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Abstract

The problem domain of Collaborative Intrusion 
Detection Systems (CIDS) introduces distinctive data 
routing challenges, which we show are solvable through 
a sufficiently flexible publish-subscribe system.  CIDS  
share intrusion detection data among organizations, 
usually to predict impending attacks earlier and more 
accurately, e.g., from Internet worms that tend to attack 
many sites at once.  CIDS participants collect lists of 
suspect IP addresses, and want to be notified if others are 
suspicious of the same addresses.  The matching must be 
done efficiently and anonymously, as most organizations 
are reluctant to share potentially revealing information 
about their networks. Alerts regarding external probes 
should only be visible to other CIDS participants 
experiencing probes from the same source(s).  We term 
this type of simultaneous publish/subscribe “selecticast.”  
We present a potential solution using the secure Bloom 
filter data structure propagated over the MEET publish-
subscribe framework. 

1. Introduction 

Increasingly, malicious attackers attempt to avoid 

tripping an Intrusion Detection System (IDS) by spacing 

out their probes over long periods of time, and 

interleaving probes among multiple sites over these 

extended periods [1]. Most current IDS�s have a limited 

memory window, or employ thresholding before 

signaling an alert in order to avoid generating a flood of 

false alerts.  In contrast, Collaborative Intrusion Detection 

Systems (CIDS) attempt to correlate low-level alerts from 

multiple enclaves in the same organization or across 

organizations over a long period of time in order to detect 

these stealthy scanners prior to an actual attack.  

Participating sites submit lists of suspicious addresses, 

including those that fall below their own thresholds for 

escalating alerts (e.g., to human administrators).  Each 

site compares others� lists against its own, looking for 

matches, which are then escalated to a higher level of 

suspicion and monitoring. 

One approach to implementing CIDS is a centralized 

repository that receives all the �watchlists� and sends 

back augmented watchlists to each participant.  However, 

this creates a central point of failure and a tempting target 

for denial-of-service attacks. It also requires revealing all 

the data to the central site, but the organizations may only 

want to share with others that are targets of the same 

prospective attacker(s). The nature of the latter 

communication suggests a content-based messaging 

system, but in a context where participants (particularly 

when from independent institutions) may demand that 

their data be anonymized. That is, if participant A has no 

low-level alerts in common with participant B, it will 

learn nothing about participant B�s network structure or 

traffic from the data set.  Only if there is an alert in 

common will the information of that particular alert, and 

only that alert, be revealed. 

Such a peer-to-peer system should ensure that the data 

streams remain private, using some form of encryption.  

However, content-based messaging systems are 

inherently difficult to use for encrypted message streams. 

Content-based routing (CBR) implies that routers inspect 

the contents of every packet at each routing point, which 

is unacceptable if routers aren�t trusted.  Encryption is not 

a problem in channel-based routing, since routers along 

the path don�t need to inspect content, and only privileged 

subscribers can decrypt the events.  However, channels 

are not well suited for this problem domain, as each IP 

probe source would need its own channel, which is 

potentially a huge number.  Encryption is also less of an 

issue if the content-based routers can be trusted, as each 

message could safely be decrypted and inspected within 

the router (although this is computationally expensive). 

Additionally, trusted routers could enforce access control 

policies (e.g., [2] or [3]) to guarantee that events are 

forwarded only to subscribers whose security credentials 

match those acceptable to the publishers. 

However, ensuring that all intermediate routers are 

trustworthy will not generally be possible.  We present a 

new approach that supports a restricted form of content-

based event routing with only minimal trust required of 

routers.  In particular, we trust the routers to forward 



messages to subscribers without forging, altering, or 

discarding them, and to implement our specialized 

algorithms correctly.  Rogue routers that do attempt to 

interpret the events themselves for malicious purposes, 

that forward false matches, or forward to additional 

entities pose little or no threat, as explained below.  The 

main restriction on our approach is that content filtering is 

limited to equality and inequality, as opposed to other 

comparisons on event content such as less than, greater 

than, substring of, etc.    

Our main insight is to employ Bloom filters for 

representing hashed alert sets.  A Bloom filter [4], 

described further below, is essentially a compact 

representation of a set of hashes. A router receives sets of 

hashed values from participants (publishers), which are 

then checked against others� (subscribers�) Bloom filters.  

Matched values are sent back to the submitter and to the 

matched participants; we call this symmetric form of 

publish-subscribe �selecticast�.  The router then converts 

the submitted values to a much smaller Bloom filter, and 

discards the originals.  There is a small possibility of false 

matches, which can be decreased by increasing the size of 

the Bloom filters and/or the number of hashes per input 

value [5].  For the CIDS application domain, false 

positives are not a major issue, assuming the rate is 

sufficiently low, as it merely implies that a small 

percentage of addresses will be temporarily flagged for 

closer monitoring despite being innocent. 

