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Human variation in content selection in summarization has given rise to some fundamental research
questions: How can one incorporate the observed variation in suitable evaluation measures? How
can such measures reflect the fact that summaries conveying different content can be equally
good and informative? In this paper we address these very questions by proposing a method for
analysis of multiple human abstracts into semantic content units. Such analysis allows us not only
to quantify human variation in content selection, but also to assign empirical importance weight to
different content units. It serves as the basis for an evaluation method, the Pyramid Method, that
incorporates the observed variation and is predictive of different equally informative summaries.
We discuss the reliability of content unit annotation, the properties of Pyramid scores, and their

correlation with other evaluation methods.

Categories and Subject Descriptors: C.4 [PERFORMANCE OF SYSTEMS]: Measurement
techniques

General Terms: experimentation, measurement, reliability
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1. INTRODUCTION

The most common way to evaluate the informativeness of automatic summaries is
to compare them with human-authored model summaries. For decades, the task
of automatic summarization was cast as a sentence selection problem and systems
were developed to identify the most important sentences in the input and those
were selected to form a summary. It was thus appropriate to generate human
models by asking people to produce summary extracts by selecting representative
sentences. Systems were evaluated using metrics such as precision and recall [Salton
et al. 1997], measuring to what degree automatic summarizers select the same
sentences as a human would do. Over time, several related undesirable aspects of
this approach have been revealed:
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Human variation. Content selection is not a determininstic process [Salton
et al. 1997; Marcu 1997; Mani 2001]. Different people choose different sentences
to include in a summary, and even the same person can select different sentences
at different times [Rath et al. 1961]. Such observations lead to concerns about
the advisability of using a single human model and suggest that multiple human
gold-standards would provide a better ground for comparison.

Analysis granularity. Even ignoring the issue of human variability, comparing
the degree of sentence co-selection is not always justified. Even if a system does
not choose exactly the same sentence as the human model, the sentence it does
choose may overlap in content with one or more of the model sentences, conveying
a subset of their content. This partial match should be accounted for, but requires
analysis below the sentence level.

Semantic equivalance. An issue related to that of appropriate granularity
for analysis is semantic equivalence. Particularly in news, or in multi-document
summarization, different input sentences can express the same meaning even when
they use different wording. Naturally, annotators would choose only one of the
equivalent sentences for their summaries and a system will be penalized if it selects
one of the other equally appropriate options.

Extracts or abstracts? When asked to write a summary of a text, people
do not normally produce an extract of sentences from the original. Rather, they
use their own wording and synthesis of the important information. Thus, exact
match of system sentences with human model sentences, as required for recall and
precision metrics, is not at all possible. As the field turns to the development of
more advanced non-extractive summarizers, we will clearly need to move to a more
sophisticated evaluation method which can handle semantic equivalence at varying
levels of granularity.

The Pyramid Method, the description and analysis of which are the focus of this
paper, provides a unified framework for addressing the issues outlined above. A key
assumption of the Pyramid Method is the need for multiple human models which,
taken together, yield a gold-standard for system output. The method features a
procedure for manual identification of semantic equivalance in abstracts, allowing
for variability in the granularity of the analysis. When applied to the human
abstracts, it results in a representation that explicitly identifies commonly agreed
upon content units. Such semantically motivated analysis allows for the definition of
an intuitive evaluation metric that incorporates a differential importance weighting
of information based on agreement across abstracts. Thus, the method can also be
used to compare system output against the pyramid of human abstracts, yielding a
score reflecting how much of the important content the system summary captured.
Our analysis of the scoring method shows that despite the inherent difficulty of the
task, it can be performed reliably.

In the remainder of this paper, we first define the analysis method, showing
how it is used to create pyramids and score system output (Section 2). We then
present our analysis confirming the need for multiple models in Section 3, turn to
a discussion of the reliability of manual content analysis of automated summaries
(Section 4), and before closing, discuss other evaluation approaches and compare
them with the Pyramid Method approach (Section 5).
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2. DEFINING PYRAMIDS

Quantitative evaluation of content selection of summarization systems requires a
gold-standard against which automatically generated summaries can be compared;
a pyramid is a representation of a gold-standard summary for an input set of docu-
ments. Because a pyramid is used for evaluating summary content (as opposed, for
example, to wording), units of comparison within a pyramid correspond to units
of meaning. We call these Summary Content Units (SCUs). Unlike many gold-
standards, a pyramid represents the opinions of multiple human summary writers
each of whom has written a model summary for the input set of documents. A key
feature of a pyramid is that it quantitatively represents agreement among the hu-
man summaries: SCUs that appear in more of the human summaries are weighted
more highly, allowing differentiation between important content (that appears in
many human summaries) from less important content. Such weighting is necessary
in summarization evaluation, given that different people choose somewhat different
information when asked to write a summary for the same set of documents. In this
section, we define SCUs, outline a procedure for identifying them, and present a
method for scoring a new summary against a pyramid.

2.1 Summary content units

SCUs are semantically motivated, sub-sentential units; they are variable in length
but not bigger than a sentential clause. This variability is intentional since the same
information may be conveyed in a single word or a longer phrase. SCUs emerge
from annotation of a collection of human summaries for the same input. They
are identified by noting information that is repeated across summaries, whether
the repetition is as small as a modifier of a noun phrase or as large as a clause.
During the process, annotators label the SCUs in their own words, and can modify
the label as they go along. Sentences corresponding to information that appears
only in one summary are broken down into clauses, each of which is one SCU
in the pyramid. Weights are associated with each SCU indicating the number
of summaries in which it appeared. Rather than attempting to provide a formal
semantic or functional characterization of what an SCU is, our annotation procedure
defines how to compare summaries to locate the same or different SCUs. They are
similar in spirit to the automatically identified elementary discourse units [Marcu
2000; Soricut and Marcu 2003], the manually marked information nuggets [Voorhees
2004] and factoids [van Halteren and Teufel 2003], all of which are discussed in
greater length in Section 5.

Below is an example of the emergence of two SCUs from six human abstracts.
The sentences are indexed by a letter and number combination, the letter showing
which summary the sentence came from and the number indicating the position of
the sentence within its respective summary.

A1. The industrial espionage case involving GM and VW began with the hiring of Jose
Ignacio Lopez, an employee of GM subsidiary Adam Opel, by VW as a production direc-
tor.

B3. However, he left GM for VW under circumstances, which along with ensuing events,
were described by a German judge as “potentially the biggest-ever case of industrial espi-
onage”.

ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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C6. He left GM for VW in March, 1993.

