SCALING AND GENERALIZING APPROXIMATE BAYESIAN INFERENCE
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This talk is about how to discover
hidden patterns in large high-dimensional data sets.



£ I
Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]
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Topics found in 1.8M articles from the New York Times

[Hoffman, Blei, Wang, Paisley, JMLR 2013]



Population analysis of 2 billion genetic measurements

[Gopalan, Hao, Blei, Storey, to appear]



Neuroscience analysis of 220 million fMRI measurements

[Manning et al., PLOS ONE 2014]



Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir et al., 2016]
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» Customized data analysis is important to many fields.

> Pipeline separates assumptions, computation, application

» Eases collaborative solutions to statistics problems
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> Inference is the key algorithmic problem.
> Answers the question: What does this model say about this data?

» Our goal: General and scalable approaches to inference
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» Variational methods: inference as optimization [Jordan et al., 1999]
» Scale up with stochastic variational inference (SVI) [Hoffman et al., 2013]

» Generalize with black box variational inference (BBVI) [Ranganath et al., 2014]
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» Both approaches use stochastic optimization.

» SVI subsamples from a massive data set

» BBVI uses Monte Carlo to approximate difficult-to-compute expectations




STOCHASTIC VARIATIONAL INFERENCE

(with Matt Hoffman, Chong Wang, John Paisley)



Stochastic variational inference is an algorithm that
scales general Bayesian computation to massive data.
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Motivation: Topic Modeling

1. Discover the thematic structure in a large collection of documents
2. Annotate the documents

3. Use the annotations to visualize, organize, summarize, ...



Example: Latent Dirichlet allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does anorganism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
:nt approaches presented complemen-
tary views of the basic genes needed for life.
One research team, using computer analy-

ses to compare known genomes, concluded
that today’s|Organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 enes. The -
other researcher mapped genes

in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t
match precisely, those predictions
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* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12
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“are not all that far apart,” especially
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
80C number. But coming up with a consen-
sus answer may be more than just a generic
numbe particularly as more and
more genomes are completely mapped and
‘It may be a way of organizing
any newly sequenced genome,”
Arcady Mushegian, a computational mo-
lecular biologist at the National Center
for Biotechnology Information (NCBI)
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Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

Documents exhibit multiple topics.

ADAPTED FROM NCBI



Example: Latent Dirichlet allocation (LDA)
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» Each topic is a distribution over words
» Each document is a mixture of corpus-wide topics

» Each word is drawn from one of those topics



Example: Latent Dirichlet allocation (LDA)
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» But we only observe the documents; the other structure is hidden.

> We compute the posterior

p (topics, proportions, assignments | documents)



Example: Latent Dirichlet allocation (LDA)
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» Many data sets contain millions of documents.
» This requires inference about billions of variables.

» SVI can scale to these data.



LDA as a graphical model

Proportions topifgggg;ﬁnent
parameter Topic
parameter
Per-document Observed )
topic proportions word Topics
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» Encodes assumptions about data with a factorization of the joint
» Connects assumptions to algorithms for computing with data

» Defines the posterior (through the joint)



Posterior inference
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» The posterior of the latent variables given the documents is

p(B.6,z,w)
Jg Jo 20 P(B.0.2, W)

» We can't compute the denominator, the marginal p(w).

p(,8,0,z|w) =

» We use approximate inference.



Classical variational inference
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» Originally, we used variational methods to fit this model. [Blei et al., 2003]

» Classical variational inference is inefficient:

— Do some local computation for each data point.
— Aggregate these computations to re-estimate global structure.
— Repeat.

» This cannot handle massive data.



Stochastic variational inference
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Stochastic variational inference
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language road billion industry billion services public public

[Hoffman et al., 2010]
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Topics using the HDP, found in 1.8M articles from the New York Times



Stochastic variational inference

Subsample
data

Infer local
structure

Update global
structure

Next parts of this talk:

1. Define a generic class of models
2. Derive classical mean-field variational inference

3. Use the classical algorithm to derive stochastic variational inference



A generic class of models

Global variables R 'B

X
Local variables . !

p(B.2.x) = p(B) [ | pGi.xi 1 B)

i=1

v

The observations are x = x1.5.

v

The local variables are z = z1.;.

v

The global variables are .

v

The ith data point x; only depends on z; and f3.

