Variational Combinatorial Sequential Monte Carlo
for Bayesian Phylogenetic Inference

Antonio Moretti, Liyi Zhang, ltsik Pe'er

Columbia University

November 23, 2020



Why Phylogenetic Inference?

@ Understand how life evolved over time.
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Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor

binding, Lu et al; TheLancet, 2020. doi: 10.1016/S0140-6736(20)30251-8



Why Phylogenetic Inference?

@ Uncover mechanisms driving betacoronavirus evolution

Corona Virus Receptor Binding Domain (RBD)

Spike Protein

@ Recombination in RBD and convergent evolution —-
SARs-CoV-I17

Recombination and lineage-specific mutations led to the emergence of SARS-CoV-2, Patino-Galindo et al, doi:

https://doi.org/10.1101/2020.02.10.942748



Bayesian Phylogenetic Inference

@ Molecular sequences = evolutionary history
(DNA, RNA, PROTEIN)

s1 = AT GAAC
55 =ATGCAC
s3=ATGCAT
s4 = ATCAAT
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Bayesian Phylogenetic Inference

@ Molecular sequence data = evolutionary history
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Bayesian Phylogenetic Inference

@ Molecular sequence data = evolutionary history
(DNA, RNA, PROTEIN)

/Q\

bls bls

51 = ATGAA

= ATGCAC g D
s3=ATGCAT =

s4 = ATCAAT b/1 b/2 b/3 bl4

ONONONO

@ Infer latent bifurcating tree 7

e 7 a connected acyclic graph (V, E)
e Nonclock trees have nonconstant evolutionary rate
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Evolutionary Model

o Given atree T ondataY = {Yy,---, Yy} € Q¥M

—> Need model to specify data likelihood:

M
p(Y|,B,0) =[] p(Yilr, B,6)

i=1

= Define prob of transition b/t characters (nucleotides):

o CTMC with rate matrix Q

Let (.5 be state of genome for species v at site s:

P(Cv s = jlGv,s = i) = (exp (b(e)Q));



Computing the Likelihood
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Computing the Likelihood

/QK

blg bls

OERO

b/1 b/2 bl3 bl4
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@ Sum-Product / Belief Propagation / Pruning Algorithm



Computing the Likelihood

.
G

b/1 b/2 bl3 bl4

ONONONO

@ Pass messages for conditional likelihood at site i:

Lp(i) <Z Pr(x|i, t; )L (x ) (Z Pr(x|i, tr)Lr(x )))

xe€k x€k
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The Bayesian Approach

@ How many distinct tree topologies?

(2N —3)!
e Evolutionary uncertainty and prior information

p(Y|r,B,0)p(t, B|0)p(6)

p(B,7,0]Y) = oY)



The Bayesian Approach

@ How many distinct tree topologies?

(2N —3)!
@ Posterior over phylogenies:

Likelihood  tree & mf:del prior
o(¥Y[7,B,0) p(r,510)p(0)

p(Y)
—~—

evidence

p(B,7,0Y) =




The Bayesian Approach

@ How many distinct tree topologies?

(2N —3)!!
@ Posterior over phylogenies:

p(Y|r, B,0)p(r, B|0)p(0)

p(B,7,0lY) = p(Y)

e Marginalizing p(Y) intractable.

PYV) =Y / p(Y|r, B, 0)p(r, B|0)p(0)dod

TET
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Bayesian Phylogenetic Inference

Several distinct challenges:

e Inference (marginalization)

e Sample to approx sum over tree topologies 7

e For each 7, sample to approx integral over branch lengths

e Learning (optimization)

o Find parameters 6 = (Q, {\;}|5| € B) to max data likelihood
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o Local search: McwMmc

o Can be used for both inference and learning

@ Long runs and inefficient parameter space exploration



Approaches: Local vs Sequential Search

@ Local search: McmMmcC

o Can be used for both inference and learning

.0
.0
.0

%,9 - g}g,e

—> Complex, multimodal dist on composite space.
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Approaches: Local vs Sequential Search

