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This talk is about how to discover
hidden patterns in large high-dimensional data sets.



Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics found in 1.8M articles from the New York Times

[Hoffman, Blei, Wang, Paisley, JMLR 2013]
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Population analysis of 2 billion genetic measurements

[Gopalan, Hao, Blei, Storey, to appear]



Neuroscience analysis of 220 million fMRI measurements

[Manning et al., PLOS ONE 2014]



Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir et al., 2016]
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.

28

I Customized data analysis is important to many fields.

I Pipeline separates assumptions, computation, application

I Eases collaborative solutions to statistics problems
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I Inference is the key algorithmic problem.

I Answers the question: What does this model say about this data?

I Our goal: General and scalable approaches to inference
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I Variational methods: inference as optimization [Jordan et al., 1999]

I Scale up with stochastic variational inference (SVI) [Hoffman et al., 2013]

I Generalize with black box variational inference (BBVI) [Ranganath et al., 2014]
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I Both approaches use stochastic optimization.

I SVI subsamples from a massive data set

I BBVI uses Monte Carlo to approximate difficult-to-compute expectations



STOCHASTIC VARIATIONAL INFERENCE

(with Matt Hoffman, Chong Wang, John Paisley)



Stochastic variational inference is an algorithm that
scales general Bayesian computation to massive data.



Motivation: Topic Modeling

1. Discover the thematic structure in a large collection of documents

2. Annotate the documents

3. Use the annotations to visualize, organize, summarize, ...



Example: Latent Dirichlet allocation (LDA)

Documents exhibit multiple topics.



Example: Latent Dirichlet allocation (LDA)

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

I Each topic is a distribution over words

I Each document is a mixture of corpus-wide topics

I Each word is drawn from one of those topics



Example: Latent Dirichlet allocation (LDA)

Topics Documents Topic proportions and
assignments

I But we only observe the documents; the other structure is hidden.

I We compute the posterior

p.topics, proportions, assignments j documents/



Example: Latent Dirichlet allocation (LDA)

Topics Documents Topic proportions and
assignments

I Many data sets contain millions of documents.

I This requires inference about billions of variables.

I SVI can scale to these data.



LDA as a graphical model

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

˛ ✓d zd;n wd;n ˇk
N D

⌘

K

I Encodes assumptions about data with a factorization of the joint

I Connects assumptions to algorithms for computing with data

I Defines the posterior (through the joint)



Posterior inference

˛ ✓d zd;n wd;n ˇk
N D

⌘

K

I The posterior of the latent variables given the documents is

p.ˇ;�; z jw/ D p.ˇ;�; z;w/R
ˇ

R
�

P
z p.ˇ;�; z;w/

:

I We can’t compute the denominator, the marginal p.w/.
I We use approximate inference.



Classical variational inference

˛ ✓d zd;n wd;n ˇk
N D

⌘

K

I Originally, we used variational methods to fit this model. [Blei et al., 2003]

I Classical variational inference is inefficient:

– Do some local computation for each data point.
– Aggregate these computations to re-estimate global structure.
– Repeat.

I This cannot handle massive data.



Stochastic variational inference

GLOBAL HIDDEN STRUCTURE
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Stochastic variational inference
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics using the HDP, found in 1.8M articles from the New York Times



Stochastic variational inference

Subsample
data

Infer local 
structure

Update global 
structure

Next parts of this talk:

1. Define a generic class of models

2. Derive classical mean-field variational inference

3. Use the classical algorithm to derive stochastic variational inference



A generic class of models

Global variables

Local variables

ˇ

xizi
n

p.ˇ; z; x/ D p.ˇ/
nY
iD1

p.zi ; xi jˇ/

I The observations are x D x1Wn.

I The local variables are z D z1Wn.

I The global variables are ˇ.

I The i th data point xi only depends on zi and ˇ.

Goal: Compute p.ˇ; z j x/.



A generic class of models

Global variables

Local variables

ˇ

xizi
n

p.ˇ; z; x/ D p.ˇ/
nY
iD1

p.zi ; xi jˇ/

I A complete conditional is the conditional of a latent variable given the
observations and other latent variables.

