
Omer Boyaci

 GUIs are event driven.

 When the user interacts with a GUI component, the

interaction—known as an event—drives the program to

perform a task.

 The code that performs a task in response to an event is

called an event handler, and the overall process of

responding to events is known as event handling.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 JTextFields and JPasswordFields (package javax.swing).

 JTextField extends class JTextComponent (package
javax.swing.text), which provides many features common
to Swing’s text-based components.

 Class JPasswordField extends JTextField and adds
methods that are specific to processing passwords.

 JPasswordField shows that characters are being typed as the
user enters them, but hides the actual characters with an echo
character.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 When the user types data into a JTextField or a

JPasswordField, then presses Enter, an event

occurs.

 You can type only in the text field that is “in focus.”

 A component receives the focus when the user clicks

the component.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Before an application can respond to an event for a

particular GUI component, you must perform several

coding steps:

 Create a class that represents the event

handler.

 Implement an appropriate interface, known as

an event-listener interface, in the class

from Step 1.

 Indicate that an object of the class from

Steps 1 and 2 should be notified when the

event occurs. This is known as registering

the event handler.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 All the classes discussed so far were so-called top-level

classes—that is, they were not declared inside another

class.

 Java allows you to declare classes inside other

classes—these are called nested classes.

◦ Can be static or non-static.

◦ Non-static nested classes are called inner classes and are

frequently used to implement event handlers.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Before an object of an inner class can be created, there must first
be an object of the top-level class that contains the inner class.

 This is required because an inner-class object implicitly has a
reference to an object of its top-level class.

 There is also a special relationship between these objects—the
inner-class object is allowed to directly access all the variables
and methods of the outer class.

 A nested class that is static does not require an object of its
top-level class and does not implicitly have a reference to an
object of the top-level class.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Inner classes can be declared public, protected
or private.

 Since event handlers tend to be specific to the

application in which they are defined, they are often

implemented as private inner classes.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 GUI components can generate many events in response

to user interactions.

 Each event is represented by a class and can be

processed only by the appropriate type of event

handler.

 Normally, a component’s supported events are

described in the Java API documentation for that

component’s class and its superclasses.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 When the user presses Enter in a JTextField or
JPasswordField, an ActionEvent (package
java.awt.event) occurs.

 Processed by an object that implements the interface
ActionListener (package java.awt.event).

 To handle ActionEvents, a class must implement
interface ActionListener and declare method
actionPerformed.
◦ This method specifies the tasks to perform when an ActionEvent

occurs.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Must register an object as the event handler for each

text field.

 addActionListener registers an ActionListener
object to handle ActionEvents.

 After an event handler is registered the object listens

for events.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 The GUI component with which the user interacts is the
event source.

 ActionEvent method getSource (inherited from class
EventObject) returns a reference to the event source.

 ActionEvent method getActionCommand obtains the
text the user typed in the text field that generated the event.

 JPasswordField method getPassword returns the
password’s characters as an array of type char.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Figure 14.11 illustrates a hierarchy containing many

event classes from the package java.awt.event.

 Used with both AWT and Swing components.

 Additional event types that are specific to Swing GUI

components are declared in package

javax.swing.event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Delegation event model—an event’s processing is delegated to
an object (the event listener) in the application.

 For each event-object type, there is typically a corresponding
event-listener interface.

 Many event-listener types are common to both Swing and AWT
components.
◦ Such types are declared in package java.awt.event, and some of

them are shown in Fig. 14.12.

 Additional event-listener types that are specific to Swing
components are declared in package javax.swing.event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Each event-listener interface specifies one or more

event-handling methods that must be declared in the

class that implements the interface.

 When an event occurs, the GUI component with which

the user interacted notifies its registered listeners by

calling each listener’s appropriate event-handling

method.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 How the event-handling mechanism works:
 Every JComponent has a variable listenerList that

refers to an EventListenerList (package
javax.swing.event).

 Maintains references to registered listeners in the
listenerList.

 When a listener is registered, a new entry is placed in the
component’s listenerList.

 Every entry also includes the listener’s type.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 How does the GUI component know to call
actionPerformed rather than another method?
◦ Every GUI component supports several event types, including mouse

events, key events and others.

◦ When an event occurs, the event is dispatched only to the event
listeners of the appropriate type.

◦ Dispatching is simply the process by which the GUI component calls
an event-handling method on each of its listeners that are registered
for the event type that occurred.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Each event type has one or more corresponding event-listener
interfaces.
◦ ActionEvents are handled by ActionListeners
◦ MouseEvents are handled by MouseListeners and
MouseMotionListeners

◦ KeyEvents are handled by KeyListeners

 When an event occurs, the GUI component receives (from the
JVM) a unique event ID specifying the event type.
◦ The component uses the event ID to decide the listener type to which the

event should be dispatched and to decide which method to call on each
listener object.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 For an ActionEvent, the event is dispatched to every

registered ActionListener’s actionPerformed
method.

 For a Mouse-Event, the event is dispatched to every

registered MouseListener or

MouseMotionListener, depending on the mouse event

that occurs.

◦ The MouseEvent’s event ID determines which of the several

mouse event-handling methods are called.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 MouseListener and MouseMotionListener event-listener
interfaces for handling mouse events.
◦ Any GUI component

 Package javax.swing.event contains interface
MouseInputListener, which extends interfaces
MouseListener and MouseMotionListener to create a
single interface containing all the methods.

