
Learning Features on Robotic Surgical Tools

Austin Reiter
Columbia University

New York, NY
areiter@cs.columbia.edu

Peter K. Allen
Columbia University

New York, NY
allen@cs.columbia.edu

Tao Zhao
Intuitive Surgical, Inc.

Sunnyvale, CA
tao.zhao@intusurg.com

Abstract

Computer-aided surgical interventions in both manual
and robotic procedures have been shown to improve patient
outcomes and enhance the skills of the human physician.
Tool tracking is one such example that has various appli-
cations. In this paper, we show how to learn fine-scaled
features on surgical tools for the purpose of pose estima-
tion. Our experiments analyze different state-of-the-art fea-
ture descriptors coupled with various learning algorithms
on in-vivo data from a surgical robot. We propose that it
is important to be able to detect naturally-occurring fea-
tures robustly in order to achieve long-term, marker-less
tool tracking. We also contribute a new improvement on
feature classification based on Randomized Trees.

1. Introduction
The benefits of computer-aided intervention for surgery

have been evaluated quite extensively and have shown im-
provement over manual procedures [1]. The introduction
of various designs in both the commercial [2] and research
[3, 4] domains have opened the doors for computer vision
applications to increase the capabilities of physicians.

One such popular paradigm is tool tracking, where appli-
cations range from automated visual servoing of motorized
camera systems to virtual measurement capabilities which
can provide accurate measurement of the sizes of various
anatomical structures. For a robot such as the da Vinci R©

from Intuitive Surgical [2], tool tracking can be used to
manage the tools which are off-screen, increasing patient’s
safety, or for overlaying virtual indicators of the status of a
tool (e.g., the firing status of an electro-cautery tool).

Tool tracking has been addressed using various ap-
proaches, ranging from marker-based [5] and pixel segmen-
tation [6] concepts to model-based [7, 8] or template match-
ing [9] algorithms. A recent approach combined multiple
features with learning at the pixel level [10], however few,
if any, address interest regions using rich feature descriptors
on the tip of the tool.

Figure 1. The feature classes we detect on the LND tool. We con-
centrate on 7 different types of naturally-occurring landmarks.

This paper proposes methods to learn particular 3D land-
marks on a surgical tool using machine learning algo-
rithms applied to feature descriptors within in-vivo environ-
ments, which are known to have many challenges such as:
scene deformability, perspective effects, significant light-
ing changes, occlusions, and frequent exit-and-re-entry of
the desired tool. The features we detect are small-scaled
(∼ 2% of the image), vary in the amount of texture, and
are observed under many different perspective views. The
features are designed to be used within a marker-less pose
estimation framework which fuses kinematics with vision,
although this is out-of-the-scope of the current paper.

Our experiments show that we can reliably detect these
important landmarks through these challenges with high ac-
curacy. We show trade-offs between accuracy and run-time,
and compare and contrast different state-of-the-art descrip-
tors with successful classification approaches. We also con-
tribute a new method on using Randomized Trees for clas-
sification which shows an improvement in accuracy.

2. Methods

We developed a tracking method which relies on consis-
tently detecting known 3D locations on a robotic surgical
tool. We associate these 3D observations with a kinemat-
ics model to solve for the best articulated pose over time.

978-1-4673-1612-5/12/$31.00 ©2012 IEEE 38XXX-X-XXXX-XXXX-X/12/$31.00 ©2012 IEEE

Therefore, the basis of the accuracy for the algorithm lies
in being able to detect particular landmarks on the tool re-
liably. One common approach to this is to employ special-
ized fiducial markers, however these present challenges in
both manufacturability and cost and may be visually dis-
tracting to the physician. As such, it is ideal to use naturally-
occurring landmarks on the tool, which tend to be both
small in size and difficult to capture.

This paper describes efforts towards pairing state-of-
the-art feature descriptors with various successful machine
learning algorithms for feature detection on a tool. Specifi-
cally, we choose to evaluate the following descriptor meth-
ods: Scale Invariant Feature Transform (SIFT) [11], His-
togram of Oriented Gradients (HoG) [12], and Region Co-
variance (Covar) [13]. Each is coupled with a Support Vec-
tor Machine (SVM), a Randomized Tree (RT) [14] classi-
fier, and a modified approach to RTs we developed called
Best Weighted Randomized Trees (BWRT), which we de-
scribe in further details in Sec. 2.2. We consider both ac-
curacy and run-time in our evaluations and concentrate on
real surgical data collected from the da Vinci R© robot.