I Assume each complete conditional is in the exponential family,

p.zi jˇ; xi / D h.zi / expf�`.ˇ; xi />zi � a.�`.ˇ; xi //g
p.ˇ j z; x/ D h.ˇ/ expf�g.z; x/>ˇ � a.�g.z; x//g:



A generic class of models

Global variables

Local variables

ˇ

xizi
n

p.ˇ; z; x/ D p.ˇ/
nY
iD1

p.zi ; xi jˇ/

I A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

I The global parameter comes from conjugacy [Bernardo and Smith, 1994]

�g.z; x/ D ˛ C
Pn
iD1 t .zi ; xi /;

where ˛ is a hyperparameter and t .�/ are sufficient statistics for Œzi ; xi �.



A generic class of models

Global variables

Local variables

ˇ

xizi
n

p.ˇ; z; x/ D p.ˇ/
nY
iD1

p.zi ; xi jˇ/

I Dirichlet process mixture with conjugate base measure [Sethuraman, 1994]

– Local: mixture assignments for each observation (categorical).
– Global: stick lengths (beta) and mixture components (e.g., Gaussian).

I Other BNP models, e.g.,

– Beta-Bernoulli process
– Hierarchical Dirichlet process



A generic class of models

Global variables

Local variables

ˇ

xizi
n

p.ˇ; z; x/ D p.ˇ/
nY
iD1

p.zi ; xi jˇ/

I Bayesian mixture models

I Time series models
(variants of HMMs, Kalman filters)

I Factorial models

I Matrix factorization
(e.g., factor analysis, PCA, CCA)

I Dirichlet process mixtures, HDPs

I Multilevel regression
(linear, probit, Poisson)

I Stochastic blockmodels

I Mixed-membership models
(LDA and some variants)
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I Variational methods turn inference into optimization
I Idea: Fit a simple distribution to be close (in KL) to the exact posterior
I Here: A simple mixture of Gaussians [image by Alp Kucukelbir]



Mean-field variational inference

ELBO

ˇ

xi
n

zi
n

zi

ˇ�

�i

I Goal: Minimize KL divergence between a family q and the posterior p.

I Mean-field assumption: Set q.ˇ; z/ to be fully factored,

q.ˇ; z/ D q.ˇ j�/Qn
iD1 q.zi j�i /:

I Each factor is the same family as the model’s complete conditional,

p.ˇ j z; x/ D h.ˇ/ expf�g.z; x/>ˇ � a.�g.z; x//g
q.ˇ j�/ D h.ˇ/ expf�>ˇ � a.�/g:



Mean-field variational inference

ELBO

ˇ

xi
n

zi
n

zi

ˇ�

�i

I Optimize the evidence lower bound, equivalent to optimizing negative KL,

L.�; �1Wn/ D EqŒlogp.ˇ;Z; x/� � EqŒlog q.ˇ;Z/�:

I Traditional VI uses coordinate ascent [Ghahramani and Beal, 2001]

�� D E�
�
�g.Z; x/

� I ��i D E� Œ�`.ˇ; xi /�

I Iteratively update each parameter, holding others fixed.
Notice the relationship to Gibbs sampling.



Mean-field variational inference for LDA

�ˇkwd;nzd;n�d˛
N D K

�d �d;n �k

I The local variables are the per-document variables �d and zd .

I The global variables are the topics ˇ1; : : : ; ˇK .

I The variational distribution is

q.ˇ;�; z/ D
KY
kD1

q.ˇk j�k/
DY
dD1

q.�d j d /
NY
nD1

q.zd;n j�d;n/



Mean-field variational inference for LDA
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Mean-field variational inference for LDA

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Classical variational inference

Input: data x, model p.ˇ; z; x/.
Initialize � randomly.

repeat
for each data point i do

Set local parameter �i  E� Œ�`.ˇ; xi /�.
end

Set global parameter

� ˛ CPn
iD1 E�i

Œt .Zi ; xi /�

.
until the ELBO has converged

This is inefficient : We analyze all data before completing one iteration.