D6. The issue stems from the alleged recruitment of GM’s eccentric and visionary
Basque-born procurement chief Jose Ignacio Lopez de Arriortura and seven of Lopez’s
buisness colleagues.

E1. On March 16, 1993, with Japanese car import quotas to Europe expiring in two
years, renowned cost-cutter, Agnacio Lopez De Arriortua, left his job as head of purchas-
ing at General Motor’s Opel, Germany, to become Volkswagen’s Purchasing and Produc-
tion director.

F3. In March 1993, Lopez and seven other GM executives moved to VW overnight.

The annotation starts with identifying similar sentences, like the six above, and
then proceeds with finer grained inspection to identify more tightly related sub-
parts. We obtain two SCUs from the underlined and italisized spans of words
(called contributors) of the sentences above. It is evident that the contributors
for the same content unit in different summaries can vary noticeably since the
same meaning can be expressed using very different wording and various syntactic
constructions. Contextual information from the entire summary is used to decide
semantic equivalance of the contributors, such as resolving pronominal anaphora
and filling in arguments inferrable from preceeding sentences (such as VM being the

recruiter in sentence D6). Each SCU has a weight corresponding to the number
of summaries it appears in; SCU1 has weight=6 and SCU2 has weight=3. In this
manner, information that is included in more human summaries is awarded higher
weight and importance. This decison assumes that the summary writers are equally
capable, and good at the summarization task.

SCU1 (w=6): Lopez left GM for VW
A1. the hiring of Jose Ignacio Lopez, an employee of GM ... by VW
B3. he left GM for VW
C6. He left GM for VW
D6. recruitment of GM’s ... Jose Ignacio Lopez
E1. Agnacio Lopez De Arriortua, left his job ... at General Motor’s Opel ... to

become Volkswagen’s ... director
F3. Lopez ... GM ... moved to VW

SCU2 (w =3) Lopez changes employers in March 1993
C6. in March, 1993
E1. On March 16, 1993
F3. In March 1993

The remaining parts of the six sentences above end up as contributors to many
SCUs of different weight and granularity.

As illustrated above, an SCU consists of a set of contributors that, in their
sentential contexts, express the same semantic content. In addition, an SCU has a
unique index, a weight, and a natural language label. The label, which is subject
to revision throughout the annotation process, has three functions. First, it frees
the annotation process from dependence on a semantic representation language.
Second, it requires the annotator to be conscious of a specific meaning shared
by all contributors. Third, because the contributors to an SCU are taken out of
context, the label serves as a reminder of the full in-context meaning, as in the
case of SCU2 above where the temporal PPs are about a specific event, the time of
Lopez’s recruitment by VW.
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Fig. 1. Two of six optimal summaries with 4 SCUs

2.2 Scoring a Summary

After the annotation procedure is completed, the final SCUs can be partitioned in
a pyramid based on the weight of the SCU; each tier contains all and only the SCUs
with the same weight. The number of annotated model summaries n determines
the maximum possible number of tiers in the pyramid which we say is a pyramid

of size n. The number of tiers in the pyramid can be different from its size in cases
where there is no overlap between all of the models used for the pyramid creation.
The name “pyramid” comes from the observed Zipffian distribution of SCU weights.
There are few content units (at the top of the pyramid) that all people expressed in
their summaries, and a very large number of content units expressed by only one of
the summary writters (forming the base of the pyramid). In descending tiers, SCUs
become less important informationally since they emerged from fewer summaries.

We use the term “pyramid of order n” to refer to a pyramid with n tiers. Given
a pyramid of order n, we can predict the optimal summary content for a specified
number of contributors—it should include all SCUs from the top tier, if length
permits, SCUs from the next tier and so on. In short, in terms of maximizing
information content value, an SCU from tier (n − 1) should not be expressed if
all the SCUs in tier n have not been expressed. This characterization of optimal
content ignores many complicating factors such as constraints for ordering SCUs
in the summary. However, we explicitly aim at developing a metric for evaluating
content selection, under the assumption that a separate linguistic quality evaluation
of the summaries will be done as well. The proposed characterization of optimal
content is predictive: among summaries produced by humans, many seem equally
good without having identical content. Figure 1, with two SCUs in the uppermost
tier and four in the next, illustrates two of six optimal summaries of size four (in
SCUs) that this pyramid predicts.

Based on a pyramid, the informativeness of a new summary can be computed as
the ratio of the sum of the weights of its SCUs to the weight of an optimal summary
with the same number of SCUs. Such scores range from 0 to 1, with higher scores
indicating that relatively more of the content is as highly weighted as possible.
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We now present a precise formula to compute a score for a summary capturing
the above intuitions about informativeness, which we term the original pyramid

score. Suppose the pyramid has n tiers, Ti, with tier Tn on top and T1 on the
bottom. The weight of SCUs in tier Ti will be i. There are alternative ways to
assign the weights and the method does not depend on the specific weights assigned:
the weight assignment we adopted is simply the most natural and intuitive one. Let
|Ti| denote the number of SCUs in tier Ti. Let Di be the number of SCUs in the
summary that appear in Ti. SCUs in a summary that do not appear in the pyramid
are assigned weight zero. The total SCU weight D is D =

∑n

i=1 i × Di

The optimal content score for a summary with X SCUs is:

Max =

n∑

i=j+1

i × |Ti| + j × (X −

n∑

i=j+1

|Ti|), where j = max
i

(

n∑

t=i

|Tt| ≥ X)

In the equation above, j is equal to the index of the lowest tier an optimally
informative summary will draw from. This tier is the first one top down such that
the sum of its cardinality and the cardinalities of tiers above it is greater than or
equal to X (summary size in SCUs). For example, if X is less than the cardinality
of the most highly weighted tier, then j = n and Max is simply X × n (the product
of X and the highest weighting factor).

Then the pyramid score P is the ratio of D to Max. Because P compares the
actual distribution of SCUs to an empirically determined weighting, it provides a
direct comparison to the way people select information from source texts.

2.3 Other scores based on pyramid annotation

The original pyramid score defined in the previous section represents only one of the
possible ways for incorporating the content unit analysis into a score reflecting the
appropriateness of a content in a summary. The original pyramid score is similar to
a precision metric—it reflects how many of the content units that were included in
a summary under evaluation are as highly weighted as possible and it penalizes the
use of a content unit when a more highly weighted one is available and not used.