We present one such system, including its methods for 

minimizing false matches. We first describe the 

collaborative intrusion detection system motivating this 

work.  We then explain how Bloom filters operate and 

criteria for selecting the hashes.  We compare several 

alternative approaches to CBR based on secure hashes. 

We briefly discuss the system�s integration into a modular 

event system and its extension to a distributed 

implementation.  Finally, we survey related work, and 

conclude with the current status and real-world evaluation 

plans.  

2. Motivation 

The current emphasis on security has led to the 

development and deployment of sophisticated traffic 

analysis tools, honeypots, and intrusion detection 

systems. A fundamental limitation of such systems is the 

single-point perspective on suspicious activity they offer: 

such activity can only be examined from the point of view 

of the sensor, which is attached to only one network. 

Patient attackers can slowly scan several targets in 

parallel, without creating enough traffic against any one 

of them to warrant an alert. Such low-frequency events 

can be easily lost in the sea of alerts generated by IDS's. 

A collaborative intrusion detection system, such as 

described in [6], shares IDS alert information among sites 

within a large organization or across different 

organizations, thereby enriching the information available 

to each, and revealing far more detail about the behavior 

of attackers than would otherwise be possible.  

Assume we already have a collection of sites, each 

hosting an IDS performing surveillance detection, i.e., 

tracking connections and failed or incomplete connection 

attempts, and mapping these activities to source IP 

addresses (or ranges of addresses) as much as memory 

permits.  The Antura Recon detector is a commercial 

example of such a surveillance-detection-enabled IDS [7].  

By identifying such sources, sites progress from detecting 

attacks as they occur to predicting impending attacks. 

In CIDS, we correlate these alerts from IDS�s across 

multiple sites.  With sufficient participation in the 

collaboration, it now becomes possible to detect stealthy 

scanners who relatively rarely probe any given site but 

are slowly testing multiple target sites. Collaborative 

�watchlists� across multiple sites aggregate the activities 

of source IPs (or ranges of IPs) that would likely fall 

under the radar at any individual site. A critical concern, 

however, is that sites be able to participate without 

revealing confidential or sensitive information about their 

networks and traffic. By hashing the alerts before 

transmission and correlating and distributing them with 

selecticast, we can solve the problem simply and 

efficiently.

3. Secure Hashes and Bloom Filters 

A Bloom filter [4] is a �one-way� data structure, 

consisting of a bit-string that represents hash hits.  It is 

one-way in the sense that one can test to determine 

whether a given filter has seen a particular datum before, 

and the filter will answer with no false negatives and rare 

false positives.  Thus, the Bloom filter does not reveal its 

contents; it can only confirm whether a specific value is 

stored.

More precisely, Bloom filters are used to 

probabilistically and compactly represent subsets of some 

universe U.  A Bloom filter is implemented as an array of 

m bits, uses k hash functions mapping elements in U
to m..0 , and supports two basic operations: add and

query.  Initially, all bits in the Bloom filter are set to 0.  

To add u U to a Bloom filter, the hash functions are 

used to generate k indices into the array and the 

corresponding bits are set to 1. A location can be set to 1 

multiple times, but only the first has an effect.  A query is 

positive if and only if all k referenced bits are 1.  A 

negative query clearly indicates that the element is not in 

the Bloom filter, but a positive query may be due to a 

false positive: the case in which the queried element was 

not added to the Bloom filter, but all k queried bits are 1 

due to other additions.  We use k independent indices, 



instead of just a single index, to reduce the probability of 

a such a false positive. 

The probability of false positives is an important 

metric because minimizing it is the key to making 

effective use of Bloom filters. The analysis proceeds as 

follows. If p is the probability that a random bit of the 

Bloom filter is 1, then the probability of a false positive is 

pk, the probability that all k hash functions map to a 1. If 

we let i be the number of elements that have been added 

to the Bloom filter, then p = 1-(1-1/m)ik
, as ik  bits were 

randomly selected, with probability 1/m, in the process of 

adding i elements.  In [8] and [5], it is shown that the 

probability of false positives is minimized when k is 

approximately 2lnim .

The reason the above analysis is with respect to k, the 

number of hash functions, is that we do not control i, the 

number of additions, in our application � it�s dictated by  

network traffic.  What we can control is m, the amount of 

memory used and k, the number of hash functions.  The 

collaborative security participants need to choose m and k
so that the probability of false positives is acceptably 

minimized.  Small values of k lead to large values of m,

whereas small values of m lead to large values of k.  The 

smaller m, the more compact our Bloom filters, but the 

smaller k, the faster the implementation � at routers as 

well as subscribers.  As discussed in the next section, 

hash computation is the dominant cost and it depends on 

k.

