Computer Graphics through
Game Programming
Event Handling

Omer Boyaci

Introduction to Event Handling

» GUIs are event driven.

» When the user interacts with a GUI component, the
Interaction—known as an event—drives the program to
perform a task.

» The code that performs a task in response to an event is
called an event handler, and the overall process of
responding to events Is known as event handling.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» JTextFieldsand JPasswordFields (package javax.swing).

» JTextField extends class JTextComponent (package
javax.swing. text), which provides many features common
to Swing’s text-based components.

» Class JPasswordFieldextends JTextField and adds
methods that are specific to processing passwords.

» JPasswordField shows that characters are being typed as the
user enters them, but hides the actual characters with an echo
character.

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.9: TextFieldFrame.java

2 // Demonstrating the JTextField class.

3 dimport java.awt.FlowlLayout;

4 import java.awt.event.ActionListener;

5 import java.awt.event.ActionEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JTextField;

8 import javax.swing.JPasswordField;

9 import javax.swing.JOptionPane;

10

Il public class TextFieldFrame extends JFrame

12 {

13 private JTextField textFieldl; // text field with set size

14 private JTextField textField2; // text field constructed with text
15 private JTextField textField3; // text field with text and size
16 private JPasswordField passwordField; // password field with text
17

18 // TextFieldFrame constructor adds JTextFields to JFrame

19 public TextFieldFrame()
20 {
21 super("Testing JTextField and JPasswordField");
22 setLayout(new FlowLayout()); // set frame layout
23

Fig. 14.9 | JTextFields and JPasswordFields. (Part | of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// construct textfield with 10 columns

textFieldl = new JTextField(10); -
add(textFieldl); // add textFieldl to JFrame

Width of the JTextField is based on
the component’s current font unless a
layout manager overrides that size.

// construct textfield with default text
textField2 = new JTextField("Enter text here"); «——
add(textField2); // add textField2 to JFrame

Width of the JTextField is based on
the default text unless a layout
manager overrides that size.

// construct textfield with default text and 21 columns
textField3 = new JTextField("Uneditable text field", 21);
textField3.setEditable(false); // disable editing

add(textField3); // add textField3 to JFrame

Width based on
second argument
unless a layout manager
overrides that size.

// construct passwordfield with default text
passwordField = new JPasswordField("Hidden text"); «—
add(passwordField); // add passwordField to JFrame

Text in this component will be hidden
by asterisks (*) by default.

// register event handlers

TextFieldHandler handler = new TextFieldHandler(); «——
textFieldl.addActionListener(handler);
textField2.addActionListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(handler);

} // end TextFieldFrame constructor

TextFieldHandler inner class
implements ActionListener
interface, so it can respond to
JTextField events. Lines 43-46
register the object handler to respond
to each component’s events.

Fig. 14.9 | JTextFields and JPasswordFields. (Part 2 of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

48

49 // private inner class for event handling A TextFicldhandler |

50 private class TextFieldHandler implements ActionListener Pth teldhandierisan

51 { ActionListener.

52 // process text field events Called when th Frter
53 public void actionPerformed(ActionEvent event) «——— atied when the USerpresses tnierin a
54 { JTextField or JPasswordField.
55 String string = ""; // declare string to display

56

57 // user pressed Enter in JTextField textFieldl 5 o hich

58 if (event.getSource() == textFieldl) = get ourcet iﬁec' 1es whic d with
59 string = String.format("textFieldl: %s", el tils USE INEEEE st v
60 event.getActionCommand ; , ;
61 g mand()) \Obtams the text the user typed in the
62 // user pressed Enter in JTextField textField2 textfield.

63 else if (event.getSource() == textField2)

64 string = String.format("textField2: %s",

65 event.getActionCommand());

66

67 // user pressed Enter in JTextField textField3

68 else if (event.getSource() == textField3)

69 string = String.format("textField3: %s",

70 event.getActionCommand());

[4

Fig. 14.9 | JTextFields and JPasswordFields. (Part 3 of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

72 // user pressed Enter in JTextField passwordField

73 else if (event.getSource() == passwordField)

74 string = String.format("passwordField: %s",
75 event.getActionCommand());

76

77 // display JTextField content

78 JOptionPane.showMessageDialog(null, string);

79 } // end method actionPerformed

80 } // end private inner class TextFieldHandler

81 1} // end class TextFieldFrame

Fig. 14.9 | JTextFields and JPasswordFields. (Part 4 of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.10: TextFieldTest.java

2 // Testing TextFieldFrame.