2.1. Feature Descriptors

SIFT [11] has been shown to be one of the most effective
descriptors for feature point recognition/matching [15] and
is often used as a benchmark against which all other feature
descriptors are compared. It has been shown that SIFT can
be well approximated using integral images for more effi-
cient extraction [16], and we use ideas based on this method
for classifying densely at many pixels in an image.

HoG [12] descriptors describe shape or texture by a his-
togram of edge orientations quantized into discrete bins (we
use 45) and weighted on gradient magnitude, so as to al-
low higher-contrast locations more contribution than lower-
contrast pixels. These can also be efficiently extracted using
integral histograms [17].

Region Covariance [13] uses the covariance matrix of
d features in a small image region to serve as the feature
descriptor. Given an image I of size [W × H], we extract
d=11 features, resulting in a [W ×H × d] feature image:

F = [x y H S L Ix Iy Ixx Iyy√
I2x + I2y arctan(Iy/Ix)]

(1)

where x, y are the pixel locations; H,S,L are the hue, satu-
ration, and luminance values at pixel location (x, y); Ix, Iy
are the 1st-order spatial derivatives; Ixx, Iyy are the 2nd-
order spatial derivatives; and the latter two features are the
gradient magnitude and orientation, respectively. The co-
variance matrix CR ∈ Rd×d of an arbitrary rectangular re-
gion R within F then becomes the feature descriptor.

In [13] it is shown that the covariance matrix of any rect-
angular region can be extracted in O(d2) time using inte-

gral images. However, the d-dimensional nonsingular co-
variance matrix descriptors cannot be used as is to perform
classification tasks directly because they do not lie on a vec-
tor space, but rather on a connected Riemannian manifold,
and so the descriptors must be post-processed.

[18] describes an in-depth mathematical overview for
post-processing the covariances. Here we briefly summa-
rize. Symmetric positive definite matrices, of which our
nonsingular covariance matrices belong, can be formulated
as a connected Riemannian manifold. A manifold is locally
similar to a Euclidean space, and so every point on the mani-
fold has a neighborhood in which a homeomorphism can be
defined to map to a tangent vector space.

Our goal is to map our [d × d] dimensional matrices to
a tangent space at some point on the manifold, which will
transform the descriptors to a Euclidean multi-dimensional
vector-space for use within the classifier. Given a matrix
X ∈ Rd×d, we define the manifold-specific exponential and
logarithmic mappings at the point Y ∈ Rd×d as:

expX(Y) = X
1
2 exp(X−

1
2YX−

1
2)X

1
2 (2)

logX(Y) = X
1
2 log(X−

1
2YX−

1
2)X

1
2 (3)

In these formulations, exp and log are the ordinary matrix
exponential and logarithmic operations. Next, we define an
orthogonal coordinate system at a tangent space with:

vecX(Y) = upper(X−
1
2YX−

1
2) (4)

where upper extracts the vector form of the upper triangular
part of the matrix. In the end, we are left with a vector space
with dimensionality q = d(d+ 1)/2.

The manifold point at which we construct a tangent
space is the mean covariance matrix µCR

of the training
data used to train the classifiers, computed in the Rieman-
nian space by minimizing the sum of squared distances:

µCR
= argmin

Y∈M

N∑
i=1

d2(Xi,Y) (5)

This can be computed using the following update rule in a
gradient descent procedure:

µt+1
CR

= expµt
CR

[
1

N

N∑
i=1

logµt(Xi)] (6)

We use the logarithmic mapping of Y at µCR
to obtain our

final vectors as in [18].

2.2. Classifier Algorithms

Next we describe the different classification algorithms
which are paired with each of the feature descriptors. The
task at hand is a multi-class problem, where each feature is

39

a separate class (labeled in Fig. 1). Later on we consider
both accuracy and run-time and the trade-offs in between.

Support Vector Machines: An SVM constructs a set
of hyperplanes which seek to maximize the distance to the
nearest training point of any class. The vectors which define
the hyperplanes can be chosen as linear combinations of the
feature vectors, called Support Vectors, which has the effect
that more training data may produce a better overall result,
but at the cost of higher computations. We use Radial Basis
Functions as the kernel during learning.