Goal: Compute p(f8,z | x).



A generic class of models

Global variables R 'B
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p(B.2.x) = p(B) [ | pGi.xi 1 B)
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» A complete conditional is the conditional of a latent variable given the
observations and other latent variables.

» Assume each complete conditional is in the exponential family,

p(zi | B, xi) = h(zi) exping(B, xi) T zi — a(ng(B, xi))}
p(Bz.x) = h(B) exp{ng(z.x) T B — a(ng (z.%))}.



A generic class of models

Global variables R 'B

X
Local variables . !

p(B.2.x) = p(B) [ | pGi.xi 1 B)

i=1

» A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

» The global parameter comes from conjugacy [Bernardo and Smith, 1994]
Ng (Z’ X) =o+ Z:‘l:] Z(Zi s Xi),

where « is a hyperparameter and # (+) are sufficient statistics for [z;, x;].



A generic class of models

Global variables R 'B

X
Local variables . !

n
p(B.2.x) = pB) [| pzi.xi | B)
i=1
» Dirichlet process mixture with conjugate base measure [Sethuraman, 1994]

— Local: mixture assignments for each observation (categorical).
— Global: stick lengths (beta) and mixture components (e.g., Gaussian).

» Other BNP models, e.g.,

— Beta-Bernoulli process
— Hierarchical Dirichlet process



A generic class of models

Global variables R 'B

X
Local variables . !

p(B.2.x) = p(B) [ | pGi.xi 1 B)
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» Bayesian mixture models Dirichlet process mixtures, HDPs

» Time series models > Multilevel regression
(variants of HMMs, Kalman filters) (linear, probit, Poisson)

> Factorial models » Stochastic blockmodels

» Matrix factorization > Mixed-membership models

(e.g., factor analysis, PCA, CCA) (LDA and some variants)
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Iterations Iterations

» Variational methods turn inference into optimization
> Idea: Fit a simple distribution to be close (in KL) to the exact posterior
> Here: A simple mixture of Gaussians [image by Alp Kucukelbir]



Mean-field variational inference
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» Goal: Minimize KL divergence between a family g and the posterior p.
» Mean-field assumption: Set ¢ (8, z) to be fully factored,
q(B.2) = q(B M) 1= a(zi | $i).

» Each factor is the same family as the model’s complete conditional,

p(B12,%) = h(B) exp{ng (z,%) ' B — a(ng (z.%))}
q(B1X) = h(B)expiAT B —a(M)}.



Mean-field variational inference
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» Optimize the evidence lower bound, equivalent to optimizing negative KL,
LA, ¢1:n) = Eyllog p(B. Z,x)] — Ey[logq(B. Z)].
» Traditional VI uses coordinate ascent [Ghahramani and Beal, 2001]
A =Eg [ng(Z.%)]: ¢] = Ex [ne(B. xi)]

> lteratively update each parameter, holding others fixed.
Notice the relationship to Gibbs sampling.



Mean-field variational inference for LDA
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» The local variables are the per-document variables 6; and z,.
» The global variables are the topics 81, ..., K.

» The variational distribution is

K
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Mean-field variational inference for LDA

Seeking Life’s Bare (Genetic) Necessities
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Mean-field variational inference for LDA

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
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project
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infectious
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parasites
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computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations



Classical variational inference

Input: data x, model p(B, z, x).
Initialize A randomly.

repeat
for each data pointi do

| Setlocal parameter ¢p; <— E, [n4(B, xi)]-
end

Set global parameter

A a4 Y7 By [1(Zi, xi)]

until .the ELBO has converged

This is inefficient: We analyze all data before completing one iteration.



Stochastic optimization

A STOCHASTIC APPROXIMATION METHOD'
By HerBERT RoBBINS AND SuTToN MoNRO
University of North Carolina

1. Summary. Let M(z) denote the expected value at level = of the response
to a certain experiment. M (z) is assumed to be a monotone function of = but is !
unknown to the experimenter, and it is desired to find the solution z = 8 of the
equation M(x) = a, where o is a given constant. We give a method for making
successive experiments at levels z; , z2 , - - - in such a way that z,, will tend to 6 in

probability.