 MouseListener and MouseMotionListener methods
are called when the mouse interacts with a Component if
appropriate event-listener objects are registered for that
Component.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Each mouse event-handling method receives a MouseEvent
object that contains information about the mouse event that
occurred, including the x- and y-coordinates of the location
where the event occurred.

 Coordinates are measured from the upper-left corner of the GUI
component on which the event occurred.

 The x-coordinates start at 0 and increase from left to right. The y-
coordinates start at 0 and increase from top to bottom.

 The methods and constants of class InputEvent (Mouse-
Event’s superclass) enable you to determine which mouse
button the user clicked.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Interface MouseWheelListener enables applications to
respond to the rotation of a mouse wheel.

 Method mouseWheelMoved receives a
MouseWheelEvent as its argument.

 Class MouseWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler
to obtain information about the amount of wheel
rotation.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 BorderLayout arranges components into five regions: NORTH,
SOUTH, EAST, WEST and CENTER.

 BorderLayout sizes the component in the CENTER to use all
available space that is not occupied

 Methods addMouseListener and addMouseMotionListener
register MouseListeners and MouseMotionListeners,
respectively.

 MouseEvent methods getX and getY return the x- and y-
coordinates of the mouse at the time the event occurred.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Many event-listener interfaces contain multiple methods.

 An adapter class implements an interface and provides a

default implementation (with an empty method body) of

each method in the interface.

 You extend an adapter class to inherit the default

implementation of every method and override only the

method(s) you need for event handling.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 A mouse can have one, two or three buttons.

 Class MouseEvent inherits several methods from

InputEvent that can distinguish among mouse

buttons or mimic a multibutton mouse with a combined

keystroke and mouse-button click.

 Java assumes that every mouse contains a left mouse

button.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 In the case of a one- or two-button mouse, a Java application
assumes that the center mouse button is clicked if the user holds
down the Alt key and clicks the left mouse button on a two-
button mouse or the only mouse button on a one-button mouse.

 In the case of a one-button mouse, a Java application assumes
that the right mouse button is clicked if the user holds down the
Meta key (sometimes called the Command key or the “Apple”
key on a Mac) and clicks the mouse button.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 The number of consecutive mouse clicks is returned by

MouseEvent method getClickCount.

 Methods isMetaDown and isAltDown determine which

mouse button the user clicked.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Use a JPanel as a dedicated drawing area in which the user can
draw by dragging the mouse.

 Lightweight Swing components that extend class JComponent
(such as JPanel) contain method paintComponent
◦ called when a lightweight Swing component is displayed

 Override this method to specify how to draw.
◦ Call the superclass version of paintComponent as the first statement

in the body of the overridden method to ensure that the component
displays correctly.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 JComponent support transparency.
◦ To display a component correctly, the program must determine whether

the component is transparent.

◦ The code that determines this is in superclass JComponent’s
paintComponent implementation.

◦ When a component is transparent, paintComponent will not clear its
background

◦ When a component is opaque, paintComponent clears the
component’s background

◦ The transparency of a Swing lightweight component can be set with
method setOpaque (a false argument indicates that the component is
transparent).

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Class Point (package java.awt) represents an x-y
coordinate.
◦ We use objects of this class to store the coordinates of each mouse

drag event.

 Class Graphics is used to draw.

 MouseEvent method getPoint obtains the Point where
the event occurred.

 Method repaint (inherited from Component) indicates
that a Component should be refreshed on the screen as
soon as possible.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Graphics method fillOval draws a solid oval.
◦ Four parameters represent a rectangular area (called the bounding

box) in which the oval is displayed.

◦ The first two are the upper-left x-coordinate and the upper-left y-
coordinate of the rectangular area.

◦ The last two represent the rectangular area’s width and height.

 Method fillOval draws the oval so it touches the middle
of each side of the rectangular area.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 KeyListener interface for handling key events.

 Key events are generated when keys on the keyboard are pressed and released.

 A KeyListener must define methods keyPressed, keyReleased and
keyTyped
◦ each receives a KeyEvent as its argument

 Class KeyEvent is a subclass of InputEvent.

 Method keyPressed is called in response to pressing any key.

 Method keyTyped is called in response to pressing any key that is not an
action key.

 Method keyReleased is called when the key is released after any
keyPressed or keyTyped event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Registers key event handlers with method addKeyListener from class
Component.

 KeyEvent method getKeyCode gets the virtual key code of the
pressed key.

 KeyEvent contains virtual key-code constants that represents every
key on the keyboard.

 Value returned by getKeyCode can be passed to static
KeyEvent method getKeyText to get a string containing the name of
the key that was pressed.

 KeyEvent method getKeyChar (which returns a char) gets the
Unicode value of the character typed.

 KeyEvent method isActionKey determines whether the key in the
event was an action key.

(C) 2010 Pearson Education, Inc.
All rights reserved.

 Method getModifiers determines whether any modifier
keys (such as Shift, Alt and Ctrl) were pressed when the key
event occurred.
◦ Result can be passed to static KeyEvent method
getKeyModifiersText to get a string containing the names of the
pressed modifier keys.

 InputEvent methods isAltDown, isControlDown,
isMetaDown and isShiftDown each return a boolean
indicating whether the particular key was pressed during the
key event.