Stochastic optimization

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

I Replace the gradient with cheaper noisy estimates [Robbins and Monro, 1951]

I Guaranteed to converge to a local optimum [Bottou, 1996]

I Has enabled modern machine learning



Natural gradients

ARTICLE Communicated by Steven Nowlan and Erkki Oja

Natural Gradient Works Efficiently in Learning

Shun-ichi Amari
RIKEN Frontier Research Program, Saitama 351-01, Japan

When a parameter space has a certain underlying structure, the ordinary
gradient of a function does not represent its steepest direction, but the
natural gradient does. Information geometry is used for calculating the
natural gradients in the parameter space of perceptrons, the space of ma-
trices (for blind source separation), and the space of linear dynamical
systems (for blind source deconvolution). The dynamical behavior of
natural gradient online learning is analyzed and is proved to be Fisher
efficient, implying that it has asymptotically the same performance as the
optimal batch estimation of parameters. This suggests that the plateau
phenomenon, which appears in the backpropagation learning algorithm
of multilayer perceptrons, might disappear or might not be so serious
when the natural gradient is used. An adaptive method of updating the
learning rate is proposed and analyzed.

1 Introduction

The stochastic gradient method (Widrow, 1963; Amari, 1967; Tsypkin, 1973;
Rumelhart, Hinton, & Williams, 1986) is a popular learning method in the
general nonlinear optimization framework. The parameter space is not Eu-
clidean but has a Riemannianmetric structure inmany cases. In these cases,
the ordinary gradient does not give the steepest direction of a target func-
tion; rather, the steepest direction is given by the natural (or contravariant)
gradient. The Riemannian metric structures are introduced by means of
information geometry (Amari, 1985; Murray and Rice, 1993; Amari, 1997a;
Amari, Kurata, &Nagoska, 1992). This article gives the natural gradients ex-
plicitly in the case of the space of perceptrons for neural learning, the space
of matrices for blind source separation, and the space of linear dynamical
systems for blind multichannel source deconvolution. This is an extended
version of an earlier article (Amari, 1996), including new results.
How good is natural gradient learning compared to conventional gradi-

ent learning? The asymptotic behavior of online natural gradient learning
is studied for this purpose. Training examples can be used only once in on-
line learning when they appear. Therefore, the asymptotic performance of
online learning cannot be better than the optimal batch procedure where all
the examples can be reused again and again. However, we prove that natu-
ral gradient online learning gives the Fisher-efficient estimator in the sense
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I The natural gradient of the ELBO [Amari, 1998; Sato, 2001]

Or�L D �˛ CPn
iD1 E�i

Œt .Zi ; xi /�
� � �:

I Computationally:

– Compute coordinate updates.
– Subtract the current variational parameters.



Stochastic variational inference

Subsample
data

Infer local 
structure

Update global 
structure

I Construct a noisy natural gradient

– Sample a data point at random j � Uniform.1; : : : ; n/.
– Calculate

Qr�L D ˛ C nE��
j
Œt .Zj ; xj /� � �

I This is a good noisy gradient

– The expectation (with respect to j ) is the natural gradient.
– Only requires the local parameters for one data point.



Stochastic variational inference

Input: data x, model p.ˇ; z; x/.
Initialize � randomly. Set �t appropriately.

repeat
Sample j � Unif.1; : : : ; n/.
Set local parameter �  E�

�
�`.ˇ; xj /

�
.

Set intermediate global parameter

O� D ˛ C nE� Œt .Zj ; xj /�:

Set global parameter

� D .1 � �t /�C �t O�:

until forever



Stochastic variational inference
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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Stochastic variational inference in LDA

�ˇkwd;nzd;n�d˛
N D K

�d �d;n �k

1. Sample a document

2. Estimate the local variational parameters using the current topics

3. Form intermediate topics from those local parameters

4. Update topics as a weighted average of intermediate and current topics



Stochastic variational inference in LDA
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HDP topic models

STOCHASTIC VARIATIONAL INFERENCE
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Figure 10: The per-word predictive log likelihood for an HDP model on three large corpora. (Time
is on the square root scale.) As for LDA, stochastic variational inference on the full data
converges faster and to a better place than batch variational inference on a reasonably
sized subset. Section 4 gives the details of our empirical study.