4. CBR With Bloom Filters and Hashes 

Bloom filters efficiently represent a set of hash values 

in a small space.  Good results are typically obtainable 

with filters with only eight times as many bits as there are 

items being stored [5].  One can merge two or more 

Bloom filters by simply binary-ORing them together (at 

the cost of a higher false-positive rate). 

Bloom filters also have some disadvantages, most 

significantly the impossibility of deletion, although 

alternate schemes allowing deletion (at the cost of less 

space efficiency) have been proposed [9].  Additionally, 

as with standard hash tables, the hash values have usually 

been adjusted modulo the size of the table, so increasing 

the size requires rehashing the original values. 

We will assume that it is undesirable (insecure) for the 

routers to see raw, unhashed values, which will typically 

be alerts containing sensitive IP address and port 

information.  There are several different ways to leverage 

Bloom filters to represent the hash-value sets participants 

are publishing.  We could have clients submit Bloom 

filter bit-strings representing the hashed addresses of 

interest, and have routers use Bloom filters internally.  

We could have clients submit the sets of hash values and 

have routers organize them into Bloom filters.  Or we 

could have clients submit lists of hash values and have 

the routers use standard hash tables. 

There are a number of costs to consider, and the 

optimal solution will depend on the specific attributes of 

our network and the needs of our CIDS �selecticast.�  

Among the important cost metrics are the size of the 

�selecticast� submissions and notifications in transit, the 

size of the subscription representations in router memory, 

and the speed with which the router can compute 

intersections.  Another important variable is the 

specificity of participant notification: do participants 

merely need to know that others have seen a particular 

alert, the number who have seen the alert, or the actual 

identities of all who have seen an alert? 

Plain Hash Tables 
If clients submit lists of the hash values, the most 

straightforward approach for the router is to simply 

maintain a hash table of all submissions.  Each entry in 

the hash table links to a list of submitters.  When a new 

set is submitted, the router adds each entry to the master 

hash table.  If the submitter list for that entry was non-

empty, a notification containing the new submitter list 

and the hash value is sent to all entries in the list.   

This implementation has the advantages that there will 

be no false positives except for rare hash collisions.  It 

also allows deletion, enabling the submission of updates, 

as opposed to complete lists.  If a hashed alert is flagged 

for deletion, the submitter will be silently deleted from 

the submitter list for that entry in the master hash table.   

Its main disadvantage compared with Bloom filters is 

size.  The exact size depends on the specific type of hash 

table constructed and the underlying architecture of the 

system (e.g., pointer size).  Assuming both hash values 

and pointer size are 32 bits (reasonable for our expected 

alert set cardinality of 105-106), an optimal open hash 

table (load factor 0.50) storing n items will use around 

64n bits, and an optimal chained hash table (load factor 

around 0.75) will use around 85n bits (64 bit entries, 32 

bits for value and 32 for pointer, times 4/3 for optimal 

load).  For either type, if each entry also has a linked list 

of submitters, add an extra 64n.

Pure Bloom Filters 
At the opposite extreme, we could deal purely with 

Bloom filters.  In this case, participants would submit a 

Bloom filter representation of their dataset.  In order to 

look for matches, we would directly compare the Bloom 

filters, counting the number of bits in common.  Filters 

with any matching elements must have at least k bits in 

common, where k is the number of Bloom filter bits we 

set for each input value. 

Unfortunately, this approach will usually not be 

practical.  The number of bits that match due to random 

chance will be huge for any typical pair of Bloom filters.  



Suppose we have two Bloom filters of size m bits, each 

storing n distinct values (i.e., no values in common) using 

k bits per item.  A bit in the filter will be set with 

probability p, roughly 
knm111 .  For optimal Bloom 

filters, p should be near 0.5, although we can make it 

much sparser at the cost of increased memory usage.   

For our candidate Bloom filter, we can view the case 

that one of our bits coincidently matches a bit in the other 

filter as a Bernoulli trial with chance of �success� p.  The 

number of matching bits will then follow a binomial 

distribution, with the expected number of successes in kn
trials equal to knp.  Computer simulation confirms the 

accuracy of this analysis.  knp will be vastly greater than 

k, and thus the number of false positives will be 

enormous.  Even if we try to lower knp by making p
extremely small (and making the filter extremely sparse), 

large values of n will rapidly make the situation 

unworkable.   

