
Process Evolution in the Marvel Environment

Gail E. Kaiser Israel Z. Ben-Shaul

Columbia University, Department of Computer Science, New York, NY 10027

The primary goal of a process evolution tool is to Evolver generates a graph reflecting only the consistency
guarantee that the pre-existing objectbase is consistent implications among rules in the new process model, and
with respect to the newly installed process. We had compares it to the consistency rule graph representing the
previously proposed an approach that rejected changes to existing process. Matching a rule with its replacement
the process that might potentially introduce may require interaction with the process engineer, since
inconsistency [2]. We have more recently developed a MARVEL allows multiple rules with the same name but
much more powerful approach that accepts any new different conditions. Evolver detects cases where
process model (which is syntactically correct and the consistency is either strengthened (adding an edge) or
corresponding schema evolution is possible), and weakened (deleting an edge). The rule at the tail of each
automatically updates the objectbase according to the new such edge must be evaluated, in the former case to
process. This second approach was implemented in the consider rules that have become part of a previously
Evolver tool for the MARVEL 3.x rule-based executed consistency chain and in the latter case to
environment [4]. consider rules whose conditions might have become

satisfiable.The key insight that makes our new approach tractable is
that it is unnecessary for Evolver to analyze the contents Evolver generates a batch script of MARVEL commands to
of the objectbase to determine whether or not it will be fire any consistency (sub)chains necessary to make the
consistent. Instead, Evolver compares the old and new objectbase consistent with respect to the new consistency
process models, and determines the set of rules affected graph. The script is executed in the MARVEL command
by changes related to consistency. Evolver then generates line client, an alternative to the graphical user interface.
a list of all possible instantiations of the affected rules, Rule changes that are concerned only with automation,
considering only the types but not the contents of the and do not affect consistency, are also installed but do not
objects in the objectbase. Then these rules are executed cause any updates to the objectbase. In addition to
by MARVEL’s process engine as if they had been normal process evolution, Evolver also supports schema
user commands. evolution based on facilities developed for Orion [1].

This approach relies on our distinction between We now give a small example of actual evolution to the
consistency and automation in the process model [3]. In C/Marvel environment that we use in our own software
essence, when one rule would forward chain to another development. C/Marvel consists of a data model
rule to maintain consistency, the second rule is considered (schema), a process model and a set of tool envelopes,
an implication of the first, and by definition must be fired based on our original organization of the MARVEL code in
whenever the first rule is fired. If it is not possible to the file system, our manual development process and the
execute an entire chain defined recursively by such corresponding Unix utilities, respectively. We used the
implications, that chain must be rolled back (i.e., the Marvelizer immigration tool [7] to construct a C/Marvel
entire consistency chain executes as a transaction), and objectbase containing the source, headers, libraries,
thus the opportunity for backward consistency chaining executables, documentation, etc. of MARVEL itself.
can never arise. In contrast, if one rule would forward or C/Marvel’s data model divides the environment’s
backward chain to another rule solely for automation objectbase into a shared repository, called the "master
purposes, the chaining is considered optional. area", and a collection of private workspaces, each called
Automation chaining may be explicitly turned off, if a "miniproject". As part of the process, a user initiates a
desired, or can be terminated at any rule boundary without code change by first reserving relevant objects in the
rollback of the entire automation chain.

master area and then copying them to a miniproject. The linked to the AFILE have been Archived, and also that
user does all editing and testing in the miniproject. the containing PROJECT is in the CompileAll state. A
Archived libraries in the master area may be linked PROJECT would be in this state if either a source file or
together with modified code for testing, if objectbase header file had been deposited into the master area since
links have been established from objects in the the last time the PROJECT had been built (i.e., all its
miniproject to the appropriate objects in the master area. executables manufactured), and the PROJECT had not yet
Once the changes and test results are satisfactory, the user been rebuilt. This portion is there to prevent unnecessary
copies the objects back to the master area and deposits work. If the condition already evaluates to true, or can be
them. Whenever an object representing a source or satisfied through backward chaining to other rules that
header file is deposited, the affected archives and archive all the relevant MODULEs, then the AFILE itself is
executables in the master area are marked as outdated in a said to have been Archived. No tool invocation is
mandatory consistency chain, and may be rebuilt then by actually needed, since the condition directly implies the
an optional automation chain or later according to an effect.
explicit user command. The parameter to the build rule is a MINIPROJECT
In our example, this process is modified so that outdated object, which represents a private workspace for an
or reconstructed archives in the master area also individual software developer. The conditions gathers up
propagate to all the miniprojects that link to them. The all the C, yacc and lex source files contained in the
goal is to encourage users to incorporate changes in other MINIPROJECT, the MINIPROJECT’s executable, and
parts of the system as soon as they have been deposited, any AFILEs to which it is linked — perhaps in the master
rather than continuing testing using the old versions. We area or another miniproject. The MACHINE_EXEC and
do not intend to claim the new process is necessarily MACHINE objects are used to maintain archives and
better than the original process for any or all software executables for different machine architectures. The
development projects, just that it is representative of build rule requires that all the source files have been
relatively simple but realistic process evolution. Compiled since the last time the MINIPROJECT was

built. If so, the activity part of the rule invokes thearch [?a:AFILE]:
(and build_local envelope to rebuild the MINIPROJECT,
(exists LIB ?l suchthat (member [?l.afiles ?a])) that is, generate the executable being developed by the(exists PROJECT ?p suchthat (member [?p.lib ?l]))
(forall MODULE ?m suchthat (linkto [?m.afiles ?a]))): user. When the envelope terminates, one of the rule’s two
(and effects is asserted. If the build was successful, the(?m.archive_status = Archived)

no_chain (?p.status = CompileAll)) MINIPROJECT is said to be Built; if the tool produces
{ }

errors, however, it is NotBuilt.(?a.archive_status = Archived);