3 import javax.swing.JFrame;

4

5 public class TextFieldTest

6 {

7 public static void main(String[] args)

8 {

9 TextFieldFrame textFieldFrame = new TextFieldFrame();
10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(350, 100); // set frame size
12 textFieldFrame.setVisible(true); // display frame
13 } // end main

14 } // end class TextFieldTest

W .t TTeiF e ontd Wemwwovci ek

[| l 'Entertext here

Uneditable text field FrEEEAAARR

Fig. 14.10 | Testclass for TextFieldFrame. (Part | of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

| £| Testing JTextField and JPasswordField | = |[& |5

Message
hello Enter text here
i : textField1: hello
| Uneditable textfield wrerrrnes

| %) Testing JTextField and JPasswordField [= || & |3

Message
hello Enterfiext here |
textField2: Enter text here
Uneditable text field el

Fig. 14.10 | Testclass for TextFieldFrame. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

-

) e
| %) Testing JTextField and JPasswordField | = || =1 | 28 | Message
hello Enter text here
textField3: Uneditable text field
Uneditable text field h AR
i ol
| 2| Testing JTextField and JPasswordField | = || =1 | (] Message LX
hello Enter text here
passwordField: Hidden text
Uneditable text field l b |

Fig. 14.10 | Testclass for TextFieldFrame. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» When the user types data intoa JTextFieldora
JPasswordField, then presses Enter, an event
OCCUrs.

» You can type only in the text field that is “in focus.”

» A component receives the focus when the user clicks
the component.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» Before an application can respond to an event for a
particular GUI component, you must perform several
coding steps:

- Create a class that represents the event
handler.

- Implement an appropriate interface. known as
an event-listener interface. in the class
from Step 1-

- Indicate that an object of the class from
Steps 1 and 2 should be notified when the
event occurs. This 1s known as registering
the event handler.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» All the classes discussed so far were so-called top-level
classes—that Is, they were not declared inside another
class.

» Java allows you to declare classes inside other
classes—these are called nested classes.

o Can be staticornon-static.

> Non-static nested classes are called inner classes and are
frequently used to implement event handlers.

(C) 2010 Pearson Education, Inc.
All rights reserved.

y Software Engineering Observation 14.2
An inner class is allowed to directly access all of its top-
level class’s variables and methods.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» Before an object of an inner class can be created, there must first
be an object of the top-level class that contains the inner class.

» This is required because an inner-class object implicitly has a
reference to an object of its top-level class.

» There is also a special relationship between these objects—the
Inner-class object is allowed to directly access all the variables
and methods of the outer class.

» Anested class that is static does not require an object of its
top-level class and does not implicitly have a reference to an
object of the top-level class.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» Inner classes can be declared public, protected
or private.
» Since event handlers tend to be specific to the

application in which they are defined, they are often
implemented as private inner classes.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» GUI components can generate many events in response
to user interactions.

» Each event is represented by a class and can be
processed only by the appropriate type of event
handler.

» Normally, a component’s supported events are
described in the Java APl documentation for that
component’s class and its superclasses.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» When the user presses Enter ina JTextField or
JPasswordField, an ActionEvent (package
java.awt.event) occurs.

» Processed by an object that implements the interface
ActionListener (package java.awt.event).

» To handle ActionEvents, a class must implement
Interface ActionL1stener and declare method
actionPerformed.

> This method specifies the tasks to perform when an ActionEvent
occurs.

(C) 2010 Pearson Education, Inc.
All rights reserved.

y Software Engineering Observation 14.3
The event listener for an event must implement the
appropriate event-listener interface.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Common Programming Error 14.2

Forgetting to register an event-handler object for a par-
ticular GUI component’s event type causes events of that
type to be ignored.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» Must register an object as the event handler for each
text field.

» addAct 1onListener registers an ActionListener
object to handle ActionEvents.

» After an event handler is registered the object listens
for events.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Introduction to Event Handling (cont.)

» The GUI component with which the user interacts is the
event source.

» ActionEvent method getSource (inherited from class
EventObject) returns a reference to the event source.

» ActionEvent method getAct 1onCommand obtains the
text the user typed in the text field that generated the event.

» JPasswordField method getPassword returns the
password’s characters as an array of type char.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Object — ActionEvent

—— AdjustmentEvent
EventObject

—— ContainerEvent
— ItemEvent

NATET I — FocusEvent
— TextEvent

— PaintEvent

i
il

—— ComponentEvent

WindowEvent

— InputEvent

MouseEvent

MouseWheelEvent

H

Fig. 14.11 | Some event classes of package java.awt.event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Common GUI Event Types and Listener
Interfaces

» Figure 14.11 illustrates a hierarchy containing many
event classes from the package java.awt .event.
» Used with both AWT and Swing components.

» Additional event types that are specific to Swing GUI
components are declared In package
javax.swing.event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

«interface»
java.util.EventListener

§

«interface» «interface» «interface»
ActionlListener AdjustmentListener ComponentListener

«interface» «interface» «interface»
ContainerListener FocusListener ItemListener

«interface» «interface» «interface»
KeyListener MouselListener MouseMotionListener

«interface» «interface»
TextListener WindowListener

Fig. 14.12 | Some common event-listener interfaces of package
java.awt.event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Common GUI Event Types and Listener
Interfaces (cont.)

» Delegation event model—an event’s processing is delegated to
an object (the event listener) in the application.

» For each event-object type, there is typically a corresponding
event-listener interface.
» Many event-listener types are common to both Swing and AWT

components.
> Such types are declared in package java.awt.event, and some of
them are shown in Fig. 14.12.
» Additional event-listener types that are specific to Swing
components are declared in package javax.swing.event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Common GUI Event Types and Listener
Interfaces (cont.)

» Each event-listener interface specifies one or more
event-handling methods that must be declared in the
class that implements the interface.

» When an event occurs, the GUI component with which
the user interacted notifies its registered listeners by
calling each listener’s appropriate event-handling
method.

(C) 2010 Pearson Education, Inc.
All rights reserved.

How Event Handling Works

How the event-handling mechanism works:

Every JComponent has a variable 11stenerList that
refers to an EventListenerList (package
javax.swing.event).

Maintains references to registered listeners in the
listenerList.

When a listener Is registered, a new entry Is placed in the
component’s 11stenerList.

Every entry also includes the listener’s type.

v Vv

v

v

>

(C) 2010 Pearson Education, Inc.
All rights reserved.

textFieldl handler

*\\\\\ JTextField object .\\\\“ TextFieldHandTer object

TistenerList public void actionPerformed(
ActionEvent event)
— {
// event handled here
}

This reference is created by the statement
textFieldl.addActionListener(handler);

Fig. 14.13 | Event registration for JTextField textFieldl.

(C) 2010 Pearson Education, Inc.
All rights reserved.

How Event Handling Works (cont.)

» How does the GUI component know to call
actionPerformed rather than another method?

- Every GUI component supports several event types, including mouse
events, key events and others.

> When an event occurs, the event is dispatched only to the event
listeners of the appropriate type.

o Dispatching is simply the process by which the GUI component calls
an event-handling method on each of its listeners that are registered
for the event type that occurred.

(C) 2010 Pearson Education, Inc.
All rights reserved.

How Event Handling Works (cont.)

» Each event type has one or more corresponding event-listener
Interfaces.
- ActionEventsare handled by ActionListeners
> MouseEvents are handled by MouseL1steners and
MouseMotionListeners
> KeyEvents are handled by KeyListeners

» When an event occurs, the GUI component receives (from the

JVM) a unique event ID specifying the event type.

> The component uses the event ID to decide the listener type to which the
event should be dispatched and to decide which method to call on each

listener object.

(C) 2010 Pearson Education, Inc.
All rights reserved.

How Event Handling Works (cont.)

» Foran ActionEvent, the event is dispatched to every
registered ActionListener’s actionPerformed
method.

» ForaMouse-Event, the event is dispatched to every
registered MouseL1stener or
MouseMotionListener, depending on the mouse event

that occurs.

> The MouseEvent’s event ID determines which of the several
mouse event-handling methods are called.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Mouse Event Handling

» MouseL1stener and MouseMot ionListener event-listener
Interfaces for handling mouse events.
> Any GUI component

» Package javax.swing.event contains interface
MouselInputListener, which extends interfaces
MouseLi1stener and MouseMotionListener to create a
single interface containing all the methods.

» MouseListener and MouseMotionListener methods
are called when the mouse interacts with a Component if
appropriate event-listener objects are registered for that
Component.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Methods of interface Mousel istener
public void mousePressed(MouseEvent event)

Called when a mouse button is pressed while the mouse cursor is on a component.
public void mouseClicked(MouseEvent event)

Called when a mouse button is pressed and released while the mouse cursor remains sta-
tionary on a component. This event is always preceded by a call to mousePressed.

public void mouseReleased(MouseEvent event)

Called when a mouse button is released after being pressed. This event is always preceded
by a call to mousePressed and one or more calls to mouseDragged.

public void mouseEntered(MouseEvent event)
Called when the mouse cursor enters the bounds of a component.
public void mouseExited(MouseEvent event)

Called when the mouse cursor leaves the bounds of a component.

Fig. 14.27 | MouseListener and MouseMotionListener interface methods.
(Part | of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

Methods of interface MouseMotionListener
public void mouseDragged(MouseEvent event)
Called when the mouse button is pressed while the mouse cursor is on a component and

the mouse is moved while the mouse button remains pressed. This event is always pre-
ceded by a call to mousePressed. All drag events are sent to the component on which the

user began to drag the mouse.
public void mouseMoved(MouseEvent event)

Called when the mouse is moved (with no mouse buttons pressed) when the mouse cur-
sor is on a component. All move events are sent to the component over which the mouse

is currently positioned.

Fig. 14.27 | MouseListener and MouseMotionListener interface methods.
(Part 2 of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.14 Mouse Event Handling (cont.)

» Each mouse event-handling method receives a MouseEvent
object that contains information about the mouse event that
occurred, including the x- and y-coordinates of the location
where the event occurred.

» Coordinates are measured from the upper-left corner of the GUI
component on which the event occurred.

» The x-coordinates start at 0 and increase from left to right. The y-
coordinates start at O and increase from top to bottom.

» The methods and constants of class InputEvent (Mouse-
Event’s superclass) enable you to determine which mouse
button the user clicked.

(C) 2010 Pearson Education, Inc.
All rights reserved.

ez Software Engineering Observation 14.7

4._,; Method calls to mouseDragged are sent to the
MouseMotionL1istener forthe Component on which
a mouse drag operation started. Similarly, the
mouseReleased method call at the end of a drag
operation is sent to the MouselListener for the
Component on which the drag operation started.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.14 Mouse Event Handling (cont.)

» Interface MouseWheelL1stener enables applications to
respond to the rotation of a mouse wheel.

» Method mouseWheelMoved receives a
MouseWheelEvent as its argument.

» Class MousewWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler
to obtain information about the amount of wheel
rotation.

(C) 2010 Pearson Education, Inc.
All rights reserved.

// Fig. 14.28: MouseTrackerFrame.java

// Demonstrating mouse events.

import java.awt.Color;

import java.awt.BorderlLayout;

import java.awt.event.Mouselistener;
import java.awt.event.MouseMotionListener;
import java.awt.event.MouseEvent;

import javax.swing.JFrame;

import javax.swing.JLabel;

10 1import javax.swing.JPanel;

VoOe~NONUND WN =

12 public class MouseTrackerFrame extends JFrame

13 {

14 private JPanel mousePanel; // panel 1in which mouse events will occur
15 private JlLabel statusBar; // label that displays event information
16

17 // MouseTrackerFrame constructor sets up GUI and

18 // registers mouse event handlers

19 public MouseTrackerFrame()

20 {

21 super("Demonstrating Mouse Events");

22

Fig. 14.28 | Mouse event handling. (Part I of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

mousePanel = new JPanel(); // create panel
mousePanel .setBackground(Color.WHITE); // set background color
add(mousePanel, BorderLayout.CENTER); // add panel to JFrame

statusBar = new JLabel("Mouse outside JPanel"”);
add(statusBar, BorderLayout.SOUTH); // add label to JFrame

// create and register Tistener for mouse and mouse motion events
MouseHandler handler = new MouseHandler(); -
mousePanel.addMouselListener(handler);
mousePanel.addMouseMotionListener(handler);

Object that handles
both mouse eventsand
mouse motion events.

} // end MouseTrackerFrame constructor

private class MouseHandler implements MouselListener, «—

{

An object of this class is a
MouselListener and is a
MouseMotionListener

MouseMotionListener

// MouselListener event handlers
// handle event when mouse released immediately after press
public void mouseClicked(MouseEvent event)

{
statusBar.setText(String.format("Clicked at [%d, %d]",

. X - Y ; ; :
1 /) eﬁ;e;Ztggz ;2;52z$?zk23t 03 T———— | Getthe mouse coordinates at the time

the click event occurred.

Fig. 14.28 | Mouse event handling. (Part 2 of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

// handle event when mouse pressed
public void mousePressed(MouseEvent event)

{
statusBar.setText(String.format("Pressed at [%d, %d]",

.getX(), .getY ; , ,
1 /) eﬁzeEZtﬁﬁz éguszgigzsggt Q) ST———— | Getthe mouse coordinates at the time

the pressed event occurred.

// handle event when mouse released
public void mouseReleased(MouseEvent event)

{
statusBar.setText(String.format("Released at [%d, %d]",

event.getX(), event.getY())); ; -
} // end method mouseReleased ST————— | Getthe mouse coordinates at the time

the released event occurred.

// handle event when mouse enters area
public void mouseEntered(MouseEvent event)

{
statusBar.setText(String.format("Mouse entered at [%d, %d]",

event.getX(), event.getY())); ; ;
mousePanel.setBackground(Co1or.GRéENEST_*—hh“““““*——-a Cet the mouse coordinates at the time

} // end method mouseEntered the entered event occurred then
change the background to green.

Fig. 14.28 | Mouse event handling. (Part 3 of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

69 // handle event when mouse exits area

70 public void mouseExited(MouseEvent event)

71 {

72 statusBar.setText("Mouse outside JPanel”); :

73 mousePanel.setBackground(Color . WHITE); = ;Tangeﬂmtmfkﬁ?undtowhﬁeuﬁmn
74 } // end method mouseExited € ouse exits the area.

75

76 // MouseMotionListener event handlers

77 // handle event when user drags mouse with button pressed

78 public void mouseDragged(MouseEvent event)

79 {

80 statusBar.setText(String.format("Dragged at [%d, %d]",

81 event.getX(), event.getY())); ; .
32 } // end method mouseDragged ‘““‘*‘““——_Hﬁ___ﬁﬁ___h Get the mouse coordinates at the time
83 the dragged event occurred.

84 // handle event when user moves mouse

85 public void mouseMoved(MouseEvent event)

86 {

87 statusBar.setText(String.format("Moved at [%d, %d]",

88 event.getX(), event.getY())); : :
89 } // end method mouseMoved] g]etthe m((j:)usecsordmatt(ajsatthetlme
90 } // end inner class MouseHandler € moved event occurred.

91 1} // end class MouseTrackerFrame

Fig. 14.28 | Mouse event handling. (Part 4 of 4.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.29: MouseTrackerFrame.java

2 // Testing MouseTrackerFrame.