Randomized Trees: Next we adapt Randomized Trees
(RTs) [14] to perform our multi-class classification. In ad-
dition to providing feature labels, we would like to retrieve
confidence values for the classification task which will be
used to construct class-conditional likelihood images.

RTs naturally handle multi-class problems very effi-
ciently while retaining an easy training procedure. The
RT classifier Λ is composed of a series of L randomly-
generated trees Λ = [γ1, . . . , γL], each of depth m. Each
tree γi, for i ∈ 1, . . . , L, is a fully-balanced binary tree
composed of internal nodes, each of which contains a
randomly-generated test that splits the space of data to be
classified, and leaf nodes which contain estimates of the
posterior distributions of the feature classes.

To train the tree, the training features are dropped down
the tree, performing binary tests at each internal node until
a leaf node is reached. Each leaf node contains a histogram
of length equal to the number of feature classes b. The his-
togram at each leaf counts the number of times a feature
with each class label reaches that node. At the end of the
training session, the histogram counts are turned into prob-
abilities by normalizing the counts at a leaf node by the total
number of hits at that node. A feature is then classified by
dropping it down the trained tree, again until a leaf node
is reached. At this point, the feature is assigned the prob-
abilities of belonging to a feature class depending on the
posterior distribution stored at the leaf from training.

Because it is computationally intractable to perform all
possible tests of the feature, L andm should be chosen so as
to cover the search space sufficiently and avoid randomness.
Although this approach has been very successful for match-
ing keypoints [14], traditionally the internal node tests are
performed on a small patch of the gray image by randomly
selecting 2 pixels and applying a binary operation (≤) to de-
termine which path to take to a child. In our problem, we are
using feature descriptor vectors rather than image patches,
and so we must adapt the node tests to suit our problem.

To this end, we use a similar approach to [19] in cre-
ating node tests for feature descriptors. For each internal
tree node we randomly construct a linear classifier hi(x) on
feature vector x to split the data:

hi(x) =

{
nTx + z ≤ 0 go to right child
otherwise go to left child (7)

where n is a randomly generated vector of the same length
as feature x with random values in the range [−1, 1] and z ∈
[−1, 1] is also randomly generated. This node test allows
for robust splitting of the data and is efficiently utilized as it
is simply a dot product per tree node. In this way, we train
the tree with the descriptor vectors and build up probability
distributions at the leaf nodes. The results from each γi are
equally-averaged across the L trees.

Best Weighted Randomized Trees: We developed a
method which is able to improve on the standard RT ap-
proach which we call Best Weighted Randomized Trees
(BWRTs). The modification lies in two observations:

• Each tree γi is essentially a weak classifier, but some
may work better than others, and we can weight them
according to how well they behave on the training data

• We can show improvement by initially creating a ran-
domized tree bag Ω of size E � L, evaluating each
tree in Ω on the training data, and selecting the best L
trees for inclusion in the final classifier Λ ⊆ Ω accord-
ing to the Root-Mean Squared (RMS) error.

The latter point allows us to consider more of the pa-
rameter space while retaining the computational efficiency
of RTs by only selecting the best performers. In order to
evaluate a particular tree on the training data, we look at the
posterior distributions at the leaf nodes. First, all trees in Ω
are trained as usual. Next, given a candidate tree γ̃i ∈ Ω,
we drop each training sample through γ̃i until a leaf node
is reached. Given training feature Xj and feature classes
1, . . . , b, the posterior distribution at the leaf node contains
b conditional probabilities pγ̃i(y|Xj) where y ∈ 1, . . . , b.
To evaluate the goodness of tree γ̃i on Xj, we compare
pγ̃i(yj |Xj) to the desired probability 1 of label yj , and ac-
cumulate the RMS error of all training features Xj across
all trees in Ω. The top L trees (according to low RMS) are
selected for the final classifier Λ.

In addition to selecting the best trees in the bag, we use
the error terms as weights on the trees so that trees that label
better have a larger say in the final result. As such, for each
γi ∈ Λ we compute an associated weight wi such that:

wi = 1/rmsi (8)

where rmsi is the accumulated RMS error of tree γi. At the
end, we normalize the weights wi to unit-sum.

