
Disconnected Operation in a

Multi�User Software Development Environment

Peter D� Skopp Gail E� Kaiser

Columbia University Columbia University

Department of Computer Science Department of Computer Science

Abstract
Software Development Environments have tradi�

tionally relied upon a central project database and �le
repository� accessible to a programmer�s workstation
via a local area network connection� The introduc�
tion of powerful mobile computers has demonstrated
the need for a new model� which allows for machines
with transient network connectivity to assist program�
mers in product development� We propose a process�
based checkout model by which process and product
�les that may be needed during a planned period of
dis�connectivity are pre�fetched with minimal user ef�
fort� Rather than selecting each �le by hand� which is
tedious and error�prone� the user only informs the en�
vironment of the portion of the software development
process intended to be executed while disconnected�
The environment is then responsible for pre�fetching
the necessary �les� We hope that this approach will
enable programmers to continue working on a project
without network access�

� Introduction
A multi�user software development environment

�SDE� supports collaboration among multiple partic�
ipants in large�scale software engineering projects� It
provides a repository in which source code� object
code� documentation� test cases� etc� reside� with
some form of concurrency control to coordinate ac�
cess to shared �les� It integrates a collection of tools�
ranging from editors and compilers to con�guration
managers and modi�cation request systems� and gen�
erally tracks the progress of the project� A subclass of
SDEs� called process�centered environments �PCEs��
in addition provide some formalism through which a
process may be speci�ed � basically a partial order�
ing among software engineering tasks� constraints and
obligations of those tasks� and the �les and tools used
in the tasks �	
�� The generic PCE kernel is parame�
terized by the desired process� and the same PCE can
support a wide range of di�erent processes�

Software engineers are well�known for their long
working hours� some of which can be conducted at
home using dumb terminals and modems� This mode
of operation is relatively easy for an SDE to support
� if one does not mind giving up many of the advan�
tages of modern workstations� notably the large graph�
ics displays� In theory� a full�scale workstation could

be installed at home� but conventional modem speeds
make it infeasible to treat this workstation as just any
other node on the network� Low bandwidth serial
line protocols such as SLIP and PPP are inadequate
for maintaining a sophisticated display or transferring
large �les for local tool manipulation� X		 based pro�
tocols such as XRemote �
� and LBX �� will maintain
higher throughput via a serial line� but may still be
too slow for interactive usage� To date� the SDE com�
munity has nearly ignored the possibility of o��site
access� and the best that can be expected is a TTY
user interface simulating the capabilities of the stan�
dard �graphics�based� user interface accessible only to
users communicating over a local area network�

The advent of mobile computing thus introduces a
new challenge for SDEs� and an exciting opportunity�
Laptop or notebook computers provide essentially the
same power as desktop workstations� but with low�
perhaps varying bandwidth � and often operating
in a completely disconnected state for arbitrary pe�
riods of time� The challenge is how to incorporate
this emerging technology into multi�user environments
that normally rely on �at least� a shared network �le
system� The opportunity is to completely rethink SDE
architectures to consider the full spectrum of network�
ing possibilities� multi�site as well as o��site� gigabit
down to zero bandwidth� during normal operation�

� Laputa Overview
In the Laputa project� we are primarily investigat�

ing the problems of disconnected operation� when a
software engineer removes a notebook computer from
the network for a period in order to conduct work
o��site� �In the related Oz project� we are studying
geographically distributed operation over a high�speed
network connecting multiple sites ����� We assume the
user restores the connection eventually� to merge the
�partially� completed work with the ongoing e�orts of
other personnel collaborating on the same large�scale
project� We have chosen the PCE subclass of SDEs�
where we can exploit a prede�ned process to partially
automate the selection of �les to download prior to
disconnection and to structure the o��line work as a
well�understood fragment of the overall process�

Laputa is being implemented by modifying the
Marvel ��	 environment� in which the process is de�
�ned by a set of condition�activity�e�ects rules �	���

An instance of Marvel represents its process internally
by a rule network� whose links indicate possible for�
ward and backward chains between rules related by a
common predicate ���� When a user requests to ex�
ecute a particular software engineering task� Marvel
employs the network to enforce and automate the sub�
process involving the rule corresponding to that task�
If the rule�s condition � a complex logical clause �
is not already satis�ed� backward chaining attempts to
execute other rules� one of whose e�ects might satisfy
the original rule�s condition� Its activity� usually invo�
cation of an external tool� cannot be initiated until the
condition is true� After an activity completes� one of
the rule�s e�ects � each a sequence of predicates �
is asserted� and forward chaining triggers any other
rules whose conditions have now been met� There are
multiple disjoint e�ects to re�ect the multiple possible
results of a tool invocation �i�e�� various success and
failure cases��

Each participant in a process interfaces to the sys�
tem through a separate client� which supplies the user
interface and forks individual tools� The clients are
coordinated by a server that incorporates the process
engine and the shared �le repository ���� The standard
client�server protocol is for the client to display the
repository in graphical format� the user selects from
the task menu and clicks on the desired arguments�
and then the client transmits this information to the
server for any needed backward chaining� To execute
an activity� the server submits the tool invocation in�
formation back to the client� and goes on to accept
the next message from its input queue� After termi�
nating the tool execution� the client returns the results
to the server� which eventually carries out any conse�
quent forward chaining�

In the Laputa extension of Marvel� we are develop�
ing an expanded client that takes over the behavior of
the server during the time when the computer execut�
ing that client is disconnected from the network� This
client maintains a local� single�user process engine and
�le manager that duplicate portions of the rule net�
work and repository from the main server� These
are populated in anticipation of explicit disconnection�
and any changed �les will be reintegrated during later
reconnection�

� Pre�Fetching
Disconnected operation is achieved through intel�

ligent �le pre�fetching� In order for pre�fetching to
be e�ective in Laputa� we have formulated a list of
requirements that the system must adhere to�

	� Be able to pre�fetch a working subset of �les such
that the user may continue development locally�

�� The fact that �les have been copied to a discon�
nected Laputa client should not hinder the work
of other users�

�� Inconsistencies between local copies of �les and
those in the central repository must be trackable�

Disconnected operation supported through �le pre�
fetching is not a new area of research� however pre�
vious systems ��� 	�� 	� were unable to draw upon

the detailed application semantics inherently available
from PCEs such as Marvel� We see three possible ap�
proaches to the choice of �les to pre�fetch� the last of
which is a novel contribution of this research�

	� Manual� A user supplies an explicit list of �les to
be pre�fetched�

�� Heuristic� The system maintains statistics about
each user�s past e�orts� and assumes the same
�les are needed for future work�

�� Process�based� A user supplies an explicit list of
tasks to be carried out while disconnected� and
the system analyzes the process de�nition to de�
termine the �les required for those tasks� their
prerequisites and their consequences�

All three methods of selection will be implemented
in Laputa� although manual and heuristic selection
have major limitations�

An entirely manual approach puts the full burden
of �le selection on the user� If a critical item is dis�
covered to be missing after a portable computer has
broken its network connection� the local development
e�ort may come to a halt� While we assume a user
will be able to identify at a high level what type of
work is desired to be accomplished during a planned
period of dis�connectivity� a user may not always cor�
rectly identify all support �les� An example would be
a software engineer who pre�fetched some �C� source
�les to edit� but neglected to pre�fetch all of the header
�les required to recompile the source �les� In a large
project� it would be easy for some needed �les to be
forgotten� hence stalling development�

Pure heuristic selection assumes inertia on the part
of the user� That is to say� the system generally pre�
pares for a user to continue doing essentially the same
work while disconnected that was recently being per�
formed while connected� There is a tradeo� here be�
tween biasing the heuristics towards pre�fetching too
little versus too much� If the user does not plan to re�
peat exactly the same task �which may have already
been �nished�� the materials available may not be suf�
�cient for the new work� Yet on a portable machine
with limited disk space� we would like to prune out
all unnecessary �les from the local disk in order to
preserve the precious commodity�

Process�based selection addresses the problems en�
countered with manual and heuristic selection� How�
ever� the process�based approach is not as simple as it
sounds� Practical industrial�scale processes are com�
plex� with numerous opportunities for choice or it�
eration �		�� The transitive closure of consequences
emanating from a process step can be immense� and
instantiating each enclosed task with the appropri�
ate �les could mark most of the repository for pre�
fetching� Combining process knowledge with heuris�
tics from previous access patterns is thus useful to
prune the branching paths� producing the subset of
�les most likely to be needed� We always pre�fetch
�les required to ful�ll any constraints for a given task
before those required for the obligations following that
task� The ordering is meant to assure that a user has

all �les required to perform a desired task� at the pos�
sible expense of tasks to be initiated after the original
task had completed�

For example� in the Marvel context it seems appro�
priate to maintain statistics on which of the multiple
e�ects of a rule has been selected most frequently� with
respect to this speci�c user and�or the arguments de�
sired for the originating task� to restrict the expected
forward chaining to a manageable level� When the
system guesses incorrectly� the forward chaining must
be delayed until reconnection� The degree to which
�le selection is pruned can also be adjusted to accom�
modate the varying size of a local disk� e�g�� by not
completing even the most likely forward chaining path
if the disk is too small and considering multiple paths
if there is more free space�

� Concurrency Control
The obvious approach to concurrency control in

this context would be the �checkout� model found in
most version control tools and some modern database
systems �e�g�� �	�� 	���� Each pre�fetched �le would
be locked in shared or exclusive mode� depending
on whether it is only to be read or possibly may be
updated during the disconnected process fragment�
These locks would be maintained persistently until
later reconnection and �checkin��

But a more �exible approach is desirable for some
software engineering applications ���� Fortunately� in
addition to being parameterized by the desired pro�
cess� Marvel includes a sophisticated approach to con�
currency control whereby new lock modes� compat�
ibility among lock modes� and resolution of locking
con�icts can also be de�ned on a project�speci�c ba�
sis ��� ��� We exploit these facilities to support the
Laputa disconnected client�

Read�only �les can be locked in a new dirty read
mode and replicated on the Laputa client� unlike
shared mode� dirty read is de�ned to be compat�
ible with the exclusive mode so that other users can
continue to work on the �le� An obvious example of
�les that could be locked in dirty readmode are �C�
header �les that the user does not intend to edit� but
which are needed to compile a modi�ed �C� source
�le� The use of the dirty read lock would allow other
users to makemodi�cations� and the disconnected user
would continue to use the outdated version of the �le
until reintegration occurred�

Write�able �les can be locked in one of two modes�
creative exclusive or generated exclusive� The
Laputa extension of Marvel allows a process archi�
tect �the person charged with writing the process
de�nition� to describe a task as either creative or
generated� A creative task is one that involves
an interactive tool that produces a valuable product�
such as an editor or a drawing program� These tasks
are di�erentiated from generated tasks whose out�
put can easily be reproduced without direct user in�
put� generated tasks will typically read in one or
more input �les� process the input� and produce one
or more output �les without modifying the inputs� Ex�
amples of generated tasks are assembling� compiling�
and linking because the tools used in these tasks can

yes

yes

yes

yes

yesyesyesyes

no

no

no no

no

no no

no

SDRGXCX

S

DR

GX

CX

S
DR
GX
CX = Creative Exclusive

= Generated Exclusive
= Dirty Read
= Shared

Figure 	� Laputa lock matrix

easily be invoked to re�create their output� When a
�le is pre�fetched in a write�able mode� if the task that
requires the �le is creative� then the �le is locked in
the creative exclusive mode� Otherwise the �le is
locked in generated exclusive mode�

The two exclusive modes are useful during rein�
tegration� Files locked in creative exclusive mode
are always �dominant�� i�e�� they will always be con�
sidered the most recent copy of a �le and so can al�
ways safely replace older versions in the shared �le
repository upon reintegration� Because generated
tasks invoke tools that read input �les locked in dirty
read mode� some caution must be exercised when re�
integrating these �les� to assure that all generated
�les are consistent with their respective input �les as
found in the repository� The lock matrix shown in �g�
ure 	 summarizes the compatibility between the vari�
ous lock modes relevant for pre�fetched �les�

� Reintegration
A network connection can be re�established by

the disconnected user at any time desired� at which
point reintegration begins� Reintegration �rst detects
any changes between the shared �le repository and
the local copies locked in dirty read or generated
exclusive mode� If no di�erences are found� the �les
locked in both creative exclusive and generated
exclusive modes can be presumed valid � and are
copied into the repository� overwriting the previous
versions�

But if some shared �les had indeed changed� then
the reintegration occurs in four stages�

	� All �les locked in creative exclusivemode are
copied into the shared repository� replacing pre�
vious versions�

�� All �les locked in generated exclusive mode
that are dependent upon �les locked in dirty
read mode� which in turn are di�erent from
the versions stored in the shared repository� are
deleted� We say that a dependency exists between

rule COMPILE� cfile

conditions�
cfile�compile�status � ��Not�Compiled���
cfile�reference�status � ��Referenced���

action� generated�
return�value � compile cfile�

effects�
if return�value � Error
cfile�compile�status � ��Error���

else cfile�compile�status � ��Compiled���

Figure �� Compile Rule

two �les� when one �le is read in as input to a tool
that produces the other �le as output�

�� All �les locked in generated exclusive mode�
which are dependent upon �les locked in
generated exclusive mode but which were
deleted in step �� are deleted� This step iterates
through the complete transitive closure�

�� All remaining �les locked in generated
exclusive mode are presumed to be valid and
are copied into the shared repository�

Once all of the �les updated in the Laputa client
have been copied into the main repository� all �les
which were locked in generated exclusivemode and
deleted in steps � and � are regenerated by the pro�
cess� This step is possible because only �les generated
by tools �without direct user intervention� have been
deleted� The process engine is thus capable of trig�
gering the appropriate tasks to regenerate all of the
missing �les� �nishing reintegration�

� Example
The example in this section� although necessarily

abbreviated� is intended to be typical of Laputa us�
age� We start by presenting a piece of a sample soft�
ware development process� The process de�nition is
written in a language similar to the one supported by
Marvel� but the syntax here is intended to be more
readable� We have also added a few features speci��
cally for Laputa� as noted below�

The compile rule in �gure � operates on �C� source
�les� called cfiles� The condition on �ring the rule
is that the �le has not already been compiled� and
that the �le is �referenced�� Referencing in this con�
text refers to analyzing a cfile to determine the set
of header �les that it will include upon compilation�
There are two possible e�ects of this rule� correspond�
ing to either success or failure by the compiler�

The edit rule in �gure � is used to edit �C� source
�les� The condition on �ring this rule speci�es that
the �le must be �reserved� and that the person who
is trying to edit the �le must be the same person who
reserved the �le� The binding section of the rule �nds

rule EDIT� cfile

conditions�
cfile�reservation�status � ��Reserved���
cfile�reservation�holder � Current�user�

action� creative�
edit cfile�

bindings� exefiles � all EXEFILE such that
linkto�cfile	 EXEFILE
�

effects�
cfile�compile�status � ��Not�Compiled���
cfile�time�stamp � Current�time�
cfile�referenced � ��Unreferenced���
for all exefile in exefiles
exefile�build�status � ��Not�Built���

Figure �� Edit Rule

rule RESERVE� cfile

conditions�
cfile�reservation�status � ��Available���

action� generated�
checkout cfile�

effects�
cfile�reservation�status � ��Reserved���
cfile�reservation�holder � Current�user�

Figure �� Reserve Rule

all executable �les derived from the cfile� Aside
from the obvious e�ects such as changing the �le�s
timestamp� all executable �les that were bound to
the exefiles variable are marked as Not Built� It is
important to note that this rule�s action �activity� is
creative as opposed to the other rules shown� which
are generated�

The reserve rule in �gure � is used to reserve a �le
from a version control system such as RCS �	��� �Note
that the use of such a tool is orthogonal to the con�
currency control system and lock compatibility ma�
trix supported by the Marvel kernel� and its use in
checking �les in and out of a Laputa client� In par�
ticular� an entire RCS delta �le could potentially be
copied by Laputa during pre�fetching and reintegra�
tion� just like the input and output arguments of any
other tool�� The condition to �ring this rule is that
the �le being reserved is currently �available�� and
the e�ects change the reservation status and holder
attributes of the �le�

The reference rule in �gure
 �nds all header �les
that a given cfile includes� The list of header �les
is then stored in the headers attribute for use by the
compiler�

rule REFERENCE� cfile

conditions�
cfile�reference�status � �Unreferenced���

action� generated�
headers � find�dependencies cfile�

effects�
cfile�headers � headers�
cfile�reference�status � ��Referenced���

Figure
� Reference Rule

rule BUILD� exefile

bindings� cfiles � all CFILE such that
linkto�exefile	 CFILE

conditions�
exefile�build�status � ��Not�Built���
for all cfile in cfiles
cfile�compile�status���Compiled���

action� generated�
�� the object code file is treated as

an attribute of the source file ��
return�value � link exefile cfiles�obj�

effects�
if return�value � Error
exefile�build�status � ��Error���

else exefile�build�status � ��Built���

Figure � Build Rule

The build rule in �gure �rst checks to make sure
that an executable �le does not already exist� to avoid
redundant work� and that all of the object code needed
to build the executable is available� The test rule in
�gure � simply veri�es that an executable �les exists�
and then runs it through a test sequence�

A software engineer following a process like the
one described above may wish to disconnect from
the network� This user would give Laputa a list of
rules instantiated with their arguments� indicating the
planned task� and then the system would determine
the other rules that might need to be �red to satisfy
the conditions as well as the other rules that might be
triggered by the e�ects�

To satisfy the edit rule� the �le must be reserved by
the current user� If this condition is not already met�
the system attempts to �nd other rules whose execu�
tion may satisfy the initial rule� An inspection of the
rule network indicates that the reserve rule is able to
satisfy the reservation constraint of the edit rule� La�
puta has two options� it may �re the rule now� or it
may pre�fetch all of the �les that are needed to �re the
rule after the client has been disconnected� Laputa

rule TEST� exefile

conditions�
exefile�build�status���Built���

action� generated�
test exefile�

Figure �� Test Rule

checks the type of action that is taken with the task�
and if the action is generated� then it is performed
prior to disconnection� Long duration tasks such as
editing are typically creative� forcing the system to
pre�fetch additional �les to support the activity dur�
ing disconnected operation� In this case� the reserve
action is generated so Laputa reserves the �le while
there is still a connection to the central repository�
reducing the number of overall �les that need to be
pre�fetched�

With the edit rule�s condition satis�ed� the system
moves on to determines the activity type of the edit
action� We see from �gure � that the edit rule is a
creative task� so Laputa pre�fetches the �C� source
�les onto the portable machine�s local disk�

Once a user has �nished editing a �le� the e�ects
of the edit rule are asserted� satisfying the conditions
of the reference rule� which in turn forward chains
to the compile rule� The possible forward chains are
simulated before disconnecting from the shared reposi�
tory� so Laputa can pre�fetch all �les that are needed
for these two tasks �the �C� source and its header
�les�� The �C� �le has already been pre�fetched for
the edit rule� and is locked in creative exclusive
mode� but the header �les are only used as inputs to
generated tools� so they are locked in dirty read
mode� The system continues to explore its rule net�
work and proceeds to pre�fetch those �les that are
needed for �ring the build rule and the test rule�

Once �le pre�fetching has concluded� the user dis�
connects the portable workstation from the network
and is free to continue development� The user can edit
�C� code� compile the �les� build new executables� and
test the code changes� All of the object code and exe�
cutables produced during the disconnected period are
locked in generated exclusivemode� and the source
�les are locked in creative exclusive mode�

When the user is ready to reintegrate� a network
connection is reestablished� First� all of the modi�
�ed �C� �les that were locked in creative exclusive
mode are copied from the Laputa client into the main
repository� Then� all of the dirty read �les are com�
pared against the copies in the repository to check for
di�erences� If none are found� then the object code
and the executables locked in generated exclusive
mode on the disconnected client are also copied into
the main repository� If there are discrepancies be�
tween the repository and the �les locked in dirty
read mode� then all �les which have dependencies
upon the inconsistent �les are deleted� Then the pro�

cess is charged with regenerating all of the deleted �les�
in the central repository completing the reintegration�

� Status
The Laputa implementation is currently in

progress� The initial platform for the notebook com�
puter will be a SparcBook � with
��MB disk� run�
ning SunOS ��	��� Marvel ��	 itself consists of about
	
����� lines of C� lex and yacc� and runs on SparcSta�
tions� DECStations and IBM RS���s� It was released
in March 	���� and has been licensed to over �fteen
institutions to date�

	 Contributions
A related approach was taken in the Sun Network

Software Environment �	�� A user would select a soft�
ware component to check out� and all of its constituent
�les were �acquired�� The user was then able to work
independently on the �les in the component� Other
users were free to �acquire� the same software compo�
nent� increasing parallelism� On request or at �recon�
ciliation� time� the system detected any changes in the
�le repository from the user�s workspace� and copied
the new versions of the checked out �les� A diff�like
tool assisted the user in merging the updated �les with
their newer versions�

Numerous other SDEs employ some form of check�
out model for concurrency control� but we know of
none besides Laputa that either exploits the software
process to assist in selecting �les to be checked out or
that permits disconnected operation�

Acknowledgements
We would like to thank Dan Duchamp� who ini�

tially interested the authors in the problems of mobile
computing�

References
�	� Evan W� Adams� Masahiro Honda� and Ter�

rence C� Miller� Object Management in a CASE
Environment� In ��th International Conference
on Software Engineering� pages 	
��	�� Pitts�
burgh PA� May 	���� IEEE Computer Society
Press�

��� Naser S� Barghouti and Gail E� Kaiser� Con�
currency Control in Advanced Database Applica�
tions� ACM Computing Surveys� ����������	��
September 	��	�

��� Israel Z� Ben�Shaul� Oz� A Decentralized Pro�
cess Centered Environment� Technical Report
CUCS��		���� Columbia University� Department
of Computer Science� April 	���� PhD Thesis
Proposal�

��� Israel Z� Ben�Shaul� Gail E� Kaiser� and
George T� Heineman� An Architecture for Multi�
User Software Development Environments� Com�
puting Systems� The Journal of the USENIX As�
sociation� ����
�	��� Spring 	����

�
� David Cornelius� XRemote� A Serial Line Proto�
col for X� In �th Annual X Technical Conference�
January 	����

�� Jim Fulton and Chris Kent Kantarjiev� An Up�
date on Low Bandwidth X �LBX�� A Standard for
X and Serial Lines� Technical Report P�������	�
Xerox Palo Alto Research Center� February 	����

��� J� S� Heideman� T� T� Page� R� G� Guy� and G� J�
Popek� Primarily Disconnected Operation� Ex�
periences with Ficus� In Second Workshop on
Management of Replicated Data� IEEE� Novem�
ber 	����

��� George T� Heineman� A Transaction Manager
Component for Cooperative Transaction Models�
Technical Report CUCS��	����� Columbia Uni�
versity Department of Computer Science� July
	����

��� George T� Heineman� Gail E� Kaiser� Naser S�
Barghouti� and Israel Z� Ben�Shaul� Rule chain�
ing in marvel� Dynamic binding of parameters�
IEEE Expert� ��������� December 	����

�	�� Gail E� Kaiser� Peter H� Feiler� and Steven S�
Popovich� Intelligent Assistance for Software De�
velopment and Maintenance� IEEE Software�

���������� May 	����

�		� Gail E� Kaiser� Steven S� Popovich� and Israel Z�
Ben�Shaul� A Bi�Level Language for Software
Process Modeling� In ��th International Con�
ference on Software Engineering� pages 	���	���
Baltimore MD� May 	���� IEEE Computer Soci�
ety Press�

�	�� Won Kim� Nat Ballou� Jorge F� Garz� and
Darrell Woelk� A Distributed Object�Oriented
Database System Supporting Shared and Private
Databases� ACM Transactions on Information
Systems� ��	���	�
	� January 	��	�

�	�� M� J� Rochkind� The Source Code Control Sys�
tem� IEEE Transactions on Software Engineer�
ing� SE�	�������� 	��
�

�	�� Mahadev Satyanaranyanan� James J� Kistler�
Puneet Kumar� Maria E� Okasaki� Ellen H�
Siegel� and David C� Steere� Coda� A Highly
Available File System for a Distributed Worksta�
tion Environment� IEEE Transactions on Com�
puters� �����������
�� April 	����

�	
� 	nd International Conference on the Software
Process
 Continuous Software Process Improve�
ment� Berlin� Germany� February 	���� IEEE
Computer Society Press�

�	� Carl D� Tait and Dan Duchamp� Detection and
Exploitation of File Working Sets� In ��th In�
ternational Conference on Distributed Computing
Systems� pages ���� IEEE� May 	��	�

�	�� Walter F� Tichy� RCS � a system for ver�
sion control� Software � Practice � Experience�
	
�������
�� July 	��
�

