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 GUIs are event driven. 

 When the user interacts with a GUI component, the 

interaction—known as an event—drives the program to 

perform a task. 

 The code that performs a task in response to an event is 

called an event handler, and the overall process of 

responding to events is known as event handling.
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 JTextFields and JPasswordFields (package javax.swing). 

 JTextField extends class JTextComponent (package 
javax.swing.text), which provides many features common 
to Swing’s text-based components. 

 Class JPasswordField extends JTextField and adds 
methods that are specific to processing passwords. 

 JPasswordField shows that characters are being typed as the 
user enters them, but hides the actual characters with an echo 
character. 
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 When the user types data into a JTextField or a 

JPasswordField, then presses Enter, an event 

occurs. 

 You can type only in the text field that is “in focus.” 

 A component receives the focus when the user clicks 

the component. 
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 Before an application can respond to an event for a 

particular GUI component, you must perform several 

coding steps:

 Create a class that represents the event 

handler.

 Implement an appropriate interface, known as 

an event-listener interface, in the class 

from Step 1. 

 Indicate that an object of the class from 

Steps 1 and 2 should be notified when the 

event occurs. This is known as registering 

the event handler.
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 All the classes discussed so far were so-called top-level 

classes—that is, they were not declared inside another 

class. 

 Java allows you to declare classes inside other 

classes—these are called nested classes. 

◦ Can be static or non-static. 

◦ Non-static nested classes are called inner classes and are 

frequently used to implement event handlers. 
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 Before an object of an inner class can be created, there must first 
be an object of the top-level class that contains the inner class. 

 This is required because an inner-class object implicitly has a 
reference to an object of its top-level class. 

 There is also a special relationship between these objects—the 
inner-class object is allowed to directly access all the variables 
and methods of the outer class. 

 A nested class that is static does not require an object of its 
top-level class and does not implicitly have a reference to an 
object of the top-level class. 
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 Inner classes can be declared public, protected
or private. 

 Since event handlers tend to be specific to the 

application in which they are defined, they are often 

implemented as private inner classes.
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 GUI components can generate many events in response 

to user interactions. 

 Each event is represented by a class and can be 

processed only by the appropriate type of event 

handler.

 Normally, a component’s supported events are 

described in the Java API documentation for that 

component’s class and its superclasses. 
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 When the user presses Enter in a JTextField or 
JPasswordField, an ActionEvent (package 
java.awt.event) occurs. 

 Processed by an object that implements the interface 
ActionListener (package java.awt.event). 

 To handle ActionEvents, a class must implement 
interface ActionListener and declare method 
actionPerformed. 
◦ This method specifies the tasks to perform when an ActionEvent

occurs. 
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 Must register an object as the event handler for each 

text field. 

 addActionListener registers an ActionListener
object to handle ActionEvents. 

 After an event handler is registered the object listens 

for events. 
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 The GUI component with which the user interacts is the 
event source. 

 ActionEvent method getSource (inherited from class 
EventObject) returns a reference to the event source. 

 ActionEvent method getActionCommand obtains the 
text the user typed in the text field that generated the event. 

 JPasswordField method getPassword returns the 
password’s characters as an array of type char. 
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 Figure 14.11 illustrates a hierarchy containing many 

event classes from the package java.awt.event. 

 Used with both AWT and Swing components. 

 Additional event types that are specific to Swing GUI 

components are declared in package 

javax.swing.event.
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 Delegation event model—an event’s processing is delegated to 
an object (the event listener) in the application.

 For each event-object type, there is typically a corresponding 
event-listener interface. 

 Many event-listener types are common to both Swing and AWT 
components. 
◦ Such types are declared in package java.awt.event, and some of 

them are shown in Fig. 14.12. 

 Additional event-listener types that are specific to Swing 
components are declared in package javax.swing.event. 
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 Each event-listener interface specifies one or more 

event-handling methods that must be declared in the 

class that implements the interface. 

 When an event occurs, the GUI component with which 

the user interacted notifies its registered listeners by 

calling each listener’s appropriate event-handling 

method. 
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 How the event-handling mechanism works:
 Every JComponent has a variable listenerList that 

refers to an EventListenerList (package 
javax.swing.event). 

 Maintains references to registered listeners in the 
listenerList. 

 When a listener is registered, a new entry is placed in the 
component’s listenerList. 

 Every entry also includes the listener’s type. 
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 How does the GUI component know to call 
actionPerformed rather than another method? 
◦ Every GUI component supports several event types, including mouse 

events, key events and others. 

◦ When an event occurs, the event is dispatched only to the event 
listeners of the appropriate type. 

◦ Dispatching is simply the process by which the GUI component calls 
an event-handling method on each of its listeners that are registered 
for the event type that occurred. 
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 Each event type has one or more corresponding event-listener 
interfaces. 
◦ ActionEvents are handled by ActionListeners
◦ MouseEvents are handled by MouseListeners and 
MouseMotionListeners

◦ KeyEvents are handled by KeyListeners

 When an event occurs, the GUI component receives (from the 
JVM) a unique event ID specifying the event type. 
◦ The component uses the event ID to decide the listener type to which the 

event should be dispatched and to decide which method to call on each 
listener object. 
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 For an ActionEvent, the event is dispatched to every 

registered ActionListener’s actionPerformed
method. 

 For a Mouse-Event, the event is dispatched to every 

registered MouseListener or 

MouseMotionListener, depending on the mouse event 

that occurs. 

◦ The MouseEvent’s event ID determines which of the several 

mouse event-handling methods are called. 
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 MouseListener and MouseMotionListener event-listener 
interfaces for handling mouse events. 
◦ Any GUI component

 Package javax.swing.event contains interface 
MouseInputListener, which extends interfaces 
MouseListener and MouseMotionListener to create a 
single interface containing all the methods. 

