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Abstract

Concurrency Control is the ability to allow concurrent access of multiple independent
agents while still maintaining the overall consistency of the database. We discuss the
notion of Cooperation Control, which gives a dbms, the ability to allow cooperation
of multiple cooperating agents, without corrupting the consistency of the database.
Speci�cally, there is the need for allowing cooperating agents to cooperate while
preventing independent agents from interfering with each other. In this paper, we
use the Marvel system to construct and investigate cooperative scenarios.

1 Introduction

Concurrency Control in database management systems allows multiple independent
agents to concurrently access the database while maintaining its consistency. Cooper-
ation Control extends this concept by considering situations with cooperating agents.
To realize cooperation, we need to have semantic information about how the agents
will act. Our research on Process Centered Environments (pces) has shown that these
systems have a rich body of semantic information available. In such environments, a
process is formally speci�ed in a Process Modeling Language (pml). As part of this
speci�cation, the cooperation between agents needs to be provided.

There are several reasons why multiple agents might need to cooperate:

1. Uniqueness of agents { There might be certain tasks which can only be carried
out by a particular agent; consider a task which can only be performed by a
database administrator.

2. Encapsulation of tasks { The process might be designed such that there are
clusters of tasks which are separated from other tasks. This hierarchical orga-
nization of tasks becomes necessary as the size and number of tasks grows.

1Heineman is supported in part by IBM Canada
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Figure 1: Blocks World

3. Group tasks { There are tasks which need multiple agents to work in concert
with each other; consider a conference phone call between three parties.

TheMarvel project is an example of a pce applied to software development. In this
pce, the process of software development is formally encoded in terms of rules, and
the concurrency control of the database is tailored to provide speci�c behavior. In
this paper we explore how to useMarvel to produce a cooperative environment. We
start with a simple example of cooperating agents in a \Blocks World" environment,
and then apply our results to a fragment of the ispw-7 [3] sample problem. We
conclude with a discussion of the limitations and bene�ts of this approach.

2 Example problem

Consider the \Blocks World" example, as shown in �gure 1. Blocks can either sit on
the table, or on top of another block (the table is large enough to accommodate all
blocks). A block X is clear if no block is sitting on top of X. Only clear blocks may
be moved, and a block cannot have two blocks sitting directly on it. To move A on
top of E, for example, C must �rst be moved to the table; then both A and E are
clear, and the move can take place.

The prolog program in �gure 3 is a goal-directed process which solves the problem
of putting blockX on top of Y by �rst making sure that both X and Y are clear, thus
allowing the move to take place. Note that the Table may not be moved, but blocks
may be moved onto it. This particular process achieves the put on(X,Y) goal by
�rst achieving two sub-goals clear space(X) and clear space(Y). Figure 2 shows
the solution for the request put on(d,a). Note how put on and clear space are
recursively de�ned to invoke each other.

We now introduce multiple agents to this example problem. Assume, in the blocks
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clear_space(A)

put_on(C, table)

put_on(D, A)

put_on(G, table)

clear_space(table)clear_space(G)

clear_space(D)

clear_space(table)clear_space(C)

Figure 2: Goal Tree for put on(d,a)

on_top_of(c,a). %% Which blocks are on other blocks

on_top_of(d,b).

on_top_of(g,d).

on_top_of(h,f).

on_top_of(BLOCK,table) :- not (on_top_of(BLOCK, X)). %% When a block is on the table

clear_space(table). %% Always enough room on the table

clear_space(UNDER) :- not (on_top_of(TOP, UNDER)).

clear_space(UNDER) :- on_top_of(TOP, UNDER), put_on(TOP, table).

put_on(SRC,DST) :- clear_space(SRC), clear_space(DST),

write('move '), write(SRC), write(' to '), write(DST), nl.

Figure 3: prolog solution for blocks

world, that there are two agents, Placer and Clearer. These agents cooperate in the
following way:

1. When Placer moves block X to sit on object Y, Clearer is invoked to clear both
X and Y. Note that Y may be a block or the Table.

