𝑒 |u = 2u⊤H+

𝑒 u.

Let 𝜆+
𝑖𝑘

and 𝜆−
𝑖𝑘

be the positive and negative eigenvalues of each

A𝑖 . Then we have:

x⊤Ax + x⊤ |A𝑒 |x

=
∑︁
𝑖

∑︁
𝑘

𝜆𝑖𝑘
(
(P𝑖x)⊤e𝑖𝑘

)
2 +

∑︁
𝑖

∑︁
𝑘

|𝜆𝑖𝑘 |
(
(P𝑖x)⊤e𝑖𝑘

)
2

= 2

∑︁
𝑖

∑︁
𝑘

𝜆+
𝑖𝑘

(
(P𝑖x)⊤e𝑖𝑘

)
2

= 2x⊤A+
𝑒 x.

□
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