@ Local search: McmMmcC

o Can be used for both inference and learning

- Mr Bayes (Huelsenbeck & Ronquist, 2001)

- Probabilistic Path Hamiltonian Monte Carlo (Dinh et al.,
2017)

@ Sequential search: Smc

e Performs inference but requires McMC or EM step for learning

- Poset SMc (Bouchard-Cote, 2012)
- Combinatorial SMC (Wang, 2015)

e Particle McMC approaches

= Use Smc for inference & McMc for learning.
- CsMmc (Wang, 2015), Particle Gibbs (Wang, 2020)



Sequential Search: Combinatorial SMC

@ SMC operates on a sequence of probability spaces




Sequential Search: Combinatorial SMC

@ Decompose phylogeny space X into set of partial states of

R
rank r denoted S;, w/ S = |J S
r=1

So @ @ 83




Sequential Search: Combinatorial SMC

o Draw K partial states {s, s }K_; € S, at each rank r
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Sequential Search: Combinatorial SMC

@ Assign importance weight {Wryk}szl to each partial state
K S
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Sequential Search: Combinatorial SMC
e Resample state 5, y ~ CATEGORICAL(Wy—11, "+ , Wr—1K)
to focus on areas of high probability.
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Sequential Search: Combinatorial SMC
e Resample state 5, y ~ CATEGORICAL(Wy—11, "+ , Wr—1K)
to focus on areas of high probability.

SO — S]_ 2 83
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Sequential Search: Combinatorial SMC

o Sample K partial states {s, s}, € S, at each rank r

So —> 81 82 83

R
® @ @




Sequential Search: Combinatorial SMC

1. Draw K partial states {snk}ff:l € S, from proposal
ve 8 —[0,1] at each rank r

K

1
Trk = ||7Tr_17k||R Z Wr,kés,k(s) Vse S
k=1

2. Compute importance weights

(k) Vo (Br-14)

m(5-1k) v, (sek)

Wy k = W(3r—1,k; Sr k) =

3. Resample state §, y ~ CATEGORICAL(Wy_11, " , Wr—1K)

— Unbiased estimate for the marginal likelihood

R

K

A 1

Zosue = ||7TR,K|| = H <K E Wr7k> — ||=]].
k=1

r=1



Partial States and Partially Ordered Sets

Probability measure 7 defined on target space of phylogenetic
trees X, not larger space of partial states S,

1. Sets of partial states of different ranks disjoint:
SNSg=0 Vr#gq
2. Sets of partial states of smallest rank has singleton:
So = {1}
3. Set of partial state of rank R is target measure:

Spr=4&



Extending the Target Measure

@ Probability measure 7 defined on target space of
phylogenetic trees X, not larger space of partial states S,

Sy — S @ S3

L
& @ @ ®

Pag



Extending the Target Measure

@ Probability measure 7 defined on target space of
phylogenetic trees X', not larger space of partial states S,

So F—>{ S1 @ S3
|
& @ @
- t,,x)es7r olt)

“Q@@



Extending the Target Measure

@ Probability measure 7 defined on target space of
phylogenetic trees X', not larger space of partial states S,

So — 81 @ 83

|
@) (@ ©
m(s)= II 7y (ti)

(ti,Xi)es

‘ =Pag-nxC-nxD-n
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Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

@ Develop fast alternatives to McMC for both inference and
learning in Bayesian phylogenetics



Variational Combinatorial Sequential Monte Carlo

Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

@ Stochastic gradient VI with variance reduction and
reparameterization on discrete structures
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Variational Combinatorial Sequential Monte Carlo

Can we design variational objective on composite space of
non-clock phylogenetic trees using sequential search?