Alternatively, we define a pyramid score corresponding to recall, which we term
the modified pyramid score. This recall oriented score is defined as the weight of the
content units in the summary normalized by the weight of an ideally informative
summary of SCU size equal to the average SCU size the human summaries in the
pyramid. So again, the score is the ratio between D (the sum of weights of SCUs
expressed in the summary) and Max (the optimal score of a summary of size X, ),
but this time X is not the SCU length of the evaluated peer, but rather the average
number of SCUs in the model summaries used for the creation of the pyramid, Xa.

This score measures if the summary under evaluation is as informative as one
would expect given the SCU size of the human models. For example, in cases when
a new summary expresses more content units than the average pyramid model, the
modified pyramid score is not sensitive to the weight of this additionally packed in-
formation. Note that in theory the modified score can be greater than 1. In practice
this never happens even when evaluating new human-written summaries because
even they contain SCUs with lower weight before expressing all content weigther
more highly. In the next section we will discuss the findings from the applica-
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tion of the pyramid evaluation method in DUC 2005 where the modified pyramid
score showed better qualities than the original pyramid scores—it proved to be less
sensitive to peer annotation errors, it distinguished better between systems and
had higher correlation with other manual evaluation metrics such as responsiveness
judgments. The modified score requires less annotation effort, since the parts of
a new summary that don’t correspond to any SCU in the pyramid need not be
broken down in individual SCUs. This step is necessary for the computation of the
original pyramid score because the exact number of content units in the summary
needs to be known for the computation of the weight of the ideal summary.

Another possibility for a score can ignore the weighting of content units alto-
gether. The pyramid annotation can be used simply to obtain a pool of content
units that are likely to appear in the summary, similarly to the way nuggets are
used for evaluation of question-answering systems [Voorhees 2004]. In this scenario,
the standard precision and recall used in information retrieval can be computed.
Earlier we defined Di as the number of SCUs in a summary under evaluation that
appear in tier Ti of the pyramid. In particular, D0 is the number of SCUs in the
peer that do not appear in the pyramid. Then we can straightforwardly define

Recall =

∑n

i=1 Di∑n

i=1 Ti

(1)

and

Precision =

∑n

i=1 Di∑n

i=0 Di

(2)

Recall is equal to the fraction of content units in the peer summary that are also in
the pyramid and precision is the ratio of SCUs from the pyramid that are expressed
in the peer to all SCUs expressed in the peer. Such scores would not incorporate
all the knowledge derivable from SCU analysis of multiple summaries—the benefit
from the use of multiple models will be only that a bigger pool of potential content
units can be collected. But the importance weighting will not be used. A notable
difference of the precision/recall approach proposed here and that used in evaluation
of question answering systems is that the pyramid method is based on an analysis
of human models, while the information nuggets in question-answering evaluation
are obtained by analyzing (mostly) the output of automatic systems, thus making
it impossible to claim that an occurrence in the answer provides empirical evidence
for the importance of the nugget.

Another interesting possibility is to use each SCU as the unit of evaluation.
Such an approach is similar to the one used in machine translation, where human
judgments for quality are collected on a sentence by sentence basis, rather than for
a complete text. This kind of score can be used when the goal is to compare systems
and will work in the following way. Say there are N content units in a pyramid,
N =

∑n

i=1 Ti. Each peer summary will be associated with a binary vector S and
S[k] = 1 if the kth content unit from the pyramid is expressed in the peer (and is 0
otherwise). Thus, when comparing two summaries from different systems, for each
test set we will get a vector of observations, rather than a single number as the
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original or modified pyramid scores do. This means that one can apply a paired
statistical test and test if two different summaries for the same set are statistically

significantly different. It is not possible to make conclusions of this sort from the
original pyramid scores because a vector of observations is necessary to compute the
variance of the scores. Similarly, when comparing the performance of two systems
across several test sets, the content unit based evaluation would give more data
points which can be used to compare the systems. Say there are Y test sets. If the
per summary scores are used, the basis for comparison between the two systems
will consist of a vector of Y observations. But there will be about Y ∗ Na data
points for content unit based evaluation, where Na is the expected number of SCUs
in a pyramid. This large gain in data can make it possible to reach statistically
significant conclusions even when few test sets are available.

3. THE NEED FOR MULTIPLE MODELS IN SUMMARIZATION EVALUATION

It is well known that different people choose different content for inclusion in their
summaries and thus a summary under evaluation could receive a rather different
score depending on which summary is chosen to be the model. In fact, in previous
work, McKeown et al. [McKeown et al. 2001] showed that in evaluations based
on a single model, the choice of the model had a significant impact on the scores
assigned to summaries. If an evaluation uses too few models, the resulting ranking
of systems is necessarily suspect: would the ranking have been different if different
model summaries were used? In this section, we present a study of the effect of the
size of the pyramid on summary scores. The two specific questions we examine are:

(1) How does variability of scores change as pyramid size increases?

(2) At what size pyramid do scores become reliable?

The data we use to address these questions is 10 100-word summaries for three
test sets consisting of about 10 articles each. Empirically, we observed that as more
human summaries are added in the pyramid, and the range between higher weight
and lower weight SCUs grows larger, scores for held-out summaries for pyramids
of growing size change less. This makes sense in light of the fact that a score is
dominated by the higher weight SCUs that appear in a summary. However, we
wanted to study more precisely at what point scores become independent of the
choice of models that populate the pyramid. We conducted three experiments to
locate the point at which scores stabilize across our three datasets. Each experiment
supports the conclusion that about five summaries are needed.

Specifically, we used three DUC 2003 summary sets for which four human sum-
maries were written. In order to provide as broad a comparison as possible for the
least annotation effort, we selected the set that received the highest DUC scores
(set D30042), and the two that received the lowest (sets D31041, D31050). For each
set, we collected six new summaries from advanced undergraduate and graduate
students with evidence of superior verbal skills; we gave them the same instructions
used by NIST to produce model summaries.