3. Experiments and Results
Experiments were performed on in-vivo data collected

from a da Vinci R© robot [2]. We concentrate on the Large

40

Figure 2. Examples of appearance changes of the IS Logo feature

Needle Driver (LND) tool, keeping in mind this technique
may be applied to many other types of tools. 7 naturally-
occurring landmarks are manually selected and shown in
Fig. 1 overlaid on an image of the LND. The features cho-
sen are of the pins that hold the distal clevis together, the
IS logo in the center, and the wheel and wheel pin. Each
feature is a class in our multi-class classification experi-
ments. Fig. 2 shows example appearance changes typically
encountered of the IS Logo feature through different light-
ing and perspective effects, to motivate the need for a robust
descriptor.

3.1. Training

To train our classifiers, we use 5 different video se-
quences which span various in-vivo experiments, to best
cover a range of appearances. For each frame in the ground
truth procedure, we manually drag the best encompassing
bounding-box around each feature of interest. To obtain as
large a dataset as possible with reasonable effort, we coast
through small temporal spaces using Lucas-Kanade optical
flow to predict ground truth locations between user clicks.
Overall, we use ∼ 15, 000 total training samples across the
seven feature classes. For each training sample, we com-
pute each of the three feature descriptors described in Sec.
2.1. Next, for each set of feature descriptors we train classi-
fiers using each of the methods described in Sec. 2.2. This
results in a total of nine possible descriptor/classifier com-
binations. For convenience, we notate these as: SIFT/SVM,
SIFT/RT, SIFT/BWRT, HoG/SVM, HoG/RT, HoG/BWRT,
Covar/SVM, Covar/RT, and Covar/BWRT.

3.2. Evaluation

For the purposes of evaluation, we look at confidence
values resulting from the classifiers rather than the discrete
labelings. The reason is that a classification of label l arises
because its confidence is greater than all other b− 1 classes
in the classifier, however a confidence of 95% for one pixel
location means more than a confidence of 51% for that same
labeling at a different location. In this case, we would
choose the feature with the higher probability. For this
reason, we evaluate accuracy in the likelihood-space rather
than in the labeling-space.

Our method for evaluation using the likelihood-space

(a) Class Extrema (b) iDot (c) IS Logo

(d) Pin1 (e) Pin3 (f) Pin4

(g) Wheel (h) Wheel Pin

Figure 3. Example likelihood images along with 6/7 successfully
detected feature classes correctly located as extrema in (a). The
Pin3 (e) feature is incorrectly localized (white circle). The color-
coding for the circles in (a) is: Blue for iDot, Green for IS Logo
(c), Red for Pin1 (d), Orange for Pin4 (f), Purple for Wheel (g),
and Cyan for Wheel Pin (h).

works as follows: given a test image, we run the multi-class
classifier through the entire image, resulting in b probabil-
ities at each pixel for each feature class. This yields b dif-
ferent likelihood images. In each likelihood, we perform
non-maximal suppression to obtain the 3 best peaks in the
likelihood. Then, we mark a feature classification correct
if any of the 3 peaks in the likelihood is within a distance
threshold (we used 1% of the image size) of the ground truth
for that feature type. We choose this method because it is
often the case that there is a local peak at the correct lo-
cation for a feature, but it is not always the global peak.
Therefore, in a full tracking system a temporal coherence
filter can eliminate these outliers. Fig. 3 shows sample like-
lihoods on the tip of the LND tool overlaid with extrema
locations. Six of the seven features are correctly detected as
peaks in the class-conditional likelihoods, where the Pin3
(Fig. 3(e)) feature is incorrectly detected. This was pro-
duced using the Covar/RT approach.

Accuracy: To evaluate accuracy, we tested on video
which was specifically not used in the training stage. We
tested 1500 frames from in-vivo sequences, which resulted
in ∼ 4500 possible feature detections which were ground-
truthed. The accuracy against the ground truth is shown in
Fig. 4 for each individual feature type, separately. It is clear
that different features are more reliably detected than oth-
ers, which we attribute to differences in size, texture, and

41

Figure 4. Accuracy graph of test features against ground truth, shown for each individual feature type, separately. We tested with 1500
frames of an in-vivo surgical sequence, resulting in ∼ 4500 possible feature detections.

uniqueness. However, it is obvious from this graph the the
Region Covariance out-performs both the SIFT and HoG
descriptors, regardless of the learning algorithm.

A more detailed analysis reveals that the SVM evalu-
ates best overall, although both RT and BWRT are certainly
comparable as different features perform differently. For
example, Covar/SVM classifies the Wheel feature with 81%
accuracy, whereas Covar/RT classifies that same feature at
84% and Covar/BWRT at 86%. Contrastly, Covar/SVM
classifies the IS Logo feature at 80% against a classification
rate of 59% for Covar/RT and 63% for Covar/BWRT.

The maximum achieved accuracy using the SIFT de-
scriptor was 44% using SIFT/SVM on the Pin1 feature. Us-
ing the HoG descriptor, the best achieved accuracy was 37%
using HoG/SVM on the IS Logo feature.

Descriptor Classifier Unmasked Masked
Covar SVM 60185.4 4431.18

RT 8672.4 1171.01
BWRT 8685.57 1086.8

SIFT SVM 204696 13704.8
RT 11914.3 915.163
BWRT 12325.9 990.732

HoG SVM 55634.6 4216.58
RT 5231.53 551.321
BWRT 5388.07 557.324

Table 1. Average msecs/frame

Timing: In addition to accuracy, we also consider the
per-frame processing time of each algorithm. As mentioned
previously, SVMs tend to become more complex and time
consuming as more support vectors are added, which arises
due to more training data. Conversely, the tree approaches
are designed to be efficient as the node tests are low-cost
and only m tests-per-tree across all L trees are needed to

classify a feature (in our experiments,m = 10 andL = 90).
In the case of the BWRTs, we began with an initial tree bag
of 1000 and selected the best 90 from this bag.

During testing, for a given 640x480 image we classify
every other pixel using the descriptor/classifier combina-
tions. This amounts to 76,800 descriptor extractions and
classifications per-frame for each algorithm. We used a
constant-size window for each descriptor (21 pixel diam-
eter, empirically determined) for all descriptor types. We
analyzed the average run-time per-frame and the results are
shown in the third column of Table. 1 in msecs/frame. The
higher-dimensional feature vectors required more time, es-
pecially in the case of the SVMs. Therefore, SIFT (d=128)
had the largest run-time and HoG (d=45) had the smallest.
Note that the run-time for the RT and BWRT (d=66) cases
should be very close as they are equivalent in terms of be-
havior, only differing in the values for the weights.

The fastest algorithm was HoG/RT and HoG/BWRT,
with the smallest complexity. We note that an increase in
speed can be applied to all cases if an initial mask prior
were present, which would limit which pixels to analyze in
the image. One such algorithm is presented in [10], which
we used to confine the classifications to pixels only on the
metal tip of the tool. The runtime results (including the
time to compute the masks) are shown in the fourth column
of Table 1, where we can observe a significant reduction
in processing. This gets us closer to a real-time solution,
where, for example, the Covar/BWRT approach is reduced
to a little over 1 sec/frame. Finally, we analyzed the percent
decrease in run-time from the SVM case to the RT/BWRT
cases for each descriptor. If we are able to sacrifice some
accuracy performance, this showed that we can achieve a
reduction of up to 80% using Covar, and 90% and 94% us-
ing the HoG and SIFT descriptors, respectively. These are
not trivial speed-ups, and should be considered in the final
choice of the feature detection algorithm.

42

4. Discussions
We note that although some feature types are not al-

ways detected, we only need a minimum of 3 on a given
frame to recover the articulated pose (because our algo-
rithm fuses kinematics with vision), and so across the 7
chosen landmarks preliminary experiments show that the
percent correct achieved in this paper is sufficient for long-
term tracking. Because we have confidences we can re-
ject features with low probabilities. An example of apply-
ing these features into our tracking framework is shown at:
http://vimeo.com/40102648, where yellow indi-
cates the raw kinematics estimate, blue represents the fixed
kinematics from our tracker, and the green dots are the fea-
tures described in this paper (using Covar/RT). An inter-
esting question arises when considering tracking 2 tools si-
multaneously. In this case, we can use the kinematics as a
prior on geometric constraints to assign features to the most
likely tool pairing. This is a topic of future research.

Finally, we compared the performance of the RT al-
gorithm to our proposed BWRT modified approach. We
showed that the SVM is noticeably more accurate, but is
also slower. If we are able to trade-off some accuracy to
speed-up the runtime, the tree approach is ideal due to its
efficiency in multi-class classification. Looking at percent
change, on average our BWRT approach improved the ac-
curacy from the RT approach by ∼ 10%. Again this effect
differs depending on the feature type. For the Covar de-
scriptor, we see an increase in accuracy of 18% for the Pin1
feature and an improvement of 63% using SIFT.

