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Why Phylogenetic Inference?

Understand how life evolved over time.



Why Phylogenetic Inference?
Uncover mechanisms driving betacoronavirus evolution

Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor

binding, Lu et al; TheLancet, 2020. doi: 10.1016/S0140-6736(20)30251-8.



Why Phylogenetic Inference?

Uncover mechanisms driving betacoronavirus evolution

Recombination in Rbd and convergent evolution =⇒
Sars-CoV-II?

Recombination and lineage-specific mutations led to the emergence of SARS-CoV-2, Patino-Galindo et al, doi:

https://doi.org/10.1101/2020.02.10.942748



Bayesian Phylogenetic Inference

Molecular sequences =⇒ evolutionary history
(Dna, Rna, Protein)

Many possible phylogenies...
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(Dna, Rna, Protein)

Infer latent bifurcating tree τ
τ a connected acyclic graph (V ,E )

Internal nodes are unobserved ancestral taxa
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Molecular sequence data =⇒ evolutionary history
(Dna, Rna, Protein)

Infer latent bifurcating tree τ
τ a connected acyclic graph (V ,E )

Internal nodes have degree 3



Bayesian Phylogenetic Inference

Molecular sequence data =⇒ evolutionary history
(Dna, Rna, Protein)

Infer latent bifurcating tree τ
τ a connected acyclic graph (V ,E )

Root node is common evolutionary ancestor



Bayesian Phylogenetic Inference

Molecular sequence data =⇒ evolutionary history
(Dna, Rna, Protein)

Infer latent bifurcating tree τ
τ a connected acyclic graph (V ,E )

Root node has degree 2



Bayesian Phylogenetic Inference

Molecular sequence data =⇒ evolutionary history
(Dna, Rna, Protein)

Infer latent bifurcating tree τ

τ a connected acyclic graph (V ,E )
|E | branch lengths b(e) ∈ R>0, b(e) ∈ B



Bayesian Phylogenetic Inference

Molecular sequence data =⇒ evolutionary history
(Dna, Rna, Protein)

Infer latent bifurcating tree τ

τ a connected acyclic graph (V ,E )
Nonclock trees have nonconstant evolutionary rate



Evolutionary Model

Given a tree τ on data Y = {Y1, · · · ,YM} ∈ ΩNxM

Need model to define likelihood

p(Y|τ,B, θ) =
M∏
i=1

p(Yi |τ,B, θ)

Prob of transition between characters:

CTMC with rate matrix Q

ζv ,s as state of genome for species v at site s:

P(ζv ′,s = j |ζv ,s = i) = (exp(b(e))Q)i,j .
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Evolutionary Model

Given a tree τ on data Y = {Y1, · · · ,YM} ∈ ΩNxM

=⇒ Need model to specify data likelihood:

p(Y|τ,B, θ) =
M∏
i=1

p(Yi |τ,B, θ)

=⇒ Define prob of transition b/t characters (nucleotides):

CTMC with rate matrix Q

Let ζv,s be state of genome for species v at site s:

P(ζv′,s = j |ζv,s = i) = (exp (b(e)Q))i,j



Computing the Likelihood

A A A A

bl6 bl5

bl1 bl2 bl4bl3

P(Y|τ,B, θ) :=
M∏
i=1

∑
ai

η(aiρ)
∏

(u,v)∈E(τ)

exp
(
−bu,vQaiu ,a

i
v

)



Computing the Likelihood

A A A A

bl6 bl5

bl1 bl2 bl4bl3

Sum-Product / Belief Propagation / Pruning Algorithm



Computing the Likelihood

∑∏

∑∏ ∑∏

A A A A

bl6 bl5

bl1 bl2 bl4bl3

Pass messages for conditional likelihood at site i :

LP(i) =

(∑
x∈k

Pr(x |i , tL)LL(x))

)
·

(∑
x∈k

Pr(x |i , tR)LR(x))

)



The Bayesian Approach

How many distinct tree topologies?

(2N-3)!!

Evolutionary uncertainty and prior information

Normalization constant p(Y) requires marginalizing the
(2N − 3)!! distinct topologies (Semple & Steel, 2003) which is
intractable.
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The Bayesian Approach

How many distinct tree topologies?

(2N − 3)!!

Evolutionary uncertainty and prior information

p(B, τ, θ|Y) =
p(Y|τ,B, θ)p(τ,B|θ)p(θ)

p(Y)

Normalization constant p(Y) requires marginalizing the
(2N − 3)!! distinct topologies (Semple & Steel, 2003) which is
intractable.



The Bayesian Approach

How many distinct tree topologies?

(2N − 3)!!

Posterior over phylogenies:

p(B, τ, θ|Y) =

Likelihood︷ ︸︸ ︷
p(Y|τ,B, θ)

tree & model prior︷ ︸︸ ︷
p(τ,B|θ)p(θ)

p(Y)︸︷︷︸
evidence

Normalization constant p(Y) requires marginalizing the
(2N − 3)!! distinct topologies (Semple & Steel, 2003) which is
intractable.



The Bayesian Approach

How many distinct tree topologies?

(2N − 3)!!