Our first step in investigating score variability was to examine all pairs of sum-
maries where the difference in scores for a size 9 pyramid was greater than 0.1;
there were 68 such pairs out of 135 total. All such pairs exhibit the same pattern
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Scores clearly diverge with 5 or more models

Number of summaries in the pyramid (number of pyramids)
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Summary A
Summary B
Point of divergence
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Fig. 2. Minimum, maximum and average scores for two summaries for pyramids of different size.
Summary A is better than summary B as can be seen from the scores for pyramids of size 9, but
with few models in the pyramid, it can be assigned lower scores than those for summary B.

illustrated in Figure 2 for two summaries we call ‘Summary A’ (shown with solid
lines) and ‘Summary B’ (shown with dotted lines). The x-axis on the plot shows
how many summaries were used in the pyramid (and in brackets, the number of
pyramids of that size that could be constructed with the nine available model sum-
maries) and the y-axis shows the minimum (marked on the plot by a triangle),
maximum (marked by a cross) and average (marked by a square) scores for each
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of the summaries for a given size of pyramid.1 Of the two, A has the higher score
for the size 9 pyramid, and is perceivably more informative. Averaging over all
size-1 pyramids, the score of summary A is higher than that for B (with all sizes
of pyramids, including that for size-1, the square representing the average score for
summary A across all possible pyramids is above the square that represents the
average score for summary B). But some individual size-1 pyramids might yield
a higher score for summary B: the minimum score assigned by some pyramid to
summary A (triangle) is lower than the average score for the worse summary B.

The score variability at size-1 is huge: it can be as high as 0.5, with scores for
summary A varying between around 0.3 to close to 0.8. With pyramids of bigger
size, scores stabilize: the difference between the maximum and minimum score
each summary could be assigned diminishes, and even the lowest score assigned
to the better summary (A) is higher than any score for the worse summary (B).
Specifically, in our data, if summaries diverge at some point as in Figure 2, meaning
that the minimum score for the better summary is higher than the maximum score
for the worse summary, the size of the divergence never decreases as pyramid size
increases. This is visually expressed in the figure by the growing distance between
the triangles and the crosses. The vertical dotted line at pyramids of size 5 marks
the first occurrence of divergence in the graph. For pyramids of size > 4, summaries
A and B never receive scores that would reverse their ranking, regardless of which
model summaries are used in the pyramids.

For all pairs of divergent summaries, the relationship of scores follows the same
pattern we see in Figure 2. The point of divergence where the scores for one
summary become consistently higher than those of the other was found to be stable.
In all instances, if summary A gets higher scores than summary B for all pyramids
of size n, then A gets higher scores for pyramids of size ≥ n. We analyzed the score
distributions for all 67 pairs of summaries the size-9 scores for which differed by
more than 0.1, in order to determine what size of pyramid is required to reliably
determine which is the better one. The expected value for the point of divergence
of scores, in terms of number of summaries in the pyramid, is 5.5.

We take the scores assigned at size 9 pyramids as being a reliable metric on the
assumption that the pattern we have observed in our data is a general one, namely
that variance always decreases with increasing sizes of pyramid. When testing all
combinations of pyramids with four or five models, if the observed range of scores
for one summary is lower than the score range for another summary, it will remain
lower for all pyramids with a larger number of models. We postulate that summaries
whose scores differ by less than 0.06 have roughly the same informativeness. The
assumption is supported by two facts. First, this corresponds to the difference in
scores for the same summary when the pyramid annotation has been performed by
two independent annotators (see [Nenkova and Passonneau 2004] for details). In
later studies in the context of DUC 2005, it was also shown that scores based on
peer annotations produced by novice annotators given the same pyramid also differ
on average by 0.06 [Passonneau et al. 2005]. Second, the pairs of summaries whose
scores never clearly diverged, had scores differing by less than 0.06 at pyramid
size 9. So we assume that differences in scores by less than 0.06 do not translate

1Note that we connected data points with lines to make the graph more readable.
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to meaningful differences in information quality and proceed to examine how the
relative difference between two summaries at size-9 pyramids could change if we
used pyramids of smaller size instead.

Now, for each pair of summaries (sum1, sum2), we can say whether they are
roughly the same when evaluated against a pyramid of size n and we will denote
this as |sum1| ==n |sum2|, (scores differ by less than 0.06 for some pyramid of size
n) or different (scores differ by more than 0.06 for all pyramids of size n) and we
will use the notation |sum1| <n |sum2| if the score for sum2 is higher.

When pyramids of smaller size are used, the following errors can occur, with the
associated probabilities:

E1:. |sum1| ==9 |sum2| but |sum1| <n |sum2| or |sum1| >n |sum2| at some
smaller size n pyramid. The conditional probability of this type of error is p1 =
P (|sum1| >n |sum2|||sum1| ==9 |sum2|). In this type of error, summaries that
are essentially the same in terms of informativeness will be falsely deemed different
if a pyramid of smaller size is used.

E2:. |sum1| <9 |sum2| but with a pyramid of smaller size |sum1| ==n |sum2|.
This error corresponds to “losing ability to discern”, and a pyramid with fewer
models will not manifest a difference that can be detected if nine models were used.
Here, p2 = P (|sum1| ==n |sum2|||sum1| <9 |sum2|).

E3:. |sum1| <9 |sum2| but for a smaller size pyramid |sum1| >n |sum2| Here,
p3 = P (|sum1| >n |sum2|||sum1| <9 |sum2|) + P (|sum1| <n |sum2||sum1| >n

|sum2|). This is the most severe kind of mistake and ideally it should never happen,
with the better summary getting a much lower score than the worse one. Note that
such error can happen only for gold-standards with size smaller than their point of
divergence.

Empirical estimates for the probabilities p1, p2 and p3 can be computed directly
by counting how many times the particular error occurs for all possible pyramids of
size n. By taking each pyramid that does not contain either of sum1 or sum2 and
comparing the scores they are assigned, the probabilities in Table 3 are obtained.
We computed probabilities for pairs of summaries for the same set, then summed
the counts for error occurrence across sets. The size of the pyramid is shown in the
first column of the table, labeled n. The last column of the table, “Data points”,
shows how many pyramids of a given size were examined when computing the
probabilities. The total probability of error p = p1∗P (|sum1| ==9 |sum2|)+(p2+
p3) ∗ (1 − P (|sum1| ==9 |sum2|)) is also shown in Table 3.

Table 3 shows that for size-4 pyramids, the errors of type E3 are ruled out. At
size-5 pyramids, the total probability of error drops to 0.1 and is mainly due to
error E2, which is the mildest one.

Choosing a desirable size of pyramid involves balancing the two desiderata of
having less data to annotate and score stability. Our data suggest that for this
corpus, 4 or 5 summaries provide an optimal balance of annotation effort with
score stability. This is reconfirmed by our following analysis of ranking stability.