2. When Clearer clears block X, Placer is invoked to move block Y, sitting on X,
onto the Table.

The responsibilities of each agent are disjoint, and each has private tasks. Placer, for
example, has no mechanism for knowing if block X is clear; it must blindly invoke
Clearer. In similar fashion, Clearer knows how to clear a block only by requesting
Placer to move other blocks. This scenario cannot be modeled in a single-process
prolog environment, so we turn to the Marvel system to design a multiple agent
process.

3 Marvel

A Marvel environment is de�ned by a data model, process model, tool envelopes
and coordination model for a speci�c project. The data model is object-oriented,
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parameters WR +----------------------------+

condition WR | | S | X | ShW| WR |

activity WR |-----|-----|-----|----|-----|

effects X | S | yes | no | no | yes|

|-----|-----|-----|----|-----|

# Lock Modes for builtins | X | | no | no | yes|

rename X |-----|-----|-----|----|-----|

move X X | ShW | | | yes| yes|

copy S X |-----|-----|-----|----|-----|

link X X | WR | | | | yes|

unlink X X +----------------------------+

delete SX X (S) shared (ShW) shared write

add X (X) exclusive (WR) weak read

Figure 4: Transaction Table and Lock Compatibility Matrix

and uses classes to de�ne an objectbase. The process is speci�ed by Marvel's
process modeling language, msl (Marvel strategy language). Each process step is
encapsulated by a rule, which has a name and typed parameters.

An msl rule has four parts, a query, condition, activity and e�ects. When a rule is
requested, a query is made on the database, and the rule's condition is checked. If it
is satis�ed, the activity is carried out and the assertions are made. A rule's activity
is a shell envelope [2] which allows an administrator to integrate conventional tools
into the process. There is a rule engine which employs chaining to drive the process.
Backward chaining is initiated to satisfy the failed condition of a user's rule request.
Forward chaining carries out the implications of a rule's assertions by �ring those
rules whose condition has become satis�ed by the assertion. Backward and forward
chaining are both recursive procedures.

Each rule is encapsulated by a transaction by which the rule accesses the objects it
needs. Once the rule's query has determined the necessary objects, the rule processor
acquires locks for these objects with lock modes based upon how the rule will access
the objects. For example, as seen in �gure 4, only those those objects being updated
in the e�ects need to be locked in X exclusive mode. This table is the mapping table
which maps rules to transactions.

A lock conict situation occurs when a rule attempts to acquire a lock on an object
which conicts with an existing lock held by another rule. The conicts are deter-
mined by a lock compatibilitymatrix supplied by the administrator. Figure 4 contains
a sample table of four particular lock modes: Shared, Exclusive, Shared Write, and
Weak Read. The matrix de�nes the compatibility of two lock modes; for example,
ShW and X conict, whileWR is compatible with each lock mode.

In response to a particular locking conict, Marvel turns to the speci�ed coordi-
nation model to determine an appropriate response. This model contains a set of
cord (Coordination Rule Language) rules which outlines the prescribed actions to
take. If a rule matches a situation, a set of actions are carried out and the conict
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OBJECT_CLASS :: superclass ENTITY;

clear : boolean = true;

on_top_of : set_of OBJECT;

end

OBJECT :: superclass OBJECT_CLASS;

Movable : boolean = true;

end

TABLE :: superclass OBJECT_CLASS;

Movable : boolean = false;

end

Figure 5: msl data schema

Figure 6: Marvel blocks representation

is resolved, otherwise the transaction is aborted, and its rule is stopped. We now
present a Marvel environment which solves the multiple agent blocks world.

3.1 Multiple Agent Solution

The data model, shown in �gure 5, is comprised of three classes, object class,
object, and table. The clear attribute of an object tells whether it is clear or
not, and the movable attribute determines if an object can be moved. The on top of

attribute is a composition attribute which contains the block (if it exists), which is
sitting on a given object. Figure 6 shows an objectbase which models the blocks
world example from �gure 1. The block B, for example, has its clear attribute equal
to false, and its on top of attribute would be equal to the block fDg.

The process model has four rules. There are two put on rules, to handle di�erent
cases, and an auto move rule which automatically sets the clear attribute of a block
X to false when a block is placed on X. There is one clear space rule which makes
a particular block clear. The rules are shown in �gure 7.
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# When ?src comes from on top of another object

put_on [?src:OBJECT, ?dst:OBJECT_CLASS]:

(exists OBJECT ?under suchthat (member [?under.on_top_of ?src])):

{ CLEARER clear_space ?src.Name ?dst.Name }

(and (move [?src ?dst on_top_of ?under])

no_chain (?under.clear = true));

no_assertion;

# When ?src comes from the TABLE

put_on [?src:OBJECT, ?dst:OBJECT_CLASS]:

(exists TABLE ?tbl suchthat (member [?tbl.on_top_of ?src])):

{ CLEARER clear_space ?src.Name ?dst.Name }

(move [?src ?dst on_top_of ?tbl]);

no_assertion;

hide auto_move[?o:OBJECT]:

# This rule doesn't apply to the Table, since the Table is always clear

(exists OBJECT_CLASS ?under suchthat (and (member [?under.on_top_of ?o])

(?under.Movable = true))):

{ }

(?under.clear = false);

clear_space [?tbl:TABLE]:

:

{ }

;

clear_space [?object:OBJECT]:

:

no_chain (?object.clear = true)

{ }

;

clear_space [?under:OBJECT]:

(and (exists OBJECT ?obj suchthat no_chain (member [?under.on_top_of ?obj]))):

no_chain (?under.clear = false)

{ PLACER put_on ?obj.Name "Table" }

(?under.clear = true);

no_assertion;

Figure 7: Marvel multiple agent solution
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ENVELOPE clear_space;

INPUT

string : SRC;

string : DST;

OUTPUT none;

BEGIN

## Clear both objects by invoking an agent to execute: clear_space(SRC) clear_space(DST)

SCRIPT_FILE=/tmp/clear_space

echo "#!marvel script" > $SCRIPT_FILE

echo "clear_space $SRC" >> $SCRIPT_FILE

echo "clear_space $DST" >> $SCRIPT_FILE

## Invoke the agent ##

OUTPUT_FILE=/tmp/OUTPUT

marvel -b $SCRIPT_FILE > $OUTPUT_FILE

## Check status and clear up ##

RC=1

ERROR=`grep "Failed while interpreting ${SCRIPT_FILE}" ${OUTPUT_FILE}`

if [ "x$ERROR" = "x" ]

then

RC=0 # Succeeded

fi

rm $OUTPUT_FILE

RETURN "$RC";

END

Figure 8: sel envelope for put on

In order to separate tasks belonging to di�erent agents, the put on and clear space

rules have no logical condition associated with them. The put on[X,Y] rule, for ex-
ample, must invoke an agent to clear both X and Y for it to perform its operation. To
do so, the put on rule executes the shell envelope shown in �gure 8. This envelope
creates a new agent which will execute clear space[X] and clear space[Y], return-
ing \0" on success, and \1" on failure. This return code will directMarvel to assert
the appropriate e�ect as de�ned in the put on rule (i.e., on success, the move oper-
ation is asserted). This process is recursive as the agent executing clear space[X]
might create a new agent to complete its task.

The �nal information Marvel needs is the coordination model, which is de�ned in
terms of cord rules. Speci�cally, the msl rules in �gure 7 will produce conicting
database access. Consider issuing the put on[D,A] rule on the example in �gure 6.
This, we have seen, will cause an agent to be created to invoke clear space[D] and
clear space[A]. The original put on rule, however, must access the objects D and
A in exclusive access mode, since it must prevent other agents from interfering with
its operation. The objectbase would become inconsistent if another agent mistakenly
placed another block on D after the clear space[D] invocation has completed, but
before clear space[A] has started. However, clear space[D] (invoked by the
cooperating agent) needs to access D in an exclusive mode also, since it removes G
from on top of D. We need some mechanism for allowing the cooperating agents to
access information jointly, while preventing conicting access by independent agents.
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X[Table], ShW[D], X[G]

put_on(D, A)

put_on(G, table)

clear_space(table)clear_space(G)

clear_space(D)

WR[G]

X2[D], WR[G]

WR[Table]

clear_space(A)

ShW[Table], X1[D], X[A]

2

4 1

3

Figure 9: Locking conicts for put on[D, A]

In our multiple agent block world example, there are four particular situations, labeled
1 through 4, which are resolved by the control rules in �gure 10. These situations
correspond exactly to those locking conicts in �gure 9. In each case, the cord action
simply ignores the conict, allowing the lock request to succeed, and thus the entire
process succeeds.

