
WebCity: A WWW-based Hypermedia Environment for Software Development

Wenyu Jiang, Gail E. Kaiser, Jack Jingshuang Yang, Stephen E. Dossick
Department of Computer Science, Columbia University

1214 Amsterdam Avenue, Mail Code 0401, New York, NY 10027

Abstract:
Many SDEs (Software Development Environments) have been built to help increase software

productivity. However, these systems often have several de�ciencies: inability to operate/act on
external data; hardwired behaviors; and �nally lack of a universal remote access mechanism for
geographically distributed users.

In this paper we �rst introduceOzWeb , a system which combines the elements of SDE, Workow
Management, and the World Wide Web (WWW). We explain how it provides a solution for the
above three problems. Then we describe WebCity, an instance of SDE which applies OzWeb 's
technology to a real environment. We will discuss how it solves those problems with SDE, and our
experience in building and using it. Finally we compare WebCity with similar systems that also
deploy Web technology.

1 Problems

Various Software Development Environments (SDEs) have been available and in use for many

years. They range from personal software packages such as Borland C to multi-user environments

(e.g, Sun NSE) providing con�guration management, concurrency control, etc.

However, there are several weaknesses in these systems: �rst, they are usually self-contained and

rarely interact with external data. For instance, Borland C provides useful on-line help, but when

a user �nds an on-line reference for a toolkit he used in his project, he cannot add it to Borland

C and integrate it with the existing help information. Therefore, the user has to store and search

the reference separately, defeating the purpose of an integrated design environment. Storing the

external references separately also makes it easy to be forgotten or neglected, a common problem

during change of personnel involved in a large software project.

Second, the functionality and behaviors of SDEs like Borland C are very much hard wired,

making it di�cult to be customized for any projects with special demands.

Finally, most SDEs don't have a consistent interface for remote access, a drawback for geograph-

ically distributed users or those working at home. Software such as Lotus Notes provides users with

automated download/upload of documents and programs, but it uses a proprietary communication

protocol, making it di�cult to be accessed over the Internet, the largest network in the world.



2 Approaches

Many research SDEs (e.g, Oz [1]) solves the second problem by using a general workow engine.

A workow modeling language is used to control the engine's execution.

The Web provides an infrastructure for solving the remaining problems, through the use of

hyper links (to refer to external data) and its ubiquitous availability (to facilitate remote access).

Apparently an appropriate combination of SDE, the Web, and workow management can pro-

vide a promising solution for these problems. Therefore, we developed the OzWeb [2] system, based

upon which we built WebCity: a WWW-based hypermedia code development environment.

3 OzWeb

Oz [1] is an SDE system the authors developed at Columbia University, aimed to provide exible

workow automation with a rule-based workow engine.

To solve the remaining two problems, we extended Oz to support HTTP at the front end. It

responds to a web browser by returning an HTML page with links of data objects and rules, the

user browses data and executes rules by clicking on appropriate links. We also added special code

to handle read/write of web documents (URLs) at the back end, by introducing a special object

type called WebObj to the system.

With an HTTP frontend, the user can access the environment via any web browser from virtually

anywhere. With back end handler for web documents, the user can store references to external data

on the web easily in the environment. It can be even used to perform workow on web documents,

e.g, whenever a document was detected to have changed. The modi�ed version of Oz , owing to its

Web-aware nature, is then named OzWeb .

OzWeb does more than storing URLs. A WebObj object can have 3 di�erent types: Reference,

Copy and Updatable. \Reference" is the default, it means whenever OzWeb performs a read

operation, it should get the most recent data from the Web. \Copy" means once a local cache �le

is present, the cache should always be used, possibly useful for mirroring. \Updatable" means the

user has permission to update the document represented by its URL via HTTP PUT.

OzWeb consists of several components: the workow engine uses speci�ed workow model

(rules) to control its automation, the object-oriented database (objectbase for short) stores pro-

gram data and information persistently, and the transaction manager provides crash recovery and

concurrency control. Finally, a shell script is used to wrap up external tool (e.g, gcc). The server



is responsible for invoking the tool. All three components are highly customizable, which makes it

highly convenient for building SDEs with arbitrary demands.

4 WebCity

OzWeb is a general-purpose server program, therefore it must run on a speci�c environment,

which de�nes its own workow model, data schema, and concurrency policy. To verify the appli-

cability of OzWeb, we built WebCity, the environment we use to develop our own research project.

Most of its features are normal software development activities, including build, compile, edit,

check in, check out �les, support of local workspaces and local projects, etc. All of these activities

are implemented by rules, since OzWeb uses a rule-based workow engine.

WebCity organizes program data as a tree of objects, there is a master project tree, serving as

the main repository, each user has his own local workspace, under which contains multiple local

projects, with source �les checked out from the main repository.