In order to study the issue of how the pyramid scores behave when more than two
summarizers are compared, for each set we randomly selected five peer summaries
and constructed pyramids consisting of all possible subsets of the remaining five.
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n p1 p2 p3 p data points

1 0.41 0.23 0.08 0.35 1080

2 0.27 0.23 0.03 0.26 3780

3 0.16 0.19 0.01 0.18 7560

4 0.09 0.17 0.00 0.14 9550

5 0.05 0.14 0.00 0.10 7560

6 0.02 0.10 0.00 0.06 3780

7 0.01 0.06 0.00 0.04 1080

8 0.00 0.01 0.00 0.01 135

Table I. Probabilities of errors E1, E2, E3 (p1, p2 and p3 respectively), and total probability
of error (p). The first column shows the pyramid size and the last column gives the number of
observations used to compute the probabilities.

We computed the Spearman rank-correlation coefficient for the ranking of the five
peer summaries compared to the ranking of the same summaries given by the size-9
pyramid. Spearman coefficient rs [Dixon and Massey 1969] ranges from -1 to 1, and
the sign of the coefficient shows whether the two rankings are correlated negatively
or positively and its absolute value shows the strength of the correlation. The
statistic rs can be used to test the hypothesis that the two ways to assign scores
leading to the respective rankings are independent. The null hypothesis can be
rejected with a one-sided test with level of significance α = 0.05, given our sample
size N = 5, if rs ≥ 0.85.

Since there are multiple pyramids of size n ≤ 5, we computed the average ranking
coefficient, as shown in Table II. Again we can see that in order to have a ranking
of the summaries that is reasonably close to the rankings produced by a pyramid
of size n = 9, 4 or more summaries should be used.

n average rs # pyramids

1 0.41 15

2 0.65 30

3 0.77 30

4 0.87 15

5 1.00 3

Table II. Spearman correlation coefficient average for pyramids of order n ≤ 5

4. APPLICATION OF THE METHOD IN DUC 2005

In the 2005 Document Understanding Conference, special attention was devoted
to the study of evaluation metrics. The pyramid semantic-centered evaluation was
one of the metrics used. 20 test sets were evaluated with the pyramid method,
in addition to the linguistic quality evaluation, responsiveness and the automatic
ROUGE metrics. The task in the conference was to produce a 250-word summary
in response to a topic such as this shown below:

Explain the industrial espionage case involving VW and GM. Identify

the issues, charges, people, and government involvement. Report the

progress and resolution of the case. Include any other relevant
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factors or effects of the case on the industry.

Pyramid evaluation was applied to 27 peers for each of the 20 test sets. The
20 pyramids were constructed by a team at Columbia University, and the peer
annotation was performed by DUC participants and additional volunteers who were
interested in the pyramid annotation. There were a total of 26 peer annotators and
all 27 summaries in some sets were annotated by two different annotators allowing
for a study of annotation reliability.

4.1 Peer Annotation Reliability

Pyramid scores rely on two kinds of human annotation: creation of the pyramids,
and annotation of peer summaries against pyramids. Use of human annotations
requires an assessment of their reliability. The reliability of pyramid construction
is discussed in [Passonneau 2006]. Here, we analyze the reliability of the DUC
2005 peer annotations, which were performed by untrained annotators under time
pressure. For six of the twenty document sets, we have annotations made by two
different annotators (12 total annotators).

The purpose of a reliability analysis is to determine whether a change in annotator
would have a significant impact on results. This is typically assessed by measuring
inter-annotator agreement. In general, we believe it is important to combine mea-
sures of agreement with an independent assessment of the impact of substituting
different annotations of the same data on the end results [Passonneau 2006], such
as scoring peer systems. We use interannotator agreement to see if two annotators
find largely the same SCUs in a peer, meaning the same content. We also measure
the correlation of scores from different peer annotations to determine whether two
annotations yield equivalent scores. Note that if two annotators find different SCUs
in the same peer, the overall sum can be the same; two SCUs of weight two yield
the same sum as one SCU of weight four. Further, a pyramid might contain two
SCUs that are similar in content but have distinct weights, thus in principle, two
annotators could find roughly the same content in a peer, but the sum of the SCU
weights could be quite distinct. We find high interannotator agreement on peer
annotations, which indicates that different annotators find largely the same SCUs
in the peer summaries. We also find high correlations between the scores resulting
from the different annnotations. Finally, the absolute differences in score values,
on average, are generally smaller than the .06 difference we identified earlier as the
threshold for a meaningful difference (§3).

4.1.1 Data Representation. Typically, an annotation task begins with a set of
items to be annotated, and the annotation categories to use. Comparing annota-
tions involves a one-to-one comparison between each decision made by annotators
for each item. The peer annotation task does not fall directly into this model be-
cause the content units in a summary are not given in advance. Annotators are
instructed to make their own selections of word sequences in the peer that express
the same information as expressed in some SCU of the pyramid, and different anno-
tators find different cardinalities of SCUs per peer. However, the pyramid is given
in advance, and in order to correctly perform the task, an annotator must review
every SCU in the pyramid at least once. Thus, for each document set, we take the
annotator to make j decisions, where j is the number of SCUs in the pyramid.
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We follow Krippendorff [1980] in representing agreement data in an i × j matrix
for each decision made by each of the i coders (rows) on the j items (columns);
so each annotation matrix has two rows, and a number of columns given by the
number of SCUs per pyramid, which ranges from 88 to 171 for the 6 document sets
considered here. To calculate interannotator agreement, we use Krippendorff’s α.

The values in each cell (i, j) of the agreement matrix indicate how often annotator
i finds SCU j in the peer. Annotators often find a peer summary to contain multiple
instances of a given SCU. This will occur when a peer summary contains repetitive
information, which occurs rather often in automatic multi-document summariza-
tion. There were a total of 359 cases of SCUs that were multiply-selected. Cell
values for these cases indicate the number of times an SCU was matched to a peer,
which ranged from zero to seven. We will illustrate below how we extend α to scale
the comparison of choices made by annotators when they agree on an SCU, but not
on how often it appears.

Our data representation contrasts with the method adopted in [Teufel and van
Halteren 2004] for a similar annotation task, involving factoid annotation of 100-
word summaries where the number of factoids is approximately the same order
of magnitude (e.g., 153 factoids) as in pyramids. There, the authors assume that
annotators consider each factoid for each sentence of the summary; for one twenty-
sentence summary, they should arrive at 3,630 coding units.2 In contrast, if a
pyramid has 153 SCUs, our data representation of peer annotation represents 153
decisions per annotator. The difference in choice of data representation accounts
for some of the difference in the agreement we find (see Table III) versus the figures
of 0.86 and 0.87 reported in [Teufel and van Halteren 2004].

4.1.2 Multiply Annotated Units. In [Passonneau et al. 2005], we discussed in
detail the motivation for using Krippendorff’s α so as to give partial credit when
annotators agree that a peer expresses a given SCU, but differ as to how often.
Here, we briefly summarize the argument.

In the formula for α shown below, where j is the number of coders and i is the
number of units, the numerator is a summation over the product of counts of all
pairs of values b and c, times a weight or distance metric δ, within rows. The
denominator is a summation of comparisons of paired values within columns.

1 −
ij − 1

∑
k

∑
b

∑
b>c nbk

nck
δbc

j
∑

b

∑
c nbncδbc

(3)

The choice of distance metric δ depends on the scale of values that is used in the
annotation; because α measures disagreements, δ is set to zero when annotators
agree. For nominal (categorical) data, when any pair of values are compared, say s

and t, δst is 0 if they are the same (no disagreement) and 1 otherwise (disagreement).
Applied here, the result is that if annotator A finds an SCU three times in a
given peer, and annotator B finds the same SCU twice, they are said to disagree
completely (δ=1). In order to quantify the cases of partial agreement on SCUs,
we will report agreement using a δ based on the Dice coefficient [L.R.Dice 1945], a
ratio for comparing the size of two sets.

2Their paper reads, N=153 factoids times 20 sentences = 2920, clearly an unintended mistake.
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Annotators Setid αDice

102,218 324 0.67
108,120 400 0.53
109,122 407 0.49
112,126 426 0.63
116,124 633 0.68
121,125 695 0.61

Table III. Interannotator agreement on peer annotation.

Let a represent the cases where two annotators A and B agree that an SCU
appears in the current peer, b the cases where A finds SCUs that B does not, and

c the cases where B finds SCUs that A does not. Dice is then: (2a)
(2a+b+c) . Where

A finds two instances of an SCU and B finds three, Dice equals .8. Because α

measures disagreements, δ is (1-Dice), which in this case is = .2. (1-Dice) increases
as the disparity in SCU counts grows larger.

Table III summarizes the interannotator agreement for the six pairs of doubly
annotated peers. The rows represent pairs of annotators on a particular document
set and pyramid. The rightmost column represents average agreement across the
27 peers in each set. Analysis of variance of the full data set, with each agreement
measured in turn as the dependent variable, and annotator pair, set, and peer as
factors, shows no significant difference in variance on agreement, thus it is rea-
sonable here to report the average agreement as representative of the individually
computed agreement measures.

Values for αDice range from 0.49, about halfway between chance and perfect
agreement, to 0.68 for sets 324 and 633, indicating that annotators agree rather
well, especially considering the large number of degrees of freedom in their decisions.
They had between 88 and 171 SCUs to select from, and each summary had 250
words. Annotators were free to select any sequence of words within a sentence as
expressing an SCU, and could reselect words to match a different SCU, as long as
the total selection was not a duplicate. Regarding the difference in performance
across document sets, it is possible that at least one of the annotators who did sets
400 and 407 (the pair with lowest agreemnt) was less careful, or that these sets
were more difficult to annotate.

4.1.3 Interpretation of Results and Score Correlation. We now look at the cor-
relation of summary scores resulting from the two different annotations, followed
by an examination of the size of the difference in score values. Investigators rarely
report reliability results paired with independent results indicating at what level of
reliability the annotations become useful. Instead, they often rely on an a priori

threshold, such as the 0.67 value offered by Krippendorff [1980]. In [Passonneau
2006], we introduced the term paradigmatic reliability study to refer to the type of
reliability study exemplified here, where interannotator agreement is reported along
with an independent assessment of how much the results based on the annotated
data would vary, given a different annotator.

Table IV shows Pearson’s correlations on scores from the two different annota-
tions for each set, and the confidence intervals, for both types of pyramid score. The
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Annot. Set original scores modified scores
id Cor. Conf. Int. Cor. Conf. Int.

102,218 324 .76 (.54,.89) .83 (.66, .92)
108,120 400 .84 (.67,.92) .89 (.77, .95)
109,122 407 .92 (.83,.96) .91 (.80, .96)
112,126 426 .90 (.78,.95) .95 (.90, .98)
116,124 633 .81 (.62,.91) .78 (.57, .90)
121,125 695 .91 (.81,.96) .92 (.83, .96)

Table IV. Pearson’s correlations for original and modified scores of the paired annotations. P-value
= 0 for all correlations.

Set Original score Modified score

324 0.0713 0.1048
400 0.0062 0.0401
407 0.0413 0.0401
426 0.0142 0.0238
633 0.0289 0.0200
695 0.0506 0.0357

Table V. Average difference between the original and modified pyramid scores from two indepen-
dent annotations.

correlations are high, and the differences between the correlations for the original
and modified score are relatively small. For the four sets 400, 407, 426 and 695 the
correlations are relatively higher (≥ 0.90), especially on the modified scores.

In addition to the correlations, we examined absolute differences in average scores.
The average difference in scores across the 162 pairs of doubly annotated peers was
0.0617 for the original score and 0.0555 for the modified score. These numbers
are very close to the empirically estimated difference of scores that we postulated
in Section 2. Table V shows the average paired difference for each set for the
original (in column 2) and modified scores (in column 3) respectively. The average
differences in the six sets are overall in the expected range, smaller than 0.06.
The only exception is set 324, where the scores differed on average by 0.1 for the
modified score and 0.07 for the original pyramid scores. One of the annotators for
this set reported that he was pressed for time and did not use the script provided
to annotators to ensure consistency, so it comes as no surprise that the set this
annotator was involved in exhibits the largest differences across annotator scores.

The smaller differences for the modified score compared to the original score is
consistent with the fact that many annotators reported that they were unsure how
to annotate content in the peer that is not in the pyramid. For the modified score,
which does not make use of the annotation of content that does not appear in the
pyramid, the differences are more systematic, indicated by the lower p-values for
each set. Annotator training, or a protocol for doublechecking the annotations,
possibly by another annotator, are likely to further reduce the observed differences.

4.1.4 Discussion. For the peer annotation data, the use of αDice is more in-
tuitive, given the characteristics of the data, and more accurately quantifies the
amount of agreement, than an unweighted metric. This makes it possible to place
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pairs of values from different annotators on a scale, as opposed to a binary contrast
between agreement and disagreement.

Here we have provided multiple assessments of the peer annotations, noting that
scores from different annotations correlate very highly, with values generally above
0.80, and often above 0.90. The highly significant results on correlations of scores
provide an independent assessment of the reliability of the peer annotations, as
does the size of the score differences, which tend to be well below the sensitivity
threshold of the pyramid metric. By combining three different types of evidence,
we provide a comprehensive assessment of the reliability of peer annotation.