Stochastic inference versus batch inference for the HDP. Figure 10 illustrates the performance
of the HDP topic model on the same three large collections as in Figure 7. As with LDA, stochastic
variational inference for the HDP converges faster and to a better model.

4. Empirical Study

In this section we study the empirical performance and effectiveness of stochastic variational infer-
ence for latent Dirichlet allocation (LDA) and the hierarchical Dirichlet process (HDP) topic model.
With these algorithms, we can apply and compare these models with very large collections of docu-
ments. We also investigate how the forgetting rate κ and mini-batch size S influence the algorithms.
Finally, we compare stochastic variational inference to the traditional batch variational inference
algorithm.9

Data. We evaluated our algorithms on three collections of documents. For each collection, we
computed a vocabulary by removing stop words, rare words, and very frequent words. The data are
as follows.

• Nature: This collection contains 350,000 documents from the journal Nature (spanning the
years 1869–2008). After processing, it contains 58M observed words from a vocabulary of
4,200 terms.

• New York Times: This collection contains 1.8M documents from the New York Times (span-
ning the years 1987–2007). After processing, this data contains 461M observed words from
a vocabulary of 8,000 terms.

9. We implemented all algorithms in Python using the NumPy and SciPy packages, making the implementations as
similar as possible. Links to these implementations are available on the web at http://www.cs.princeton.edu/
~blei/topicmodeling.html.

1335

I A study of large corpora with the HDP topic model [Teh et al., 2006]

I Details are in Hoffman et al., 2013.

I SVI is faster and lets us analyze more data.



ST01CH10-Blei ARI 4 December 2013 17:0

Game

Second

Season
Team

Play

Games

Players

Points

Coach

Giants

1

House

Bush

Political

Party

Clinton
Campaign

Republican

Democratic

Senator
Democrats

6

School

Life

Children

Family

Says

Women

Help
Mother

Parents
Child

11

Street
School

House

Life

Children

Family
Says

Night

Man

Know

2

Percent

Street

House

Building

Real

Space
Development

Square
Housing

Buildings

7

Percent

Business

Market

Companies

Stock

Bank

Financial

Fund

Investors
Funds

12

Life

Says

Show

Man
Director

Television

Film

Story

Movie

Films

3

Game

Second
Team

Play

Won

Open

Race

Win

Round
Cup

8

Government

Life

War
Women

Political
Black

Church

Jewish

Catholic

Pope

13

House

Life

Children

Man

War

Book

Story

Books

Author

Novel

4

Game

Season

Team

Run
League

Games
Hit

Baseball

Yankees

Mets

9

Street

Show

Art
Museum

Works
Artists

Artist

Gallery

Exhibition
Paintings

14

Street

House

Night
Place

Park

Room

Hotel

Restaurant

Garden

Wine

5

Government

Officials

War
Military

Iraq

Army

Forces

Troops

Iraqi

Soldiers

10

Street

Yesterday
Police

Man

Case
Found

Officer

Shot

Officers

Charged

15

Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Stochastic variational inference

Subsample
data

Infer local 
structure

Update global 
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We derived an algorithm for scalable variational inference.

I Bayesian mixture models

I Time series models
(variants of HMMs, Kalman filters)

I Factorial models

I Matrix factorization
(e.g., factor analysis, PCA, CCA)

I Dirichlet process mixtures, HDPs

I Multilevel regression
(linear, probit, Poisson)

I Stochastic blockmodels

I Mixed-membership models
(LDA and some variants)
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BLACK BOX VARIATIONAL INFERENCE

(with Rajesh Ranganath and Sean Gerrish)



Black box variational inference is an algorithm that
efficiently performs Bayesian computation in any model.
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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I Approximate inference can be difficult to derive.

I Especially true for models that are not conditionally conjugate

I E.g., discrete choice models, Bayesian generalized linear models, ...
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I Easily use variational inference with any model

I No exponential family requirements

I No mathematical work beyond specifying the model
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I Sample from q.�/
I Form noisy gradients without model-specific computation

I Use stochastic optimization



Black box variational inference
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Black box variational inference
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A noisy gradient:

r�L � 1

B

BX
bD1
r� log q� .ˇb; zb/D�.ˇ;Z/

where
.ˇb; zb/ � q�.ˇ; z/



The noisy gradient

r�L.�/ � 1

B

BX
bD1
r� log q�.ˇb; zb/D�.ˇb; zb/

I We use these gradients in a stochastic optimization algorithm.

I Requirements:

– Sampling from q�.ˇ; z/
– Evaluating r� log q�.ˇ; z/
– Evaluating logp.ˇ; z; x/

I A “black box”: We can reuse q.�/ across models



The noisy gradient

r�L.�/ � 1

B

BX
bD1
r� log q�.ˇb; zb/D�.ˇb; zb/

Making it work:

I Rao-Blackwellization for each component of the gradient

I Control variates, again using r� log q�.ˇ; z/
I AdaGrad, for setting learning rates [Duchi, Hazan, Singer, 2011]

I Stochastic variational inference, for handling massive data



Monte Carlo Gradients of the ELBO

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES
REUSABLE 

VARIATIONAL 
FAMILIES

MASSIVE
DATA

I MC gradient [Ji et al., 2010; Nott et al., 2012; Paisley et al., 2012; Ranganath et al. 2014]

I Autoencoders [Kingma and Welling, 2013/2014]

I Neural networks [Kingma et al., 2015; Mnih and Gregor, 2014; Rezende et al., 2014]

I A perspective from regression [Salimans and Knowles, 2014]

I Doubly stochastic VB [Titsias and Lazaro-Gredilla, 2014]



Neuroscience analysis of 220 million fMRI measurements

[Manning et al., PLOS ONE 2014]
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Figure 2. The approximate predictive distribution given by variational inference at different stages of the algorithm. The
data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.
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Figure 3. (Left) Convergence time per dimension across ten datasets for variational inference (Var), the TDP Gibbs
sampler (TDP), and the collapsed Gibbs sampler (CDP). Grey bars are standard error. (Right) Average held-out log
likelihood for the corresponding predictive distributions.

The update for the variational multinomial on Zn is
φn,i ∝ exp(E) where:

E = E [log Vi | γi] + E [ηi | τi]
T

Xn

− E [a(ηi) | τi] +
∑i−1

j=1 E [log(1 − Vj) | γj ] .

Iterating between these updates is a coordinate ascent
algorithm for optimizing Eq. (12) with respect to the
parameters in Eq. (13). We thus find q(v,η∗, z) which
is closest, within the confines of its parameters, to the
true posterior. This yields an approximate predictive
distribution of the next data point given, as in the
TDP Gibbs sampler for a single sample, by Eq. (10).

5. Example and Results

We applied the variational algorithm of Section 4 and
the two Gibbs samplers of Section 3 to Gaussian-

Gaussian DP mixture models. The data are assumed
drawn from a multivariate Gaussian with fixed covari-
ance matrix; the mean of each data point is drawn
from a DP with a Gaussian baseline distribution (i.e.,
the conjugate prior).

In Figure 2, we illustrate the variational inference algo-
rithm on a toy problem. We have simulated 100 data
points from a two-dimensional Gaussian-Gaussian DP
mixture with diagonal covariance. We illustrate the
data and the predictive distribution given by the varia-
tional inference algorithm of Section 4 with variational
truncation level K equal to 20. In the initial setting,
the variational approximation places a largely flat dis-
tribution on the data. After one iteration, the algo-
rithm has found the various modes of the data and,
after convergence, it has further refined those modes.
Notice that even though we represent 20 mixture com-

Deep Exponential Families Probabilistic Programming
[Ranganath et al., AISTATS 2015] [Kucukelbir et al., 2015]



Edward: A library for probabilistic modeling, inference, and criticism

github.com/blei-lab/edward

(lead by Dustin Tran)

github.com/blei-lab/edward
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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I Customized data analysis is important to many fields.