For instance, if k is 6, and thus we want our expected 

number of collisions to be less than 6, we must put fewer 

than 1200 items into an 8 million bit (1MB) Bloom filter 

(k=6, n=1183, m=223, p 0.0008, knp 6.0).  Note that this 

cost is only incurred in memory.  We can compress the 

filter during network transmission by a large factor using 

standard compression tools.  Nonetheless, and even given 

the speed of simply ANDing the two large Bloom filters 

together, 7000+ bits per item stored is a highly 

unattractive ratio. 

Hybrid Bloom Filter 
We can successfully leverage the size advantage of 

Bloom filters by combining them with the set-of-hash-

values approach.  Participants submit the list of hash 

values of interest, representing noted instances of 

suspicious network activity.  The router uses the actual 

hash values to check against the Bloom filters of the other 

participants to find matches with reasonable accuracy.  If 

matches are found, the router sends the matching values 

as a notification to all matching participants.  

Additionally, the router converts the submitted set of hash 

values into a Bloom filter of size n�8  bits, where n�  is the 

estimated total number of values per participant (making 

all filters the same size, and giving a chance of false 

positive around 2%).  This filter is then stored and 

associated with the submitter.  After all of the submitted 

hash values have been checked against everyone else�s 

Bloom filters, the router can then discard the submitted 

hash value list, leaving only the subscriber�s (much 

smaller) Bloom filter.   

Thus publishers submit large sets of hash values, 

which are used to find matches, and then leave behind 

much smaller Bloom filter �residues� that act as 

subscriptions.  Matching hash value sets (optionally 

tagged with the identity of their submitter) are sent out as 

the actual notifications.  For this domain, we assume that 

the number of notifications is very small in relation to the 

number of values submitted (experiments show 

correlation rates of 0.01% or lower).  If the number of 

matches is expected to be large, the matching sets could 

themselves be converted to Bloom filters before being 

sent as notifications, with the attendant space savings.

Note that the hash values used for Bloom filter 

generation are much larger than the hash values used by a 

plain hashtable, even though the resulting filter structure 

is smaller than the corresponding hashtable.  For each 

item entered, Bloom filters need k indices into an m-bit 

table, and thus a total of klnm bits of hash per item.  If 

m=8n, then k(3+lnn) bits.  For sets of 2,000 to 128,000 

items and k=6, this works out to 84-120 bits per item, or a 

factor of 3-4 increase over the size of the hash values 

needed for plain hashtables.  This would potentially be a 

problem for the submission of large sets of hashed values 

in the hybrid case. 

However, we can avoid this problem by hashing our 

alerts to 32 bits for transmission, and then rehashing each 

to 120+ bits after it arrives at the server (and then splitting 

up those bits into the k indices of size lnm that we need), 

thus making the transmission cost no more expensive than 

for plain hashtables.  Since the original alerts will 

typically contain less than 32 bits of entropy, no 

information should be lost with this two-stage hashing 

process.

Optimization with Two-Stage Compare 
In the hybrid case described above, we assumed that 

the router maintains a separate Bloom filter for each of 

the C collaborating parties, representing the specific set of 

alerts seen by that party.  When a new set of values is 

published, it must be compared against each of the C-1
other sets.  We can speed processing by entering all of the 

submitted value sets into a single large �master� Bloom 

filter in the Router and checking this first.   

If we find a match in the master Bloom filter, we must 

then check each individual filter to discover the specific 

participants who matched.  Despite this, we will show 

that this approach can offer substantial space efficiencies 

over the hash table approach, and the speed disadvantage 

can be reduced. 

We can speed our Bloom filter lookups by taking 

advantage of arithmetic modulo 2m on binary numbers.  

Just as a base 10 number modulo 10m is the least 

significant m digits of the number, a binary number 

modulo 2m is just the bottom m bits of the number, which 

can be extracted by ANDing the number with an 

appropriate bit mask ((1<<m)–1 using the C-language 

bit operators). 

Let n’ be the power of 2 closest to n.  We create one 

master Bloom filter of size Cn’ and a filter of size n’ for 

each of the C participants.  Sizing these at 8 bits per item, 



we have a total space of 16Cn’.  The single hash table 

approach, as described above, will use 128Cn-150Cn bits 

to encode the same information.  Even if we choose 

n’=2n, the total size of our Bloom filters will be a quarter 

or less of the size of the hash table solution.  To do a 

lookup, we take our k hash values, compute indices 

modulo Cn’, and do our lookups into the master Bloom 

filter.  If all k indices match, we simply take the bottom 

log2n’ bits of each master table index value, and use these 

as our search indices into the size n’ subtables.  Thus we 

only need to compute a nontrivial modulus once.  If C is 

also a power of 2, both hash resizings become single 

AND instructions. 

Aging
The master Bloom filter still has one major weakness 

vis-à-vis the master hash table solution.  Participants will 

be publishing new alert lists to the network on a regular 

basis.  While we can easily add new values to the master  

Bloom filter (just keep setting the appropriate bits), we 

have no way to delete out-of-date entries, and our master 

filter will gradually fill up with junk bits, until the 

probability of a positive response for any input 

approaches 1.

One solution is to maintain a �shadow� copy of the 

�primary� master Bloom filter (at a cost of an extra 8Cn’
bits), and periodically swap the two.  At startup, after the 

primary master Bloom filter is initialized from all the 

participants� data, the shadow copy is cleared.  When 

participants subsequently publish a new set of values, 

their individual Bloom filter is replaced, and both the 

primary and shadow filters are updated with the new 

values.  After all participants have submitted new data (or 

a preset time interval is elapsed), the shadow table 

becomes the new primary table, and the old primary table 

is cleared and becomes the new shadow table. 

During the period where many new sets have been 

added to the current primary table, the number of false 

positives it returns will increase.  However, as the 

individual participant subtables are always up-to-date, 

this should not result in a much higher rate of actual false 

positive messages transmitted back to subscribers, as all 

of the secondary checks for specific matches will fail.  

The only effect will be a reduction of the primary table�s 

efficiency in filtering.  If value set updates are largely 

similar to the previous set, the performance degradation 

will be even smaller. 

MEET
The Multiply Extensible Event Transport (MEET) is a 

modular publish-subscribe system currently under 

development that allows users to define their own data 

types and predicates on those types to be used as filters.  

MEET allows enhancements to the classic publish-

subscribe paradigm through the addition of new modules. 

In the above discussion, we have assumed a single 

router node.  We can use this extensible system 

implement a fully distributed solution.  We wish to 

distribute the task of matching values among multiple 

routers.  We can achieve even distribution of the 

computation by assigning particular hashes to particular 

routers with a mechanism based on Distributed Hash 

Table routing.  For instance, if we have 16 routers, the 

first handles all hashed values ending with 0000, the 

second all hashes ending with 0001, etc.  

MEET enables DHT routing and selecticast through 

the addition of data type, filter, and routing 

modules.Further discussion of MEET is outside the scope 

of this paper. 

5. Related Work 

A number of sophisticated publish-subscribe systems 

have been developed, including Siena [10], Gryphon [11], 

JEDI [12], ECho [13], CORBA Events [14], and Elvin 

[15].  Siena, Gryphon, JEDI, and Elvin are all content-

based, where intermediate routers analyze the contents of 

each packet to determine appropriate forwarding 

destination(s).  Wang et al. [16] examined security issues 

for CBR, but focused on the (as yet unsolved) problems 

of evaluating complex filters (i.e., more complex than 

simple equality testing, e.g., ad-hoc range checking) on 

encrypted data. 

Bloom filters have been studied for a number of 

applications, including wide-area service discovery [17], 

IP packet traceback [18], and distributed caching 

services[8], in addition to being a primary tool for 

relational database joins [19].  The most germane work is 

probably by Triantafillou and Economides [20, 21], who 

use Bloom filters to create �subscription summaries,� 

allowing for radical speedups to standard content-based 

routing.  To our knowledge, no one has proposed using it 

for management of large numbers of opaque subscriptions 

in publish/subscribe systems. We also know of no other 

�selecticast� systems where publications are also 

subscriptions. 

Others have investigated CIDS, e.g., [22] [23] [24] 

[25], but none have proposed an event infrastructure for 

data distribution. 

6. Status and Conclusions 

We believe that our proposed two-level system of 

Bloom filters will allow efficient and secure correlation of 

data as required by collaborative intrusion detection 

systems.  The launch of a second generation CIDS, using 

MEET with Bloom filters extended as discussed here, is 

planned as a joint project between Columbia, Georgia 

Tech, Florida Institute of Technology, Syracuse 



University, MIT, USC/ISI and the Brookings Institute.  

We expect to be able to compare our performance data 

against first generation CIDS trials involving Columbia, 

George Tech, and the University of Pennsylvania, where 

the raw data was collected and correlated at a centralized 

site.

Our extensions to Bloom filters may also prove useful 

for other secure content-based routing applications where 

equality/inequality testing of values is sufficient.  

Publications and subscriptions do not necessarily have to 

be symmetric, as in our �selecticast�, but instead 

subscriptions could be provided directly as Bloom filters. 
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