3 import javax.swing.JFrame;

4

5 public class MouseTracker

6 {

7 public static void main(String[] args)

8 {

9 MouseTrackerFrame mouseTrackerFrame = new MouseTrackerFrame();
10 mouseTrackerFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseTrackerFrame.setSize(300, 100); // set frame size

12 mouseTrackerFrame.setVisible(true); // display frame

13 } // end main

14 } // end class MouseTracker

Fig. 14.29 | Test class for MouseTrackerFrame. (Part | of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

L
Dragged at[92, 31]

Released at[99, 31]

Fig. 14.29 | Test class for MouseTrackerFrame. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc.

All rights reserved.

14.14 Mouse Event Handling (cont.)

» BorderLayout arranges components into five regions: NORTH,
SOUTH, EAST, WEST and CENTER.

» BorderLayout sizes the component in the CENTER to use all
available space that is not occupied

» Methods addMouseL1stener and addMouseMot 1onL1stener
register MouseL1steners and MouseMotionListeners,
respectively.

» MouseEvent methods getX and getY return the x- and y-
coordinates of the mouse at the time the event occurred.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.15 Adapter Classes

» Many event-listener interfaces contain multiple methods.

» An adapter class implements an interface and provides a
default implementation (with an empty method body) of
each method in the interface.

» You extend an adapter class to inherit the default
Implementation of every method and override only the
method(s) you need for event handling.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Software Engineering Observation 14.8

\VA"

»»»»»

X When a class implements an interface, the class has an is-
a relationship with that interface. All direct and indirect
subclasses of that class inberit this interface. Thus, an
object of a class that extends an event-adapter class is an
object of the corresponding event-listener type (e.g., an
object of a subclass of MouseAdapter is a

Mousel istener).

(C) 2010 Pearson Education, Inc.
All rights reserved.

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener
FocusAdapter FocusListener
KeyAdapter KeyListener
MouseAdapter MouselListener
MouseMotionAdapter MouseMotionListener
WindowAdapter WindowListener

Fig. 14.30 | Event-adapter classes and the interfaces they implement
in

package java.awt.event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.31: MouseDetailsFrame.java

2 // Demonstrating mouse clicks and distinguishing between mouse buttons.
3 import java.awt.BorderlLayout;

4 import java.awt.event.MouseAdapter;

5 dimport java.awt.event.MouseEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JLabel;

8

9 public class MouseDetailsFrame extends JFrame

10 {

11 private String details; // String that is displayed in the statusBar
12 private JlLabel statusBar; // JLabel that appears at bottom of window
13

14 // constructor sets title bar String and register mouse listener

15 pubTic MouseDetailsFrame()

16 {

17 super("Mouse clicks and buttons”);

18

19 statusBar = new JLabel("Click the mouse"™);
20 add(statusBar, BorderlLayout.SOUTH);
21 addMouselListener(new MouseClickHandler()); // add handler
22 } // end MouseDetailsFrame constructor
23

Fig. 14.31 | Left, center and right mouse-button clicks. (Part I of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

24 // inner class to handle mouse events Adaot bl : 3o th

25 private class MouseClickHandler extends MouseAdapter «—— | apterenables US to override the one
26 { method we use in this example.

27 // handle mouse-click event and determine which button was pressed

28 public void mouseClicked(MouseEvent event)

29 {

30 int xPos = event.getX(); // get x-position of mouse

31 int yPos = event.getY(); // get y-position of mouse
32 -
. . o . . N Returns the number of mouse clicks. If
:2 deta11st= SEE]nggormiE§)F11cked rd time(s)T, you wait long enouogh between clicks,
35 event.gett lickioun » = the count resets to 0.
36 if (event.isMetaDown()) // right mouse button : -
37 details += " with right mouse button"; ‘\/_Help dgtermt}:]ewhlch button the user
38 else if (event.isAltDown()) // middle mouse button pressed on the mouise.
39 details += " with center mouse button";
40 else // Teft mouse button
41 details += " with Teft mouse button";
42
43 statusBar.setText(details); // display message in statusBar
44 } // end method mouseClicked
45 } // end private inner class MouseClickHandler

46 1} // end class MouseDetailsFrame

Fig. 14.31 | Left, center and right mouse-button clicks. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.32: MouseDetails.java

2 // Testing MouseDetailsFrame.

3 import javax.swing.JFrame;

4

5 public class MouseDetails

6 {

7 public static void main(String[] args)

8 {

9 MouseDetailsFrame mouseDetailsFrame = new MouseDetailsFrame();
10 mouseDetailsFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseDetailsFrame.setSize(400, 150); // set frame size

12 mouseDetailsFrame.setVisible(true); // display frame

13 } // end main

14 } // end class MouseDetails

Fig. 14.32 | Test class for MouseDetailsFrame. (Part | of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

s

| £:) Mouse Clicks and Buttons

Click the mouse

[F=%(HoR(*3)

p

| £/ Mouse Clicks and Buttons

s

Clicked 1 time(s) with right mouse button

| £/ Mouse Clicks and Buttons E’
Clicked 2 time(s) with left mouse buiton

=3 o <™
| £/ Mouse Clicks and Buttons E’

Clicked 5 time(s) with center mouse buiton

Fig. 14.32 | Testclass for MouseDetailsFrame. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc.

All rights reserved.

=2, Common Programming Error 14.4
E’A‘ If you extend an adapter class and misspell the name of
the method you are overriding, your method simply be-
comes another method in the class. This is a logic error
that is difficult to detect, since the program will call the
empty version of the method inberited from the adapter
class.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.15 Adapter Classes (cont.)

» A mouse can have one, two or three buttons.

» Class MouseEvent inherits several methods from
InputEvent that can distinguish among mouse
buttons or mimic a multibutton mouse with a combined
keystroke and mouse-button click.

» Java assumes that every mouse contains a left mouse
button.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.15 Adapter Classes (cont.)

» In the case of a one- or two-button mouse, a Java application
assumes that the center mouse button is clicked if the user holds
down the Alt key and clicks the left mouse button on a two-
button mouse or the only mouse button on a one-button mouse.

» In the case of a one-button mouse, a Java application assumes
that the right mouse button is clicked if the user holds down the
Meta key (sometimes called the Command key or the “Apple”
key on a Mac) and clicks the mouse button.

(C) 2010 Pearson Education, Inc.
All rights reserved.

isMetaDown () Returns true when the user clicks the right mouse button on a
mouse with two or three buttons. To simulate a right-mouse-
button click on a one-button mouse, the user can hold down
the Meta key on the keyboard and click the mouse button.

isA1tDown () Returns true when the user clicks the middle mouse button on
a mouse with three buttons. To simulate a middle-mouse-but-
ton click on a one- or two-button mouse, the user can press the
Alt key and click the only or left mouse button, respectively.

Fig. 14.33 | InputEvent methods thathelp distinguish among left-, center- and
right-mouse-button clicks.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.15 Adapter Classes (cont.)

» The number of consecutive mouse clicks iIs returned by
MouseEvent method getClickCount.

» Methods 1sMetaDown and 1sAltDown determine which
mouse button the user clicked.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.16 JPanel Subclass for Drawing with
the Mouse

» Use a JPanel as a dedicated drawing area in which the user can
draw by dragging the mouse.

» Lightweight Swing components that extend class JComponent
(such as JPanel) contain method paintComponent
o called when a lightweight Swing component is displayed

» Override this method to specify how to draw.

> Call the superclass version of paintComponent as the first statement
In the body of the overridden method to ensure that the component
displays correctly.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.16 JPanel Subclass for Drawing with
the Mouse (cont.)

JComponent support transparency.

>

(e]

To display a component correctly, the program must determine whether
the component is transparent.

The code that determines this is in superclass JComponent’s
paintComponent implementation.

When a component is transparent, paintComponent will not clear its
background

When a component is opaque, paintComponent clears the
component’s background

The transparency of a Swing lightweight component can be set with

method setOpaque (a false argument indicates that the component is
transparent).

(C) 2010 Pearson Education, Inc.
All rights reserved.

= Most Swing GUI components can be transparent or
opaque. If a Swing GUI component is opaque, its back-
ground will be cleared when its paintComponent
method is called. Only opaque components can display a
customized background color. JPanel objects are

opaque by defauls.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Error-Prevention Tip 14.1

In a JComponent subclasss paintComponent meth-
od, the first statement should always call to the super-
class’s paintComponent method to ensure that an
object of the subclass displays correctly.

(C) 2010 Pearson Education, Inc.
All rights reserved.

Common Programming Error 14.5

% If an overridden paintComponent method does not
call the superclass’s version, the subclass component may
not display properly. If an overridden paintCompo-
nent method calls the superclass’s version after other
drawing is performed, the drawing will be erased.

(C) 2010 Pearson Education, Inc.
All rights reserved.

VoOe~NONUND WN =

14
15

// Fig.

14.34: PaintPanel.java

// Using class MouseMotionAdapter.

import
import
import
import
import

public
{

java.awt.Point;

java.awt.Graphics;
java.awt.event.MouseEvent;
java.awt.event.MouseMotionAdapter;
javax.swing.JPanel;

class PaintPanel extends JPanel

private int pointCount = 0; // count number of points

// array of 10000 java.awt.Point references
private Point[] points = new Point[10000];

Fig. 14.34 | Adapter class used to implement event handlers. (Part | of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

16 // set up GUI and register mouse event handler

17 public PaintPanel()

I8 {

19 // handle frame mouse motion event

20 addMouseMotionListener(

21

22 new MouseMotionAdapter() // anonymous inner class

23 {

24 // store drag coordinates and repaint

25 public void mouseDragged(MouseEvent event)

26 {

27 if (pointCount < points.length)

28 { -

29 points[pointCount] = event.getPoint(); // find point ‘ﬁzune?ﬁHWSasuser
30 pointCount++; // increment number of points in array rags the mouse.

31 repaint(); repaint JFrame -

32 } // gnd 1§) J I . Request that this
33 } // end method mouseDragged Panﬁ?irélbe I
34 ¥ // end anonymous inner class mpmﬁm --ausesaca
35); // end call to addMouseMotionListener to paintComponent.
36 } // end PaintPanel constructor

37

Fig. 14.34 | Adapter class used to implement event handlers. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

38 // draw ovals in a 4-by-4 bounding box at specified Tocations on window

39 public void paintComponent(Graphics g)

:(: ' super.paintComponent(g); // clears drawing area

:: // clr"av_u aﬂ_ point§ in array _

:: forg_(f}?;col;(oéoln:s?oln;?:?ngéi;:;[)i 1.y, 4, 4); e | Draws a filled circle at the specified
46 } // end method paintComponent coordinates.

47 } // end class PaintPanel

Fig. 14.34 | Adapter class used to implement event handlers. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.16 JPanel Subclass for Drawing with
the Mouse (cont.)

» Class Point (package java.awt) represents an x-y

coordinate.
> We use objects of this class to store the coordinates of each mouse

drag event.
» Class Graphics is used to draw.
» MouseEvent method getPoint obtains the Po1nt where
the event occurred.
» Method repaint (inherited from Component) indicates
that a Component should be refreshed on the screen as

soon as possible.

(C) 2010 Pearson Education, Inc.
All rights reserved.

~¢..m Look-and-Feel Observation 14.13

N New

X&' Calling repaint for a Swing GUI component indicates
that the component should be refreshed on the screen as
soon as possible. The background of the GUI component
is cleared only if the component is opaque. IJComponent
method setOpaque can be passed a boolean argument
indicating whether the component is opaque (true) or
transparent (false).

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.16 JPanel Subclass for Drawing with
the Mouse (cont.)

» Graphics method f1110val draws a solid oval.
o Four parameters represent a rectangular area (called the bounding
box) in which the oval is displayed.
> The first two are the upper-left x-coordinate and the upper-left y-
coordinate of the rectangular area.
o The last two represent the rectangular area’s width and height.

» Method f1T110val draws the oval so it touches the middle
of each side of the rectangular area.

(C) 2010 Pearson Education, Inc.
All rights reserved.

wgmn Look-and-Feel Observation 14.14

%\ Drawing on any GUI component is performed with co-
ordinates that are measured from the upper-left corner

(0, 0) of that GUI component, not the upper-left corner

of the screen.

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.35: Painter.java

2 // Testing PaintPanel.

3 import java.awt.BorderLayout;

4 import javax.swing.JFrame;

5 dimport javax.swing.JLabel;

6

7 public class Painter

8 {

9 public static void main(String[] args)

10 {

11 // create JFrame

12 JFrame application = new JFrame("A simple paint program”);

13 ;

14 PaintPanel paintPanel = new PaintPanel(); // create paint panel «— Cma&sthededmamd
15 application.add(paintPanel, BorderLayout.CENTER); // in center drawing area

16 :

17 // create a label and place it in SOUTH of BorderL;;;:;hghﬂhﬁﬁﬁh““‘-AnmimS”wdEdmamd
18 application.add(new JLabel("Drag the mouse to draw"), dmvnngamatqthe
19 BorderLayout.SOUTH); center of the window.
20
21 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 application.setSize(400, 200); // set frame size
23 application.setVisible(true); // display frame
24 } // end main

25 } // end class Painter

4.35 | Testclass for PaintFrame. (Part | of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

|| A simple paint program =llE).

TJAYA
How 4g
Pro T‘ L Al

Drag the mouse to draw

Fig. 14.35 | Testclass for PaintFrame. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.17 Key Event Handling

» KeyL1istener interface for handling key events.
» Key events are generated when keys on the keyboard are pressed and released.

» AKeyL1stener must define methods keyPressed, keyReleased and
keyTyped
o each receives a KeyEvent as its argument

» Class KeyEvent is asubclass of InputEvent.

» Method keyPressed is called in response to pressing any key.

» Method keyTyped is called in response to pressing any key that is not an
action key.

» Method keyReleased is called when the key is released after any
keyPressed or keyTyped event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.36: KeyDemoFrame.java

2 // Demonstrating keystroke events.

3 import java.awt.Color;

4 import java.awt.event.KeyListener;

5 import java.awt.event.KeyEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JTextArea;

8

9 public class KeyDemoFrame extends JFrame implements KeyListener =
10 {

11 private String linel = ""; // first line of textarea

12 private String line2 = ""; // second line of textarea

13 private String 1line3 = ""; // third Tine of textarea

14 private JTextArea textArea; // textarea to display output
15

16 // KeyDemoFrame constructor

17 public KeyDemoFrame()

18 {

19 super("Demonstrating Keystroke Events");
20
21 textArea = new JTextArea(10, 15); // set up JTextArea
22 textArea.setText("Press any key on the keyboard...");
23 textArea.setEnabled(false); // disable textarea

This class can handle
its own KeyEvents.