Posterior over phylogenies:

p(B, τ, θ|Y) =
p(Y|τ,B, θ)p(τ,B|θ)p(θ)

p(Y)

Marginalizing p(Y) intractable.

P(Y ) =
∑
τ∈T

∫
p(Y|τ,B, θ)p(τ,B|θ)p(θ)dθdτ



Bayesian Phylogenetic Inference

Several distinct challenges:

Inference

Sample tree topologies τ

Sample branch lengths for each τ

Learning

Parameter optimization or model learning
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Bayesian Phylogenetic Inference

Several distinct challenges:

Inference (marginalization)

Sample to approx sum over tree topologies τ

For each τ , sample to approx integral over branch lengths

Learning (optimization)

Find parameters θ = (Q, {λi}|E |
i=1 ∈ B) to max data likelihood



Approaches: Local vs Sequential Search

Local search: Mcmc

Can be used for both inference and learning

Mr Bayes (Huelsenbeck & Ronquist, 2001)
Probabilistic Path Hamiltonian Monte Carlo (Dinh et al.,
2017)

SMC is sequential search algorithm

Performs inference but requires MCMC or EM step for learning.



Approaches: Local vs Sequential Search

Local search: Mcmc

- Start w/ initial τ

i

i i

i
i
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Local search: Mcmc

- Sample τ ′ ∼ q(·|τ i ) by perturbing τ i
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Approaches: Local vs Sequential Search

Local search: Mcmc

Can be used for both inference and learning

θ

θ θ

θ

θ



Approaches: Local vs Sequential Search

Local search: Mcmc

Can be used for both inference and learning

θ

θ θ

θ

θ

Long runs and inefficient parameter space exploration



Approaches: Local vs Sequential Search

Local search: Mcmc

Can be used for both inference and learning

i, θ

i, θ i, θ

i, θ
i, θ

=⇒ Complex, multimodal dist on composite space.
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Approaches: Local vs Sequential Search

Local search: Mcmc

Can be used for both inference and learning

- Mr Bayes (Huelsenbeck & Ronquist, 2001)

- Probabilistic Path Hamiltonian Monte Carlo (Dinh et al.,
2017)

Sequential search: Smc

Performs inference but requires Mcmc or Em step for
learning.

CSMC (Wang, 2015) & Filtered Objectives (Le, 2017),
(Naesseth, 2018)



Approaches: Local vs Sequential Search

Local search: Mcmc

Can be used for both inference and learning

- Mr Bayes (Huelsenbeck & Ronquist, 2001)

- Probabilistic Path Hamiltonian Monte Carlo (Dinh et al.,
2017)

Sequential search: Smc

Performs inference but requires Mcmc or Em step for learning

- Poset Smc (Bouchard-Cote, 2012)
- Combinatorial Smc (Wang, 2015)

Particle Mcmc approaches

⇒ Use Smc for inference & Mcmc for learning.
- Csmc (Wang, 2015), Particle Gibbs (Wang, 2020)



Sequential Search: Combinatorial SMC
Smc operates on a sequence of probability spaces

S0 S1 S2 S3

O0 O1 O2 O3



Sequential Search: Combinatorial SMC
Decompose phylogeny space X into set of partial states of

rank r denoted Sr , w/ S =
R⋃

r=1
Sr

S0 S1 S2 S3

O0 O1 O2 O3

A B C D A B C D A B C D



Sequential Search: Combinatorial SMC
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Sequential Search: Combinatorial SMC
Resample state s̃r ,k ∼ Categorical(w̄r−1,1, · · · , w̄r−1,K )
to focus on areas of high probability.
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Sequential Search: Combinatorial SMC
1. Draw K partial states {sr ,k}Kk=1 ∈ Sr from proposal
ν+
sr,k

: S → [0, 1] at each rank r

πr ,k = ‖πr−1,k‖
1

K

K∑
k=1

wr ,kδs,k(s) ∀s ∈ S

2. Compute importance weights

wr ,k = w(s̃r−1,k , sr ,k) =
π(sr ,k)

π(s̃r−1,k)
·
ν−sr,k (s̃r−1,k)

ν+
s̃r,k

(sr ,k)
,

3. Resample state s̃r ,k ∼ Categorical(w̄r−1,1, · · · , w̄r−1,K )

=⇒ Unbiased estimate for the marginal likelihood

ẐCsmc := ‖πR,K‖ =
R∏

r=1

(
1

K

K∑
k=1

wr ,k

)
→ ‖π‖.