In order to test out the usage of web documents, we added several features to WebCity:

First, every source �le (CFILE, HFILE, etc.) is also a subclass of WebObj, with its URL

representing a HTMLized version of the source code, which we dubbed HiC'ed code, because it is

automatically generated by a homegrown utility called HiC. In HiC'ed code, every function call

or data type usage appears as a hyper link, pointing to its de�nition. This provides convenient

traversal of source code without having to run a debugger.

Second, every local project, local workspace, or even the entire project can have a DOCUMEN-

TATION child object, which can further have any number of WebObj child objects. Therefore, we

can easily create references to external web documents at di�erent granularity: documents pertinent

to a local project, to a local workspace, or to the entire project.

We have usedWebCity for several months, its HiC facility proves to be very useful, and suits well

for use on the web. Flexibility of adding external web documents helps us organizing information in

an orderly fashion. Finally, the users can work either at home or in the o�ce conveniently, without

having to worry about �le download/upload.

Most of the advantages presented here are attributed to OzWeb , and not speci�c for WebC-

ity, since OzWeb serves as the foundation for the web frontend user interface and backend data

operation. But through use of WebCity we see applicability of OzWeb .

As a side statistics, WebCity has about 80 rules, 44 classes, 30 shell scripts (for tool wrapping),

it's a reasonably complex software development system.



5 Extensibility of OzWeb and WebCity

Here are some interesting scenarios on the usage of WebObj types that we didn't have time to

try, but we claim they can be done with relative ease:

� Reference: we are using an on-line manual of a beta-version toolkit. To keep the user up to

date with the toolkit info, we can de�ne the \build" rule such that if the manual object's

timestamp has changed since the last project rebuild, notify the user.

� Copy: we found an on-line latex manual and don't want to risk losing it, then specify the

WebObj object's type as Copy.

� Updatable: Suppose you put the source code and help manual of a project of WebCity on

web site A, for which you have PUT permission. To keep download users up to date, you

can declare the help manual object of type Updatable, then de�ne the \build" rule to let it

automatically \trigger" another rule to update web site A via HTTP PUT.

Although WebCity currently supports only C, rules and schemas can be extended to support

another programming language such as Java. Similarly, it can be extended to support tasks like

design and testing as well as coding. All are due to the exibility of OzWeb , especially that of the

workow engines and objectbase.

Of course, a general workow engine despite its exibility, is usually not easy to use. Writing a

workow model is not trivial, especially when there are many tasks interacting with each other.

6 Comparisons

� Lotus Notes supports simple workows and document routing, replication, etc. However, its

workow engine is too simple to be used in a software development context.

� WebMake [4] is an architecture designed to support distributed software development over

the Web. It is based on the CGI (Common Gateway Interface). When the user issues the

command to \make" a given software component, a CGI program is invoked to process the

request on the server where the code resides. It evaluates code dependencies, and sends further

requests if the code to be compiled depends on code residing on another machine. WebMake

is useful where Make �ts best. However, it only supports batch jobs (e.g, recompilation), and

therefore cannot be easily applied to interactive tasks.



� IDEs (Integrated Design Environments) like Borland C have all its facilities seamlessly inte-

grated, providing users with a covenient and consistent user interface. In contrast, WebCity

and many research SDEs provide only loose tool integration, usually by wrapping tools with

shell scripts.It is a trade o� between exibility and better user interface.

7 Related Works

WEBDAV [5] is an Internet draft for distributed authoring and versioning over the Web. It can

provide a foundation for distributed workow on the Web.

WebWork [6] is a Workow System with a web front-end for building customized workow

models. It aims at how to create a workow model rather than what functionality to provide in a

workow modeling language.

References

[1] Israel Z. Ben-Shaul and Gail E. Kaiser: A Paradigm for Decentralized Process Modeling 1995

Kluwer Academic Publishers, Boston MA.

[2] Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang and Jack Yang: An Architecture for WWW-

based Hypercode Environments 1997 International Conference on Software Engineering.

[3] Stephen E. Dossick and Gail E. Kaiser: WWW Access to Legacy Client/Server Applications

1996 5th International Conference on the World Wide Web.

[4] Michael Baentsch, Georg Molter and Peter Sturm: WebMake: Integrating distributed software

development in a structure-enhanced Web WWW95, Computer Science Department, University

of Kaiserslautern, Germany.

[5] WEBDAV Working Group: Y. Goland, E. J. Whitehead, Asad Faizi, Stephen R. Carter and

Del Jensen: Extensions for Distributed Authoring and Versioning on the World Wide Web {

WEBDAV 1997 Internet Draft.

[6] John A. Miller, Devanand Palaniswami, Amit P. Sheth, Krys J. Kochut and Harvinder Singh:

WebWork: METEOR2's Web-based Workow Management System 1997 Department of Com-

puter Science, University of Georgia.