Fig. 14.36 |

Key event handling. (Part | of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

24 textArea.setDisabledTextColor(Color.BLACK); // set text color

25 add(textArea); // add textarea to JFrame

26 - -
27 addKeyListener(this); // allow frame to process key events e—— ;e'glsfers theﬂc;bject of
28 } // end KeyDemoFrame constructor Is class as the event
290 handler.

30 // handle press of any key

31 public void keyPressed(KeyEvent event)

32 {

33 Tinel = String.format("Key pressed: %s", Cets lext of 1
34 KeyEvent.getKeyText(event.getKeyCode())); // show pressed key __kes EXt Of presse
35 setLines2and3(event); // set output lines two and three &y

36 } // end method keyPressed

37

38 // handle release of any key

39 public void keyReleased(KeyEvent event)

40 {

41 Tinel = String.format("Key released: %s", Cots toxt of q
42 KeyEvent.getKeyText(event.getKeyCode())); // show released key--kes ext of presse
43 setlLines2and3(event); // set output lines two and three ey

44 } // end method keyReleased

45

Fig. 14.36 | Key event handling. (Part 2 of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

46
47
48
49
50
S
52
53
54
55
56
37
58
59
60
61
62
63
64
65
66
67

// handle press of an action key

public void keyTyped(KeyEvent event)

{
Tinel = String.format("Key typed: %s", event.getKeyChar());
setlLines2and3(event); // set output lines two and three

} // end method keyTyped

// set second and third Tines of output
private void setLines2and3(KeyEvent event)
{
Tine2 = String.format("This key 1is %san action key",
(event.isActionKey() ? "" : "not "));

String temp = KeyEvent.getKeyModifiersText(event.getModifiers());

Tine3 = String.format("Modifier keys pressed: %s",
(temp.equals("") ? "none” : temp)); // output modifiers

textArea.setText(String.format("%s\n%s\n%s\n",
Tinel, Tline2, 1ine3)); // output three lines of text
} // end method setlLines2and3
} // end class KeyDemoFrame

Gets text of pressed

~| modifier keys.

Fig. 14.36 | Key event handling. (Part 3 of 3.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

1 // Fig. 14.37: KeyDemo.java

2 // Testing KeyDemoFrame.

3 import javax.swing.JFrame;

4

5 public class KeyDemo

6 {

7 public static void main(String[] args)

8 {

9 KeyDemoFrame keyDemoFrame = new KeyDemoFrame();

10 keyDemoFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 keyDemoFrame.setSize(350, 100); // set frame size
12 keyDemoFrame.setVisible(true); // display frame
13 } // end main

14 } // end class KeyDemo

Fig. 14.37 | Test class for KeyDemoFrame. (Part | of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

P

| £:) Demonstrating Keystroke Events

Key typed: a
This key is not an action key
Modifier keys pressed: none

E=%(Eo8 EX3

| £:| Demonstrating Keystroke Events

Keyreleased: A
This key is not an action key
Modifier keys pressed: none

[=llE =

P

|£: Demonstrating Keystroke Events

Key pressed: Shift
This key is not an action key
Modifier keys pressed: Shift

(=l =

.

|| Demeonstrating Keystroke Events

Key typed: L
This key is not an action key
Modifier keys pressed: Shift

[F=%|EoRE53

|£:| Demonstrating Keystroke Events

Keyreleased: L

This key is not an action key
Modifier keys pressed: Shift

[=lE =

| £: Demonstrating Keystroke Events

Key pressed: F1
This key is an action key
Modifier keys pressed: none

E=%(EE F53

| £:| Demonstrating Keystroke Events

Key released: F1
This key is an action key
Modifier keys pressed: none

[=llE =

Fig. 14.37 | Testclass for KeyDemoFrame. (Part 2 of 2.)

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.17 Key Event Handling (cont.)

» Registers key event handlers with method addKeyL1stener from class
Component.

» KeyEvent method getKeyCode gets the virtual key code of the
pressed key.

» KeyEvent contains virtual key-code constants that represents every
key on the keyboard.

» Value returned by getKeycCode can be passed to static
KeyEvent method getKeyText to get a string containing the name of
the key that was pressed.

» KeyEvent method getKeyChar (which returns a char) gets the
Unicode value of the character typed.

» KeyEvent method isAct ionKey determines whether the key in the
event was an action key.

(C) 2010 Pearson Education, Inc.
All rights reserved.

14.17 Key Event Handling (cont.)

» Method getModifiers determines whether any modifier
keys (such as Shift, Alt and Ctrl) were pressed when the key
event occurred.

> Result can be passed to static KeyEvent method
getKeyModifiersText to get a string containing the names of the
pressed modifier keys.

» InputEvent methods 1sAltDown, 1sControlDown,
1sMetaDown and 1sShi ftDown each return a boolean
Indicating whether the particular key was pressed during the
key event.

(C) 2010 Pearson Education, Inc.
All rights reserved.