Figure 2 gives modified arch and build rules, togetherbuild [?mp:MINIPROJECT]:
(and with newly added update and restore rules. The

(forall CFILE ?c suchthat (member [?mp.files ?c]))
only difference in arch is to change its one effect(forall YFILE ?y suchthat (member [?mp.files ?y]))

(forall LFILE ?l suchthat (member [?mp.files ?l])) predicate from automation ("(...)") to consistency ("[...]").
(exists EXE ?e suchthat (member [?mp.exec ?e]))

When this effect predicate is asserted, consistency(forall AFILE ?a suchthat (linkto [?mp.afiles ?a]))
(forall MACHINE_EXEC ?me forward chaining must be attempted to every rule with a

suchthat (member [?e.machines ?me]))
(forall MACHINE ?mc matching predicate in its condition. The new update

suchthat (member [?a.machines ?mc]))): rule has such a predicate.(and
(?c.status = Compiled)

The parameter of the update rule is a MINIPROJECT.(?l.status = Compiled)
(?y.status = Compiled)) When an archive in the master area causes arch to
{ LOCAL build_local

forward chain to update, the binding is ‘‘inverted’’ to?c.object_code ?l.object_code ?y.object_code
?mc.afile ?me.exec ?e.history "NO"} find all MINIPROJECT objects that are linked to the

(?mp.build_status = Built);
particular AFILE object on which the consistency effect(?mp.build_status = NotBuilt);

was asserted [6]. The update rule is then instantiatedFigure 1: Old C/Marvel arch and build Rules
separately for each such object, and the condition is

Two of the old C/Marvel rules, arch and build, are evaluated. If the MINIPROJECT is either
shown in Figure 1. The parameter to arch is an AFILE INC_NotBuilt or NotBuilt, it is set to NotBuilt.
object, which represents a Unix archive (".a") file. The Basically, NotBuilt means that the MINIPROJECT is
arch rule first retrieves the ancestor PROJECT object out of date because one or more of the archives it imports
containing this AFILE and all the MODULE objects linked from the master area has been updated since it was last
to this AFILE. It then checks that all of the MODULEs built. INC_NotBuilt means that one of these archives

2

arch [?a:AFILE]: model, so no schema evolution is required. It then
(and

attempts to match rules in the old and new process model(exists LIB ?l suchthat (member [?l.afiles ?a]))
(exists PROJECT ?p suchthat (member [?p.lib ?l])) pairwise, and requests help interactively when there is an
(forall MODULE ?m suchthat (linkto [?m.afiles ?a]))):

ambiguity. It discovers the ‘‘change’’ to restore,(and
(?m.archive_status = Archived) which strengthens consistency because it is the
no_chain (?p.status = CompileAll))

destination of a consistency effect of another rule,{ }
[?a.archive_status = Archived]; touchup (not shown). Evolver also finds the change to

build [?mp:MINIPROJECT]: update, which is the destination of the new consistency
(and predicate in arch. It then generates a MARVEL command(forall CFILE ?c suchthat (member [?mp.files ?c]))
(forall YFILE ?y suchthat (member [?mp.files ?y])) script to trigger the offending restore and update
(forall LFILE ?l suchthat (member [?mp.files ?l])) rules on all affected objects. This would be all objects(exists EXE ?e suchthat (member [?mp.exec ?e]))
(forall AFILE ?a suchthat (linkto [?mp.afiles ?a])) that are instances of the MINIPROJECT class or any
(forall MACHINE_EXEC ?me subclasses of MINIPROJECT (there are none). Thesuchthat (member [?e.machines ?me]))
(forall MACHINE ?mc script is executed in a MARVEL command line client

suchthat (member [?a.machines ?mc]))):
spawned by Evolver. This concludes our example.(or

(and
Evolver’s main limitation concerns evolution of product(?c.status = Compiled)

(?l.status = Compiled) data manipulated by MARVEL’s ‘‘black box’’
(?y.status = Compiled)

activities [5]. Consistency chains are currently restrictedno_forward (?a.archive_status = Archived))
(?mp.build_status = NotBuilt)) so that a non-empty activity can appear only in the
{ LOCAL build_local

original rule of a chain, and all rules triggered by forward?c.object_code ?l.object_code ?y.object_code
?mc.afile ?me.exec ?e.history "NO"} consistency chaining must have an empty activity. Thus

(?mp.build_status = Built);
no_chain (?mp.build_status = NotBuilt); the rules queued by Evolver update only process data, as

completely specified by the effects of rules, and neverupdate[?mp:MINIPROJECT]:
(forall AFILE ?a suchthat (linkto [?mp.afiles ?a])): access product data. This forward repair approach would

require human intervention for each non-empty activity(and (?a.archive_status = Archived)
(or no_backward (?mp.build_status = INC_NotBuilt) that was invoked, defeating the purpose of an automated

no_chain (?mp.build_status = NotBuilt))) process evolution tool.{ }
(?mp.build_status = NotBuilt);

We postulate a backward repair solution, to apply to the
restore[?mp:MINIPROJECT]: rules in automation chains as well as to those in
(forall AFILE ?a suchthat (linkto [?mp.afiles ?a])):

generalized consistency chains. The gist is to revertno_backward (?a.archive_status = NotArchived)
{ } affected process data to their (new) default values,
no_chain (?mp.build_status = INC_NotBuilt);

without actually undoing any activities. Then our current
Figure 2: Modified and Added C/Marvel Rules algorithm would be applied to move the process state

forward to the degree possible through newly satisfiedhas been outdated but not yet reconstructed; this is set by
rules with empty activities. We hope to develop this ideathe new restore rule when an imported archive
further if resources become available.becomes NotArchived. The effective difference is that

a MINIPROJECT can be directly rebuilt when its status is The current Evolver tool has been incorporated into
NotBuilt, but it is first necessary to reconstruct the P/Marvel, a MARVEL environment for developing and
relevant archives in the master area if its status is evolving data models, process models and tool envelopes.
INC_NotBuilt. A P/Marvel objectbase contains the source and internal

representation of a data model and a process model, andThe modified build rule considers the relationship
includes references to both testing and "real" objectbasesbetween a MINIPROJECT and the AFILEs it is linked
whose environments are instantiated by these models.to. If a source file within the workspace is recompiled
Like any MARVEL environment, P/Marvel maintainsand the imported archives have already been constructed,
consistency among its target objects, in this casethen the MINIPROJECT can be built. Alternatively, if an
components of data and process models, and automatesimported archive has just been reconstructed, so the status
aspects of the process, in this case installation and testinghas become NotBuilt, it is also appropriate to now
of new or evolved data and process models. P/Marvel isrebuild the MINIPROJECT. The no_chain directive was
part of MARVEL version 3.0.2, which has been in useadded to the second effect to prevent a cycle: if the
internally since July 1992, and is planned for release asbuild is unsuccessful, it is futile to immediately try
part of MARVEL 3.1 in early 1993.again.

Evolver first detects that there were no changes to the data John Hinsdale implemented an initial version of Evolver that

3

[3] Naser S. Barghouti. Supporting Cooperation in the MARVELsupported schema but not process evolution. Will Marrero
Process-Centered SDE. In Herbert Weber (editor), 5th ACM SIGSOFTworked on the Evolver described here, and George Heineman
Symposium on Software Development Environments, pages 21-31.also contributed substantially to this research. The
Tyson’s Corner VA, December, 1992. Special issue of SoftwareProgramming Systems Laboratory is supported by National
Engineering Notes, 17(5), December 1992.Science Foundation grants CCR-9106368 and CCR-8858029, by

grants and fellowships from AT&T, BNR, Bull, DEC, IBM, [4] Israel Z. Ben-Shaul, Gail E. Kaiser and George T. Heineman.
An Architecture for Multi-User Software Development Environments.Paramax and SRA, by the New York State Center for Advanced
In Herbert Weber (editor), 5th ACM SIGSOFT Symposium on SoftwareTechnology in Computers and Information Systems and by the
Development Environments, pages 149-158. Tyson’s Corner VA,NSF Engineering Research Center for Telecommunications
December, 1992. Special issue of Software Engineering Notes, 17(5),Research.
December 1992.

[5] Mark A. Gisi and Gail E. Kaiser. Extending A Tool Integration
Language. In Mark Dowson (editor), 1st International Conference on

References the Software Process: Manufacturing Complex Systems, pages 218-227.
IEEE Computer Society Press, Redondo Beach CA, October, 1991.[1] Jay Banerjee and Won Kim. Semantics and Implementation of

Schema Evolution in Object-Oriented Databases. In ACM SIGMOD [6] George T. Heineman, Gail E. Kaiser, Naser S. Barghouti and
Annual Conference on the Management of Data, pages 311-322. San Israel Z. Ben-Shaul. Rule Chaining in MARVEL: Dynamic
Francisco CA, May, 1987. Special issue of SIGMOD Record, 16(3), Binding of Parameters. IEEE Expert 7(6):26-32, December, 1992.
December 1987.

[7] Michael H. Sokolsky and Gail E. Kaiser. A Framework for
[2] Naser S. Barghouti and Gail E. Kaiser. Scaling Up Rule-Based Immigrating Existing Software into New Software Development
Development Environments. International Journal on Software Environments. Software Engineering Journal 6(6):435-453, November,
Engineering & Knowledge Engineering 2(1):59-78, March, 1992. 1991.

4