Partial States and Partially Ordered Sets

Probability measure π defined on target space of phylogenetic
trees X , not larger space of partial states Sr

1. Sets of partial states of different ranks disjoint:

Sr ∩ Sq = ∅ ∀r 6= q

2. Sets of partial states of smallest rank has singleton:

S0 = {⊥}

3. Set of partial state of rank R is target measure:

SR = X



Extending the Target Measure
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Extending the Target Measure

Probability measure π defined on target space of
phylogenetic trees X , not larger space of partial states Sr

S0 S1 S2 S3

O0 O1 O2 O3

PAB

A B C D

π(s) =
∏

(ti ,Xi )∈s
πYi (xi )(ti )

= PAB · η × C · η × D · η



Variational Combinatorial Sequential Monte Carlo

Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

Establish connections b/t discrete and continuous variational
sequential search



Variational Combinatorial Sequential Monte Carlo

Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

Develop fast alternatives to Mcmc for both inference and
learning in Bayesian phylogenetics



Variational Combinatorial Sequential Monte Carlo

Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

Stochastic gradient VI with variance reduction and
reparameterization on discrete structures



Variational Combinatorial Sequential Monte Carlo

Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

Use proposal Qφ(B, τ |Y) to form lower bound to marginal
log-evidence:

logPθ(Y) ≥ LELBO(θ, φ,Y) := E
Q

[
log

Pθ(Y,B, τ)

Qφ(B, τ |Y)

]
.



Variational Combinatorial Sequential Monte Carlo

Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

Use proposal Qφ(B, τ |Y) to form lower bound to marginal
log-evidence:

logPθ(Y) ≥ LELBO(θ, φ,Y) := E
Q

[
log

Pθ(Y,B, τ)

Qφ(B, τ |Y)

]
.

Use sequential search to form objective from estimator:

LVCSMC := E
Q

[
log ẐVCSMC

]
, ẐVCSMC :=

R∏
r=1

(
1

K

K∑
k=1

wr ,k

)



Variational Combinatorial Sequential Monte Carlo

Writing discrete φ and continuous ψ proposal terms explicitly:

Qφ,ψ

(
S1:K

1:R

)
:=(

K∏
k=1

qφ(s1,k) · qψ(B1,k)

)
×(

K∏
k=1

N−1∏
r=1

qφ

(
sr ,k |s

akr−1

r−1

)
· qψ

(
Br ,k |B

akr−1

r−1

)
·Cat

(
akr−1|w̄1:K

r−1

))



Variational Combinatorial Sequential Monte Carlo

=⇒ Extend partial state sr ,k ∼ qφ(sr ,k |s̃r−1,k) by drawing two
partial states to coalesce.

Perturb uniform log-prob for each index by adding indep
Gumbel dist noise, return largest two elements.

U ∼ Uniform(0, 1), form G = γ − log(− logU).

G reparameterized as G ′ = G + γ.



Variational Combinatorial Sequential Monte Carlo

Do tighter variational bounds affect learning inference network?

Reparameterization gradients of Iwae inference network
decrease at rate O(1/

√
K )

No terms unique to inference network Q
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Variational Combinatorial Sequential Monte Carlo

Do tighter variational bounds affect learning inference network?

Reparameterization gradients of Iwae inference network
decrease at rate O(1/

√
K )

Vcsmc has no terms unique to inference network Q



Primate Mitochondrial DNA

Benchmark dataset:

Homologous fragments of nucleotide sequences of primate
mitochondrial DNA

12 taxa {S0, · · · ,S11} over 898 sites admitting 13 billion
distinct topologies.

Five homonoids, four old world monkeys, one new world
monkey and two prosimians.



Primate Mitochondrial DNA

ppHmc vs Vcsmc run with K = {4, 8, 16, 32, 64, 128}
samples, averaged over 3 random seeds

Tighter variational bounds as K increases.
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Primate Mitochondrial DNA

ppHmc vs Vcsmc run with K = {4, 8, 16, 32, 64, 128}
samples, averaged over 3 random seeds

Tighter variational bounds as K increases.



Primate Mitochondrial DNA

Tighter variational bounds w/ lower stochastic gradient noise
as K increases.



Primate Mitochondrial DNA

Phylogeny sampled from the posterior:
M Mulatta, M Sylvanus, M Fascicularis, Saimiri Sciureus,
Macaca Fuscata, Homo Sapiens, Pan, Gorilla, Pongo,
Hylobates, Tarsius Syrichta, Lemur Catta



Primate Mitochondrial DNA

Left clade partitions monkeys, central and right partition
hominids and prosimians.



Takeaways

Vcsmc:

VI on composite space of nonclock phylogenetic trees.

Introduces discrete variational sequential search to learn
distributions over intricate combinatorial structures.

Explores high probability trees on benchmark dataset.
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Takeaways

Vcsmc:

VI on composite space of nonclock phylogenetic trees.

Introduces discrete variational sequential search to learn
distributions over intricate combinatorial structures.

Explores high probability spaces on benchmark dataset.



Questions

Thank you!

Special thanks to Christian Naesseth for helpful discussions.

Implementation available online:

https://github.com/amoretti86/phylo

https://github.com/amoretti86/phylo
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Doucet.
Bayesian phylogenetic inference using a combinatorial
sequential monte carlo method.
Journal of the American Statistical Association, 01 2015.



References VIII

Shijia Wang and Liangliang Wang.
Particle gibbs sampling for bayesian phylogenetic inference,
2020.

Cheng Zhang and Frederick A Matsen IV.
Generalizing tree probability estimation via bayesian networks.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 1444–1453. Curran
Associates, Inc., 2018.

Cheng Zhang and Frederick A Matsen IV.
Variational bayesian phylogenetic inference.
In International Conference on Learning Representations, 2019.