We now explain the process trace in �gure 9, omitting all intention locks (these are
normally acquired because of the composition of the objectbase; see [1]). When
put on[D,A] is requested, the �rst put on rule is �red, and the three locks are
acquired (X1[D] is the �rst exclusive lock requested for block D). This rule executes
the clear space envelope which invokes an agent to clear space[D]. To execute
this rule, two locks need to be acquired; however a conict occurs as the second X[D]
lock is requested, since the two locks are incompatible. This lock conict is repaired
by the second condition pair in the OBJECT conflict cord rule. Note that both
X locks are set on D. The clear space rule executes the put on envelope which
invokes another agent to put on[G, Table]. As these locks are acquired, three
separate conicts occur, and each is handled by the appropriate cord condition pair.
We omit the right side of the process tree (clear space[A]) as its execution is
identical.

4 Software Process Application

Figure 11 is a partial fragment from the ispw-7 sample problem [3]. We apply the
concepts shown in this paper to this fragment, and show how multiple agents can
cooperate. There are three agents, the Reviewer, the Designer, and the Programmer.
They each have a set of tasks (in white boxes) that they must perform. The solid
arrows de�ne the sequence of tasks for an individual agent, and the dashed arrows
show how the agents communicate with each other. The long grey vertical boxes
represent the transactions encapsulating each agents's actions. The work starts when
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OBJECT_conflict [ OBJECT ]

bindings:

?t1 = holds_lock ()

?t2 = requested_lock ()

body:

if (and (?t1.rule = clear_space) # An agent is using put_on[obj, table]

(?t2.rule = put_on)) # to clear_space for user command

then { # put_on[A, B], where object "obj" is sitting on

notify(?t2, "Conflict-1") # object A.

ignore()

}

if (and (?t1.rule = put_on) # An agent is using clear_space[obj] to

(?t2.rule = clear_space)) # clear space for user command

then { # put_on[obj, A] or put_on[A, obj].

notify(?t2, "Conflict-2")

ignore()

}

if (and (?t1.rule = put_on) # An agent is using put_on(X, Y) and a

(?t2.rule = put_on)) # subagent has been invoked to use

then { # put_on(Y,table) to clear_space for Y.

notify(?t2, "Conflict-3")

ignore()

}

end_body;

TABLE_conflict [ TABLE ]

bindings:

?t1 = holds_lock ()

?t2 = requested_lock ()

body:

if (and (?t1.rule = put_on) # Two agents are trying to place

(?t2.rule = put_on)) # blocks on the same table

then

{

notify(?t2, "Conflict-4")

ignore()

}

end_body;

Figure 10: cord coordination rules
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Figure 11: Partial fragment from ispw-7

the Designer submits a modi�ed design for review. The Reviewer either approves
the design or produces feedback, and replies to the Designer who either continues to
modify the design, or submits it to the Programmer. Once the Programmer has made
the necessary modi�cations, the code is compiled and veri�ed, and the Designer is
noti�ed of either success or failure, in which case the design is �nished, or further
modi�ed, respectively.

The data model and process model which specify this process are shown in �gure 13.
This somewhat complex-looking set of msl rules is abstractly pictured in �gure 12,
where each rule is represented by a box whose logical condition is above the box,
and whose e�ects are below. A horizontal line of o's represents a rule invoking an
agent. In order for these agents to cooperate, two conicting situations need to be
handled: when the Reviewer and the Programmer read the design which the Designer
is modifying. We use the same lock compatibility table and mapping table from
�gure 4. The modify design rule invokes a separate agent to review the design, and
the locking conict is resolved by the cord rules in �gure 14.