 MouseListener and MouseMotionListener methods 
are called when the mouse interacts with a Component if 
appropriate event-listener objects are registered for that 
Component. 
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 Each mouse event-handling method receives a MouseEvent
object that contains information about the mouse event that 
occurred, including the x- and y-coordinates of the location 
where the event occurred. 

 Coordinates are measured from the upper-left corner of the GUI 
component on which the event occurred. 

 The x-coordinates start at 0 and increase from left to right. The y-
coordinates start at 0 and increase from top to bottom. 

 The methods and constants of class InputEvent (Mouse-
Event’s superclass) enable you to determine which mouse 
button the user clicked. 
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 Interface MouseWheelListener enables applications to 
respond to the rotation of a mouse wheel. 

 Method mouseWheelMoved receives a 
MouseWheelEvent as its argument. 

 Class MouseWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler 
to obtain information about the amount of wheel 
rotation.
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 BorderLayout arranges components into five regions: NORTH, 
SOUTH, EAST, WEST and CENTER. 

 BorderLayout sizes the component in the CENTER to use all 
available space that is not occupied 

 Methods addMouseListener and addMouseMotionListener
register MouseListeners and MouseMotionListeners, 
respectively. 

 MouseEvent methods getX and getY return the x- and y-
coordinates of the mouse at the time the event occurred.



(C) 2010 Pearson Education, Inc.  
All rights reserved.

 Many event-listener interfaces contain multiple methods. 

 An adapter class implements an interface and provides a 

default implementation (with an empty method body) of 

each method in the interface.

 You extend an adapter class to inherit the default 

implementation of every method and override only the 

method(s) you need for event handling. 
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 A mouse can have one, two or three buttons. 

 Class MouseEvent inherits several methods from 

InputEvent that can distinguish among mouse 

buttons or mimic a multibutton mouse with a combined 

keystroke and mouse-button click.

 Java assumes that every mouse contains a left mouse 

button. 
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 In the case of a one- or two-button mouse, a Java application 
assumes that the center mouse button is clicked if the user holds 
down the Alt key and clicks the left mouse button on a two-
button mouse or the only mouse button on a one-button mouse. 

 In the case of a one-button mouse, a Java application assumes 
that the right mouse button is clicked if the user holds down the 
Meta key (sometimes called the Command key or the “Apple” 
key on a Mac) and clicks the mouse button.
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 The number of consecutive mouse clicks is returned by 

MouseEvent method getClickCount. 

 Methods isMetaDown and isAltDown determine which 

mouse button the user clicked. 
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 Use a JPanel as a dedicated drawing area in which the user can 
draw by dragging the mouse. 

 Lightweight Swing components that extend class JComponent
(such as JPanel) contain method paintComponent
◦ called when a lightweight Swing component is displayed

 Override this method to specify how to draw. 
◦ Call the superclass version of paintComponent as the first statement 

in the body of the overridden method to ensure that the component 
displays correctly.
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 JComponent support transparency. 
◦ To display a component correctly, the program must determine whether 

the component is transparent. 

◦ The code that determines this is in superclass JComponent’s 
paintComponent implementation. 

◦ When a component is transparent, paintComponent will not clear its 
background 

◦ When a component is opaque, paintComponent clears the 
component’s background

◦ The transparency of a Swing lightweight component can be set with 
method setOpaque (a false argument indicates that the component is 
transparent).
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 Class Point (package java.awt) represents an x-y 
coordinate.
◦ We use objects of this class to store the coordinates of each mouse 

drag event. 

 Class Graphics is used to draw. 

 MouseEvent method getPoint obtains the Point where 
the event occurred. 

 Method repaint (inherited from Component) indicates 
that a Component should be refreshed on the screen as 
soon as possible. 
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 Graphics method fillOval draws a solid oval. 
◦ Four parameters represent a rectangular area (called the bounding 

box) in which the oval is displayed. 

◦ The first two are the upper-left x-coordinate and the upper-left y-
coordinate of the rectangular area. 

◦ The last two represent the rectangular area’s width and height. 

 Method fillOval draws the oval so it touches the middle 
of each side of the rectangular area. 
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 KeyListener interface for handling key events. 

 Key events are generated when keys on the keyboard are pressed and released. 

 A KeyListener must define methods keyPressed, keyReleased and 
keyTyped
◦ each receives a KeyEvent as its argument

 Class KeyEvent is a subclass of InputEvent. 

 Method keyPressed is called in response to pressing any key. 

 Method keyTyped is called in response to pressing any key that is not an 
action key. 

 Method keyReleased is called when the key is released after any 
keyPressed or keyTyped event.
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 Registers key event handlers with method addKeyListener from class 
Component.

 KeyEvent method getKeyCode gets the virtual key code of the 
pressed key. 

 KeyEvent contains virtual key-code constants that represents every 
key on the keyboard. 

 Value returned by getKeyCode can be passed to static
KeyEvent method getKeyText to get a string containing the name of 
the key that was pressed. 

 KeyEvent method getKeyChar (which returns a char) gets the 
Unicode value of the character typed.

 KeyEvent method isActionKey determines whether the key in the 
event was an action key. 
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 Method getModifiers determines whether any modifier 
keys (such as Shift, Alt and Ctrl) were pressed when the key 
event occurred. 
◦ Result can be passed to static KeyEvent method 
getKeyModifiersText to get a string containing the names of the 
pressed modifier keys. 

 InputEvent methods isAltDown, isControlDown, 
isMetaDown and isShiftDown each return a boolean
indicating whether the particular key was pressed during the 
key event.