> Replace the gradient with cheaper noisy estimates [Robbins and Monro, 1951]
» Guaranteed to converge to a local optimum [Bottou, 1996]

» Has enabled modern machine learning



Natural gradients

Natural Gradient Works Efficiently in Learning

Shun-ichi Amari
RIKEN Frontier Research Program, Saitama 351-01, Japan

When a parameter space has a certain underlying structure, the ordinary
gradient of a function does not represent its steepest direction, but the
natural gradient does. Information geometry is used for calculating the
natural gradients in the parameter space of perceptrons, the space of ma-
trices (for blind source separation), and the space of linear dynamical
systems (for blind source deconvolution). The dynamical behavior of
natural gradient online learning is analyzed and is proved to be Fisher
efficient, implying that it has asymptotically the same performance as the
optimal batch estimation of parameters. This suggests that the plateau
phenomenon, which appears in the backpropagation learning algorithm
of i might di or might not be so serious
when the natural gradient is used. An adaptive method of updating the
learning rate is proposed and analyzed.

» The natural gradient of the ELBO [Amari, 1998; Sato, 2001]
@Ae‘ﬁ = (Ot + Z?_l g, [Z(Z,‘,x,‘)]) —A.

» Computationally:

— Compute coordinate updates.
— Subtract the current variational parameters.



Stochastic variational inference

Subsample Infer local

structure

Update global
structure

» Construct a noisy natural gradient

— Sample a data point at random j ~ Uniform(1,...,n).
— Calculate _
Vit =a+ n[E¢}<[t(Zj,x]-)] - A
» This is a good noisy gradient

— The expectation (with respect to j) is the natural gradient.
— Only requires the local parameters for one data point.



Stochastic variational inference

Input: data x, model p(f, z, x).
Initialize A randomly. Set p; appropriately.

repeat
Sample j ~ Unif(1,...,n).
Set local parameter ¢ < [ [n¢(B. x;)].

Set intermediate global parameter

~

A =a+nEg[t(Z;,x;)].

Set global parameter

A= (1—p)A+ peh.

until forever




Stochastic variational inference

GLOBAL HIDDEN STRUCTURE
MASSIVE
DATA

DR

Subsample Infer local Update global
data structure structure



Stochastic variational inference in LDA
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Sample a document
Estimate the local variational parameters using the current topics
Form intermediate topics from those local parameters

Update topics as a weighted average of intermediate and current topics



Stochastic variational inference in LDA
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[Hoffman et al., 2010]



HDP topic models
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> A study of large corpora with the HDP topic model [Teh et al., 2006]
» Details are in Hoffman et al., 2013.

» SVl is faster and lets us analyze more data.
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Topics using the HDP, found in 1.8M articles from the New York Times



Stochastic variational inference

Infer local
structure

Subsample Update global

structure

We derived an algorithm for scalable variational inference.

» Bayesian mixture models > Dirichlet process mixtures, HDPs
» Time series models > Multilevel regression
(variants of HMMs, Kalman filters) (linear, probit, Poisson)
» Factorial models » Stochastic blockmodels
» Matrix factorization > Mixed-membership models

(e.g., factor analysis, PCA, CCA) (LDA and some variants)
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BLACK BOX VARIATIONAL INFERENCE

(with Rajesh Ranganath and Sean Gerrish)



Black box variational inference is an algorithm that
efficiently performs Bayesian computation in any model.



Black box variational inference
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» Approximate inference can be difficult to derive.

» Especially true for models that are not conditionally conjugate

» E.g., discrete choice models, Bayesian generalized linear models, ...




Black box variational inference

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL

BLACK BOX

Q VARIATIONAL
(P INFERENCE
O—0—0

» Easily use variational inference with any model

» No exponential family requirements
» No mathematical work beyond specifying the model

p(B.z|x)



Black box variational inference

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL
BLACK BOX p(B.z]x)

Q VARIATIONAL
(P INFERENCE
O—0—0

» Sample from g(-)
» Form noisy gradients without model-specific computation

» Use stochastic optimization



Black box variational inference
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ELBO:
£(v) = Eq4llog p(B.Z.%) —log qu(B.2)]

Shorthand:
L(v) = Eq[Dv(B.Z)]



Black box variational inference
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A noisy gradient:

B
1
VL ~ E E Vylog gy (By.2p) Dyv(B.7Z)
b=1

where

(Bb:2p) ~ qv(B.2)



The noisy gradient

B
1
Vy£(v) ~ 7 E Vy log ¢v(Bp, z25) Dv (B, zp)
b=1

» We use these gradients in a stochastic optimization algorithm.
» Requirements:

— Sampling from g, (8, z)
— Evaluating V,, log ¢, (8, z)
— Evaluating log p(B, z, x)

» A “black box”: We can reuse ¢(-) across models



The noisy gradient

B
1
Vy£(v) ~ 7 E Vy log ¢v(Bp, z25) Dv (B, zp)
b=1

Making it work:
» Rao-Blackwellization for each component of the gradient
» Control variates, again using V, log ¢, (8, z)
» AdaGrad, for setting learning rates [Duchi, Hazan, Singer, 2011]

» Stochastic variational inference, for handling massive data



Monte Carlo Gradients of the ELBO

REUSABLE
VARIATIONAL
FAMILIES

ANY MODEL

vV vy VY VvVYy

BLACK BOX
VARIATIONAL
INFERENCE

MASSIVE
DATA

p(B.z|x)

MC gradient [Ji et al., 2010; Nott et al., 2012; Paisley et al., 2012; Ranganath et al. 2014]
Autoencoders [Kingma and Welling, 2013/2014]

Neural networks [Kingma et al., 2015; Mnih and Gregor, 2014; Rezende et al., 2014]

A perspective from regression [Salimans and Knowles, 2014]

Doubly stochastic VB [Titsias and Lazaro-Gredilla, 2014]



Neuroscience analysis of 220 million fMRI measurements

[Manning et al., PLOS ONE 2014]



real yIN;
Zn,Lk 3
Kp poraneters {

simplex(K] theta;

real mu[K];

real<lower=0,upper=10> sigma[K];
}

del {
real ps[KJ;
for (k in 1:0) {
muk] ~ nornal(0,10);

o M Zneik eI
Ket1 P et gy (n] mlk], signalkD>;
\pl <= 1p__ + log_sum_exp(ps);
) }

Zn, .k

e Wi
Ke

Zn,1,k — \ﬁ
Kl

Xn,i

S T

N NP =

Deep Exponential Families Probabilistic Programming
[Ranganath et al., AISTATS 2015] [Kucukelbir et al., 2015]




Edward: A library for probabilistic modeling, inference, and criticism

github.com/blei-lab/edward

(lead by Dustin Tran)


github.com/blei-lab/edward

The probabilistic pipeline

KNOWLEDGE &
QUESTION

l

l

Make assumptions

A\

Discover patterns

A\

Predict &

L

Explore

» Customized data analysis is important to many fields.

> Pipeline separates assumptions, computation, application

» Eases collaborative solutions to statistics problems




The probabilistic pipeline

KNOWLEDGE &
QUESTION

l l

Make assumptions Discover patterns Predict & Explore

ull

A\
A\

> Inference is the key algorithmic problem.
> Answers the question: What does this model say about this data?

» Our goal: General and scalable approaches to inference



GLOBAL HIDDEN STRUCTURE
MASSIVE
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Subsample
data

Infer local
structure

Update global
structure

“Stochastic variational inference” [Hoffman et al., 2013, JMLR]



REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES
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BLACK BOX r(B.z]x)

VARIATIONAL
INFERENCE

“Black box variational inference” [Ranganath et al., 2014, AISTATS]



Recent research (on the ArXiv):

» “Variational Inference: A Review for Statisticians”
(with J. McAuliffe and A. Kucukelbir)

» “Hierarchical Variational Models”
(with R. Ranganath and D. Tran)

» “Automatic Differentiation Variational Inference”
(with A. Kucukelbir, D. Tran, R. Ranganath, and A. Gelman)

Open and current research:

» How can we improve the gradient estimator in BBVI?
» Can we use alternative divergence measures? What are their properties?
» What are the statistical properties of VI? What is a good framework?

» How can we efficiently go beyond the mean field?
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Should | be skeptical about variational inference?
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(a) Linear Regression with ARD (b) Hierarchical Logistic Regression

» MCMC enjoys theoretical guarantees.
> But they usually get to the same place. [Kucukelbir et al., submitted]

» We need more theory about variational inference.
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» Variational inference underestimates the variance of the posterior.
» Relaxing the mean-field assumption can help.

» Here: A Poisson GLM [Giordano et al., 2015]