5 Conclusions

The approach outlined in this paper has its shortcomings. In this prototype example
of cooperating agents, a new agent is created each time one is needed. In addition
to wasting resources, this will sometimes incorrectly model certain situations. The
Marvel system needs to be modi�ed slightly to allow inter-agent communication be-
tween existing agents, and this is one focus of future work. In addition, the cord rule
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not modified

modify_design

not modified
not implemented

o oo o o oreview_design

approved

not approved
not approved

modified

modified

not modified

cont_modify

approved

modified

o modify_code

implemented

not implemented

not modified
implemented

approved

finish

ooo o osubmit

Figure 12: Cooperative solution to ispw-7 fragment

approach needs more extensions to be able to fully di�erentiate between interferences
of cooperating agents and independent agents. We are in the process of enhancing
cord, and this is an issue we need to address. Finally, the approach of tailoring lock
modes for rules, as described in �gure 4, is too general to be of much use. Making
all locks compatible avoids conicts, but introduces chaos since there would be no
control over the operations. There currently exists in Marvel a way to speci�cally
determine lock modes for the activity section of a rule, but this needs to be extended
to all symbols (and the objects bound to them) within the rule.

Even with its limitations, this paper does address, and propose solutions to, certain
issues regarding cooperating agents. The primary result of this work is to show how
non-serializable behavior can be controlled by a set of coordination rules to allow
cooperating agents to function properly, while still preventing independent agents
from interfering with each other. The coordination rule approach can be applica-
ble to any process modeling system, since the cord rule language is orthogonal to
the underlying pml which represents the process. We are currently implementing a
transaction manager component, called Pern, which will allow researchers to tailor
the concurrency control of a database to suit their applications' needs.
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OBJECT :: superclass ENTITY;

design : DESIGN;

code : CODE;

end

DESIGN :: superclass ENTITY;

contents : text;

modified : (Yes, No, Initial) = Initial;

approved : (Yes, No, Initial) = Initial;

implemented : (Yes, No, Initial) = Initial;

end

CODE :: superclass ENTITY;

contents : text;

end

modify_design[?o:OBJECT]:

(exists DESIGN ?d suchthat (member [?o.design ?d])):

(and (or no_backward (?d.modified = No)

no_chain (?d.modified = Initial))

(or no_backward (?d.implemented = No)

no_chain (?d.implemented = Initial)))

{ MODIFY_TOOL modify_design ?o.Name } # invokes separate agent to review design

(and (?d.modified = Yes)

(?d.implemented = No));

no_assertion;

review_design[?o:OBJECT]:

(exists DESIGN ?d suchthat (member [?o.design ?d])):

{ MODIFY_TOOL review_design }

no_chain (?d.approved = No);

no_chain (?d.approved = Yes);

hide continue_modify_design[?o:OBJECT]:

(exists DESIGN ?d suchthat (member [?o.design ?d])):

(and no_backward (?d.modified = Yes)

no_backward (?d.approved = No))

{ }

(and no_chain (?d.approved = Initial)

(?d.modified = No));

hide submit[?o:OBJECT]:

(exists DESIGN ?d suchthat (member [?o.design ?d])):

(and no_backward (?d.modified = Yes)

no_backward (?d.approved = Yes))

{ MODIFY_TOOL submit ?o.Name } # invokes separate agent

(?d.modified = No);

modify_code[?o:OBJECT]:

(exists CODE ?c suchthat (member [?o.code ?c]))):

{ MODIFY_TOOL verify_code ?o.Name }

no_chain (?d.implemented = Yes);

no_chain (?d.implemented = No);

hide finish[?o:OBJECT]:

(and (exists DESIGN ?d suchthat (member [?o.design ?d]))

(exists CODE ?c suchthat (member [?o.code ?c]))):

(and no_backward (?d.modified = No)

no_backward (?d.implemented = Yes)

no_backward (?d.approved = Yes))

{ }

(and no_chain (?d.modified = Initial)

no_chain (?d.implemented = Initial)

no_chain (?d.approved = Initial));

Figure 13: msl rules for fragment ispw-7 solution
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DESIGN_conflict [ DESIGN ]

bindings:

?t1 = holds_lock ()

?t2 = requested_lock ()

body:

if (and (?t2.rule = review_design) # A sub-agent requests to review a design

(?t1.rule = modify_design)) # which has just been modified.

then {

notify(?t2, "DESIGN_conflict-1")

ignore()

}

if (and (?t2.rule = modify_code) # A sub-agent requests to review a design

(?t1.rule = submit)) # which has just been modified

then {

notify(?t2, "DESIGN_conflict-2")

ignore()

}

end_body;

Figure 14: cord rules for ispw fragment
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