4.2 Correlations with other evaluation metrics

In this section, we will overview the correlations between the manual and automatic
metrics used in DUC. The study of correlations is important in order to identify
which metrics are mutually redundant or substitutable. For example, if two metrics
A and B have correlation exceeding 0.95, and if we know the scores for one metric,
say A, then we can predict the scores for the other (B) with very high accuracy. If
the scores for metric B are more difficult to obtain than those for metric A (e.g.,
they require more annotation, more human subjects, etc.) then we can say that
the metrics are mutually substitutable and simply use metric A in place of metric
B. This situation usually arises when one of the metrics is automatic (easier to
produce) and the other is manual (more difficult and expensive to produce). In
the case when scores for both metrics with high correlation above 0.95 are equally
easy/difficult to produce, it is advisable to chose and report only one of them, since
the other does not bring in any new information into the analyses. Likewise, if
two metrics are not perfectly correlated, they give information on some orthogonal
qualities of the summaries and can be used jointly for overall assessment.

Table VI shows the correlations between pyramid scores and the other official
metrics from DUC 2005—responsiveness and bigram overlap (ROUGE-2) and skip
bigram (ROUGE-SU4). The responsiveness judgments were solicited by two NIST
annotators (responsiveness-1 and responsiveness-2), who ranked all summaries for
the same input on a scale from 1 to 5. The two ROUGE metrics are automatically
computed by comparing a summary to a pool of human models on the basis of
n-gram overlap. The numbers are computed using only the 25 automatic peers as
this gives a more fair and realistic analysis of correlations. When the humans are
included, all correlations exceed 0.92. This is related to the fact that in all metrics
the human KM corrected misspelling performance is much better and consequently
become outliers among the scores for each set and inflate the correlation.

All correlations are rather high and significantly different from zero. The two
variants of the pyramid scores (original and modified) are very highly correlated,
with Pearson’s correlation coefficient of 0.96; so are the two automatic metrics as
well (ρ = 0.98), indicating that the two pairs of metrics are mutually redundant.
At the same time, the two sets of responsiveness judgments, given by two different
judges under the same guidelines, have a correlations of only 0.83, confirming that
the metric is subjective and different scores are likely to be assigned by different
humans. The correlation between responsiveness-2 and the modified pyramid score
is as high as 0.9 but still the metrics are not mutually redundant and each reveals
information about the summary quality that is not captured by the other. The
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Pyr (mod) Respons-1 Respons-2 ROUGE-2 ROUGE-SU4

Pyr (orig) 0.96 0.77 0.86 0.84 0.80
Pyr (mod) 0.81 0.90 0.90 0.86
Respons-1 0.83 0.92 0.92
Respons-2 0.88 0.87
ROUGE-2 0.98

Table VI. Pearson’s correlation between the different evaluation metrics used in DUC 2005. Com-
puted for 25 automatic peers over 20 test sets.

automatic metrics correlate quite well with the manual metrics, with Pearson’s
correlation in the range 0.80 to 0.92 but still do not seem to be high enough to
suggest that the automatic metrics can be used to replace manual metrics. The
findings are comparable with results from previous years on multi-document test
sets [Lin 2004]. In previous years, a manual evaluation protocol based on a compar-
ison between a single model and a peer was used. In his studies, Lin compared the
correlations between these manual scores and several versions of automatic scores.
Very good results were achieved for single document summarization and for very
short summaries of 10 words where the correlation between the automatic and
manual metrics was 0.99 and 0.98 respectively. But for 100-word multi-document
summaries, the best correlation between an automatic metric and the manual met-
ric was 0.81: the correlations for multi-document summarization are not as high
as the ones achieved in automatic evaluation metrics for machine translations and
for other summarization tasks, where Pearson’s correlations between manual and
automatic scores was close to perfect 0.99 [Papineni et al. 2002].

5. RELATED WORK

Summarization evaluation has been seen as a research topic in its own right for
quite some time, with the difficulties stemming from the fact that there are multiple
good summaries for the same input document(s). Many researchers have identified
problems that arise as a consequence [Rath et al. 1961; Minel et al. 1997; Jing
et al. 1998; Goldstein et al. 1999; Donaway et al. 2000]. Perhaps because of these
early acknowledgements of the difficulties, there have been many recent efforts to
develop evaluation methodology that is accurate, easy to use and can be applied
on a wide scale. In this section, we discuss the annual summarization evaluation
run by NIST, as well as other manual evaluation methods.

5.1 NIST-run Summarization Evaluation

The largest of recent efforts on evaluation has been developed within the Docu-
ment Understanding Conference (DUC) series, which began in KM “or” to “on”
2001 and in which each year a large number of participants test their systems on a
common test set. The DUC approach (until 2004) for evaluating summary content
involves the comparison of peer summaries (i.e., summaries generated by automatic
systems) against a single human-authored model. Each year, NIST collected mul-
tipled models, one of which was used for comparison while the other human models
were scored against the first. To do the scoring, the human model was automati-
cally broken down into elementary discourse units (EDUs), capturing the need for
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analysis on a level smaller than a sentence. Software developed at ISI [Soricut and
Marcu 2003] was used for this task and since it was done automatically, the gran-
ularity of each EDU varied from as short as a noun phrase to as long as a complex
sentence with multiple clauses. For each EDU in the model, the human evaluator
had to decide on a 1 to 5 scale the degree to which the peer expresses its informa-
tion. In addition, for sentences in the peer that did not express any model EDU,
the evaluators assigned a score reflecting whether the sentence contained important
information. Different proposals were made on how to incorporate the model EDU
judgments into a final score, and average model EDU per summary was eventually
adopted as a metric that was used throughout DUC 2004.

Two main drawbacks of the DUC approach were the use of a single model and
the granularity of EDUs. Post evaluation analysis by McKeown et al. [McKeown
et al. 2001] indicated that the model had larger impact on peer scores than which

summarizer performed the task. In addition, Marcu [Marcu 2001] reported that
some systems were overly penalized since they contained content ranked as highly
relevant for the topic, but not included in the model summary, again pointing out
a shortcoming of the use of a single model. The second drawback of the evaluation
was the granularity of automatically identified EDUs. NIST evaluators reported
having trouble deciding when an EDU can be said to match content in the peer and
were also unsure how to use context in order to interpret the meaning of EDUs.
Our work on pyramid evaluation aims at addressing these problems, and we are
grateful to the DUC organizers and participants for giving us the opportunity to
analyze some of the problems and look for solutions.