I Pipeline separates assumptions, computation, application

I Eases collaborative solutions to statistics problems
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I Inference is the key algorithmic problem.

I Answers the question: What does this model say about this data?

I Our goal: General and scalable approaches to inference
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“Stochastic variational inference” [Hoffman et al., 2013, JMLR]
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“Black box variational inference” [Ranganath et al., 2014, AISTATS]



Recent research (on the ArXiv):

I “Variational Inference: A Review for Statisticians”
(with J. McAuliffe and A. Kucukelbir)

I “Hierarchical Variational Models”
(with R. Ranganath and D. Tran)

I “Automatic Differentiation Variational Inference”
(with A. Kucukelbir, D. Tran, R. Ranganath, and A. Gelman)

Open and current research:

I How can we improve the gradient estimator in BBVI?

I Can we use alternative divergence measures? What are their properties?

I What are the statistical properties of VI? What is a good framework?

I How can we efficiently go beyond the mean field?
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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Should I be skeptical about variational inference?

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

10�1 100 101

�9
�7
�5
�3

Seconds

Av
er

ag
e

Lo
g

Pr
ed

ic
tiv

e

ADVI (M=1)
ADVI (M=10)

NUTS
HMC

(a) Linear Regression with ���
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(b) Hierarchical Logistic Regression

Figure 4: Hierarchical Generalized Linear Models.

we report predictive accuracy on held-out data as a function of time. We approximate the Bayesian
posterior predictive using �� integration. For the ���� techniques, we plug in posterior samples
into the likelihood. For ����, we do the same by drawing a sample from the posterior approximation
at fixed intervals during the optimization. We initialize ���� with a draw from a standard Gaussian.

We explore two hierarchical regression models, two matrix factorization models, and a mixture
model. All of these models have nonconjugate prior structures. We conclude by analyzing a dataset
of 250 000 images, where we report results across a range of minibatch sizes B .

3.1 A Comparison to Sampling: Hierarchical Regression Models

Consider two nonconjugate regression models: linear regression with automatic relevance determi-
nation (���) [16] and hiearchical logistic regression [23].

Linear Regression with ���. This is a sparse linear regression model with a hierarchical prior
structure. (Details in Appendix F.) We simulate a dataset with 250 regressors such that half of the
regressors have no predictive power. We use 10 000 training samples and hold out 1000 samples for
testing.

Logistic Regression with Spatial Hierarchical Prior. This is a hierarchical logistic regression
model from political science. The prior captures depedencies, such as states and regions, in a polling
dataset from the United States 1988 presidential election. The model is nonconjugate and would
require some form of approximation to derive a �� algorithm. (Details in Appendix G.)

We train using 10 000 samples and withold 1536 for evaluation. The regressors contain age, educa-
tion, and state and region indicators. The dimension of the regression problem is 145.

Results. Figure 4 plots average log predictive accuracy as a function of time. For these simple
models, all methods reach the same predictive accuracy. We study ���� with two settings ofM , the
number of �� samples used to estimate gradients. A single sample per iteration is su�cient; it also
is the fastest. (We set M D 1 from here on.)

3.2 Exploring nonconjugate Models: Non-negative Matrix Factorization

We continue by exploring two nonconjugate non-negative matrix factorization models: a constrained
Gamma Poisson model [24] and a Dirichlet Exponential model. Here, we show how easy it is to
explore new models using ����. In both models, we use the Frey Face dataset, which contains 1956
frames (28 ⇥ 20 pixels) of facial expressions extracted from a video sequence.

Constrained Gamma Poisson. This is a Gamma Poisson factorization model with an ordering
constraint: each row of the Gamma matrix goes from small to large values. (Details in Appendix H.)

Dirichlet Exponential. This is a nonconjugate Dirichlet Exponential factorization model with a
Poisson likelihood. (Details in Appendix I.)

7

I MCMC enjoys theoretical guarantees.

I But they usually get to the same place. [Kucukelbir et al., submitted]

I We need more theory about variational inference.
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I Variational inference underestimates the variance of the posterior.

I Relaxing the mean-field assumption can help.

I Here: A Poisson GLM [Giordano et al., 2015]