5. Conclusions
In this paper we have presented an examination of state-

of-the-art feature descriptors paired with supervised ma-
chine learning algorithms for detecting natural features on
the tip of a robotic surgical tool. We have shown high accu-
racy and robustness, as well as trade-offs in computational
run-time efficiency towards a long-term, marker-less tool
tracking system. We also proposed a novel approach to im-
proving the standard Randomized Tree model of multi-class
classification called Best-Weighted Randomized Trees us-
ing feature descriptor vectors instead of image patches.

References
[1] G. Hubens, H. Coveliers, L. Balliu, M. Ruppert, and W. Va-

neerdeweg, “A performance study comparing manual and
robotically assisted laparoscopic surgery using the da vinci
system,” Surgical Endoscopy, vol. 17, pp. 1595–1599, 2003.
1

[2] “Intuitive Surgical, Inc..” http://www.
intuitivesurgical.com/. 1, 3

[3] J. Shang, D. Noonan, C. Payne, J. Clark, M. Sodergren,
A. Darzi, and G. Yang, “An articulated universal joint based

flexible access robot for minimally invasive surgery,” in
IEEE Intl. Conf. on Robotics and Automation, 2011. 1

[4] A. Bajo, R. E. Goldman, L. Wang, D. Fowler, and N. Simaan,
“Integration and preliminary evaluation of an insertable
robotic effectors platform for single port access surgery,” in
IEEE Intl. Conf. on Robotics and Automation, 2012. 1

[5] M. Groeger, K. Arbter, and G. Hirzinger, “Motion tracking
for minimally invasive robotic surgery,” in Medical Robotics,
I-Tech Education and Publishing, pp. 117–148, 2008. 1

[6] C. Doignon, P. Graebling, and M. de Mathelin, “Real-time
segmentation of surgical instruments inside the abdominal
cavity using a joint hue saturation color feature,” in Real-
Time Imaging, 2005. 1

[7] S. Voros, J. Long, and P. Cinquin, “Automatic detection of in-
struments in laparoscopic images: A first step towards high-
level command of robotic endoscopic holders,” Intl. J. of
Robotics Research, vol. 26, pp. 1173–1190, Nov. 2007. 1

[8] R. Wolf, J. Duchateau, P. Cinquin, and S. Voros, “3d track-
ing of laparoscopic instruments using statistical and geomet-
ric modeling,” in Medical Image Computing and Computer-
Assisted Intervention, 2011. 1

[9] D. Burschka, J. J. Corso, M. Dewan, W. Lau, M. Li,
H. Lin, P. Marayong, N. Ramey, G. D. Hager, B. Hoffman,
D. Larkin, and C. Hasser, “Navigating inner space: 3-d as-
sistance for minimally invasive surgery,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, 2004. 1

[10] Z. Pezzementi, S. Voros, and G. Hager, “Articulated object
tracking by rendering consistent appearance parts,” in IEEE
Intl. Conf. on Robotics and Automation, 2009. 1, 5

[11] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” Intl. J. of Computer Vision, vol. 60, no. 2, pp. 91–
110, 2004. 2

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients
for human detection,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2005. 2

[13] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A
fast descriptor for detection and classification,” in European
Conf. on Computer Vision, 2006. 2

[14] V. Lepetit and P. Fua, “Keypoint recognition using random-
ized trees,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 28, no. 9, pp. 1465–1479, 2006. 2, 3

[15] K. Mikolajczyk and C. Schmid, “A performance evaluation
of local descriptors,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 27, pp. 1615–1630, 2005. 2

[16] M. Grabner, H. Grabner, and H. Bischof, “Fast approximated
sift,” in Asian Conf. on Computer Vision, 2006. 2

[17] F. Porikli, “Integral histogram: A fast way to extract hig-
tograms in cartesian spaces,” in IEEE. Conf. on Computer
Vision and Pattern Recognition, 2005. 2

[18] O. Tuzel, F. Porikli, and P. Meer, “Human detection via clas-
sification on riemannian manifolds,” in IEEE Conf. on Com-
puter Vision and Pattern Recognition, 2007. 2

[19] A. Bosch, A. Zisserman, and X. Munoz, “Representing
shape with a spatial pyramid kernel,” in ACM Intl. Conf. on
Image and Video Retrieval, 2007. 3

43