@ Use proposal Qu(B,7|Y) to form lower bound to marginal
log-evidence:

PG(Ya Bv 7_)
Q¢(BvT|Y)

log Py(Y) > Letgo(8,9,Y) = Ig !log

@ Use sequential search to form objective from estimator:

R K
A - 1
Lvcsmc = g [log ZVCSMC} . Zvesme =[] (K > Wr,k)
r=1 k=1



Variational Combinatorial Sequential Monte Carlo

Writing discrete ¢ and continuous 1 proposal terms explicitly:

1 K\ .
Qas,w ) =
K

(H qs(s1,k) - qu(Ba, k)) X
k=1
N-1 n
( CI¢> Srilsi > “qy <Br,k‘Brr_11> - Car (aflV_'/rl:q))

1r=1

:jx

k



Variational Combinatorial Sequential Monte Carlo

— Extend partial state s, x ~ qo(Sr «|5-—1,k) by drawing two
partial states to coalesce.

e Perturb uniform log-prob for each index by adding indep
Gumbel dist noise, return largest two elements.

o U ~ UNIFORM(0, 1), form G = v — log(— log U).

o G reparameterized as G' = G + 7.
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Variational Combinatorial Sequential Monte Carlo

Do tighter variational bounds affect learning inference network?

@ Reparameterization gradients of IWAE inference network
decrease at rate O(1/VK)

@ VCsSMC has no terms unique to inference network @



Primate Mitochondrial DNA

Benchmark dataset:

@ Homologous fragments of nucleotide sequences of primate
mitochondrial DNA

@ 12 taxa {Sp,- -, S11} over 898 sites admitting 13 billion
distinct topologies.

@ Five homonoids, four old world monkeys, one new world
monkey and two prosimians.
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Log Likelihood Convergence Across Epochs
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Primate Mitochondrial DNA

Log Likelihood Convergence Across Epochs

5000 =

7250 «

Log Likelihood

— k=128
—— ppHMC
8500 = Pel

¥
100

2o
Epoch

e ppHMC vs Vesmc run with K = {4,8,16,32,64,128}
samples, averaged over 3 random seeds



Primate Mitochondrial DNA

Log Likelihood Convergence Across Epochs

o o
il ;g}&o}n‘. i MN‘ pN | f!\l‘ a*u %‘4:"1 ”w‘m" !:1 Iy
i »WMM W‘W MWM

| '\ .:{1'
i

Log Likelihood

— K=4 — K=64
— K=8 — K=128
— K=16 == ppHMC
— K=32

Epoch

e Tighter variational bounds w/ lower stochastic gradient noise
as K increases.



Primate Mitochondrial DNA

Log Likelihood Convergence Across Epochs

7250

Log Likelihood

— K=4 — K=64 51
— K=8 — K=128
— K=16 PPHMC
8500 —_— K=32
’ Eplzih m Ss Sio Sy S S; S2 S3 Sy S5 Se
(a) Log likelihood across epochs (b) Phylogeny sampled from the posterior

@ Phylogeny sampled from the posterior:
M Mulatta, M Sylvanus, M Fascicularis, Saimiri Sciureus,
Macaca Fuscata, Homo Sapiens, Pan, Gorilla, Pongo,
Hylobates, Tarsius Syrichta, Lemur Catta



Primate Mitochondrial DNA

Log Likelihood Convergence Across Epochs

7250

Log Likelihood

So

— K=16 PPHMC
— K=32

H 1%0 20

Epoch S5 81059 S11.87 So S3 S4 S5 Sg

(a) Log likelihood across epochs (b) Phylogeny sampled from the posterior

@ Left clade partitions monkeys, central and right partition
hominids and prosimians.
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Takeaways

VesMc:

@ VI on composite space of nonclock phylogenetic trees.

@ Introduces discrete variational sequential search to /earn
distributions over intricate combinatorial structures.

o Explores high probability spaces on benchmark dataset.



Questions

Thank you!

@ Special thanks to Christian Naesseth for helpful discussions.

@ Implementation available online:

https://github.com/amoretti86/phylo


https://github.com/amoretti86/phylo
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