5.2 Other Manual Methods

There have been several other approaches to manual evaluation that address the
problem of matching semantically similar units of information in a system summary
against a model summary. These include a method for scoring sentences ranked
for relevance, the use of nuggets as part of the TREC evaluation of definition ques-
tions, and the development of factoids and analysis of their impact on evaluation
methodology.

Relative utility [Radev et al. 2000; Radev and Tam 2003] was one of the possible
evaluation approaches listed in the “Evaluation Road Map for Summarization Re-
search”3, prepared in the beginning of the Document Understanding Conferences.
In this method, all sentences in the input are ranked on a scale from 0 to 10 as
to their suitability for inclusion in a summary. In addition, sentences that contain
similar information are explicitly marked, so that in the evaluation metric one could
penalize for redundancy and reward equally informationally equivalent sentences.
The ranking of sentences from the entire input allows for a lot of flexibility, because
summaries of any size or compression rate can be evaluated. At the same time,
the method is applicable only to extractive systems that select sentences directly
from the input and do not attempt any reformulation or regeneration of the original
journalist-written sentence. The relative utility approach is very similar in spirit
to the evaluation used by Marcu [Marcu 2000], Chapter 9), who asked multiple
independent subjects to rank the importance of information units following older

3www-nlpir.nist.gov/projects/duc/papers/summarization.roadmap.doc
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research strategies [Johnson 1970; Garner 1982]. The main difference is that earlier
research directly concentrated on subsentential units rather than sentences.

Information nuggets have served for evaluation of question answering systems on
non-factoid questions, which require a longer answer, very similar to summarization.
Information nuggets are identified by human annotators through the analysis of all

systems’ responses to the question, as well as the searches made by the person who
designed the question. They are atomic pieces of interesting information about the
target, each of which is marked as vital (i.e., required) or non-vital (i.e., acceptable
but not required) [Voorhees 2004]. In theory, the requirement that information
nuggets be atomic distinguishes nuggets from our SCUs. SCUs vary in granularity—
usually highly-weighted SCUs are characterized by shorter contributors and more
“atomicity” than lower-weight SCUs. The information nuggets are also tailored
to the contents of peer answers and are, at least in theory, meant to be atomic
with respect to peers. But when we look at actual question answering evaluations,
the identification of nuggets in the systems’ answer allows for a lot of freedom
and subjective interpretation by the annotator. The classification of nuggets into
vital and non-vital is subjective, and can differ between different humans. In the
question-answering settings, it is not possible to assign an empirical weight to a
nugget, depending on the number of answers that contain it, since the nuggets
are derived mainly from systems’ answers rather than from answers that a human
would produce. It will be interesting to further explore the parallels of the pyramid
method and the nugget-based evaluation approach, possibly combining desirable
characteristics from both in order to reach a unified evaluation framework for non-
factoid questions answering and summarization, as has already been suggested, for
example, in Lin and Demner-Fushman [Lin and Demner-Fushman 2005].

The most thorough analysis on the consensus of human summaries of the same
text was presented by van Haltren and Teufel [van Halteren and Teufel 2003]. They
collected 50 abstractive summaries of the same text and developed an annotation
scheme for content units called factoids, analyzing the 50 abstracts in terms of
factoids. Their large pool of summaries allowed for insightful observations and
an empirical judgment that the appearance of new content with the addition of
new summaries does not tail off. Their initial work was semantically oriented, also
including an analysis between the relations among different factoids, much in the
spirit of the van Dijk tradition—“factoids correspond to expressions in a FOPL-
style semantics, which are compositionally interpreted” and they envisioned even
further formalization of their mark-up. In their later work [Teufel and van Halteren
2004], where they included the analysis of another set of 20 summaries, they seem
to settle to a representation closer to SCUs than on a first order logic language.

In their work, van Halteren and Teufel also address the question of How many

summaries are enough” for stable evaluation results. Their investigation leads
to the conclusion that 20 to 30 model summaries are necessary [Teufel and van
Halteren 2004]4. This conclusion is dramatically different from our study of pyramid
evaluation where we established that about five human models are necessary for
stable results. A careful analysis shows that there is no contradiction as it might

4In earlier work [van Halteren and Teufel 2003], they conclude that at least 30–40 are needed, but
presumably the later results supercede these.
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seem at a first glance and that actually two different questions were addressed in
their work and ours.

The approach that Teufel and Halteren take is the following: they resample their
pool of summaries (with possible repetitions) in order to get sets of N summaries
for different values of N . Then for each pool of summaries derived in this manner,
they score summaries against the factoid inventory using the weight of factoids
in the peer summaries (without the normalization factor we propose). Then, for
each pair of system rankings, regardless of the difference in scores, they compute
the Spearman correlation coefficient and then take the average of the correlation
coefficients for a given N . They deem a scoring reliable when the average correlation
for a given N exceeds 0.95.

Our approach is more practical in nature—we assumed that a small difference
in pyramid score does not necessarily entail a difference in summary quality. In
fact, summaries with pyramid scores that differed by less than 0.06 were considered
equal with respect to their information content. Then we proceeded to investigate
what errors can arise in identifying summaries as being informationally equal or
different (i.e., result in a change in system ranking). Consider, for example, the
following scores for six systems under two different pyramid inventories.

system sys1 sys2 sys3 sys4 sys5 sys6
Inventory 1 0.69 0.68 0.67 0.66 0.65 0.64
Inventory 2 0.64 0.65 0.66 0.67 0.68 0.69

In the pyramid analysis, all systems’ summaries will be considered informationally
equal under both inventories and thus the scores will be considered stable. But the
rank correlation is perfectly negative, -1. So the apparent difference between their
conclusion and ours in fact is due to the required strength of the expected results.

6. CONCLUSIONS

In this paper, we presented the Pyramid evaluation method, which is based on the
semantic analysis of multiple human models. We demonstrated that the semnatic
analysis into content units can be performed reliably and that Pyramid scores lead
to stable evaluation results. Pyramid scores are highly correlated with direct over-
all judgments of the summary quality (summary responsiveness), but in addition
they are also diagnostic, providing an indication for what important information is
missing from a summary.

Part of the motivation for developing the Pyramid method was to provide a much
needed in the summarization community evaluation metric that transparently in-
corporates the complexities of the the summarization task. The wide use of the
method, both in large-scale evaluations and in individual studies, indicates that
this goal has mostly been fulfilled. We hope that in the future data from Pyra-
mid annotations will be also used to further research in abstractive summarization
through the study of different verbalizations of the same content and the packaging
of information in sentences.
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