
Lydia B. Chilton Research Statement 
 
I build hybrid human-computer systems that combine the strengths of human and machine 
intelligence to solve problems that neither one could solve independently. 
 
People have innate problem-solving abilities that computers do not yet have: people synthesize 
contextual clues and apply rich world knowledge. Yet people struggle when problems become 
complex: there are too many contextual clues to fit into human memory, and the possibilities of 
trial and error are overwhelming. 
 
Fortunately, computers excel at search and have memory that far exceeds human limitations. 
With crowdsourcing as a source of human conceptual understanding, we can harness the crowd’s 
ability to explore conceptual solution spaces and use algorithms to guide the search to 
completion. However, the conceptual understanding people have is open-ended, and thus rigid or 
static workflows are not amenable to leveraging our rich understanding of the world. We need 
dynamic crowd algorithms to solve problems that are hard, big, ill-defined and creative. 
 

Dynamic Crowd Algorithms 
Dynamic crowd algorithms solve complex problems by using people to explore conceptual 
solution spaces with microtasks, and algorithms to guide the exploration to completion. I have 
built and deployed four systems that decompose and solve complex problems using dynamic 
crowd algorithms. My evaluation shows increased group efficacy and individual creativity. 
 

Problems too hard for one person to solve 
When one person cannot solve a problem, multiple 
perspectives can bring new insights. Microtask 
crowdsourcing began with labeling images [1], 
and other individual microtasks. My colleagues 
and I realized that human computation could be 
used more generally in a computational framework 
such as algorithms that coordinate human effort. 
We built the TurKit toolkit for writing crowd 
algorithms on Mechanical Turk [10, 11]. 
 
For example, in Figure 1, Mechanical Turk 
workers could not individually decipher messy 
handwriting. However, by building on the partial 
solutions of others, the handwriting was almost 
completely deciphered. The Improve-and-Vote” 
algorithm iteratively solicits potential 
improvements to the transcription, and solicits 
workers to vote on whether to adopt the 
improvement or solicit a different improvement. 
TurKit uses microtasks to get suggested 
improvements and to vote on which branch is 
better. Iterative application of Improve-and-Vote 
is the algorithm that guides these microtasks to a 
solution. 

 
Figure 1. Results of TurKit's Improve-and-Vote algorithm to decipher 
bad handwriting. Iterations 1 and 6 are shown. Red text indicates 
missing or incorrect words. 
 



 
Other AI researchers independently optimized our Improve-and-Vote algorithm for quality and 
cost using POMDPs [9]. Other HCI researchers (Michael Bernstein at Stanford [3], and Jeffrey 
Bigham at CMU [4]) implemented their systems using TurKit and were directly inspired by our 
introduction of crowd algorithms. 
 
TurKit was an early break-through in crowdsourcing. I saw the potential to generalize the 
technique of exploring alternatives at a crowd-scale and intelligently combine partial answers to 
solve big, harder, more open-ended problems in an even more dynamic way. 
 

Problems too big for one person to solve 
Problems that require a cohesive solution synthesized from many pieces of information are often 
overwhelming for a single person to solve. Data organization tasks often need people’s contextual 
knowledge, but overwhelm people as the size of the task grows large. I developed the Cascade 
algorithm running on TurKit to crowdsource the creation of taxonomies that allow people to get 
the big picture from large datasets. 
 
For example, in Figure 2, Cascade [6] was used to create a taxonomy out of 100 photos. Creating 
a taxonomy is too big and overwhelming to be done by one person iteratively, so Cascade uses 
crowds of people working in parallel. Cascade was also used to quickly organize colors, travel 
tips, writing advice, and hackathon ideas. 
	  
Cascade issues microtasks that help people search a conceptual space of possible labels by 
generating labels for data items individually and then testing the labels globally. The high-level 
process is a machine algorithm that infers relationships from the network structure connecting the 
items. Cascade recursively generates and tests more labels until all the items are taxonomized. 
 
Many researchers have followed in my footsteps, re-implementing Cascade, optimizing it with 
machine learning [5], and being inspired to tackle similar global-from-local problems [2, 12]. I 
received a Facebook Fellowship for my Cascade work based on its ability to help people 
collaboratively structure their photos into cohesive narratives. 

	  
Figure 2. A taxonomy crowdsourced by Cascade. The left represents the input: 100 nature photos. The right 
side is the resulting taxonomy with call outs showing examples of three categories: tiger, worker, and 
historical landmarks.	  



Problems too ill-defined to automate 
Algorithmic techniques work well when problems can be fully specified. However, many real-
world problems have important cultural and social constraints that cannot be written down, and 
may not be evident until a problem surfaces them. For example, in software development, it is 
often not until a prototype has been developed that the client realizes it needs additional features. 
 
I developed Frenzy [7], a real-time collaboration platform for crowds of experts to organize data 
into clusters. This work builds on Cascade but recognizes that for many problems as new global 
constraints emerge, the solution will have to adjust. I deployed a version of Frenzy to the two 
largest HCI conferences, CSCW and CHI, to organize hundreds of accepted papers into sessions. 
Each session had to have four similar papers and a unique name describing the theme. However, 
as the sessions started to emerge, more constraints appeared. For example, there were four papers 
that fit together perfectly in a session called “Collaborative Crowdsourcing.” Unfortunately, all 
four papers had the same author, and it was deemed culturally inappropriate to have one session 
to showcase the work of one author. In light of this newly discovered constraint, the clusters had 
to be changed. 
 
Frenzy builds on the microtasks that I first used in Cascade, but embeds them in a real-time 
updating platform that enables all contributors to see other’s contributions and the current global 
structure in real time. Additionally, Frenzy uses a new algorithm to guide the microtasks to a 
solution. Frenzy presents a sequence of goals to all contributors that drives the crowd toward 
ideation in a flare-and-focus pattern: come up with a lot of ideas for categories, select the best 
category for each paper, based on the categories (which are often 
as large as 40 items) put every paper in a smaller sessions with 
appropriate names, lastly make sure every session has exactly 
four papers. The flare-and-focus algorithm leaves the experts in 
charge of the overall outcome and can adjust to dynamically 
emerging constraints, but still allows as many as 60 people to 
collaborate together in real time. In our deployment at CSCW 
2013, the process that normally takes 6-8 hours (with breaks), 
was done in 88 minutes using Frenzy. 
 
Frenzy was deployed in production to the two largest 
conferences in HCI to create the conference sessions: CSCW 
2013 (136 papers) and CHI 2014 (431 papers). The Frenzy paper 
won Honorable Mention for Best Paper at CHI 2014. 

Problems that require creativity 
Some of the hardest problems are those that cannot pattern match to a similar problem we have 
previously solved. Developing a novel solution requires creativity. Often we think of creativity as 
magical and something that cannot be broken down into concrete steps. This is a myth that I help 
dispel with HumorTools [8] – a system that helps people write humorous news satire by breaking 
the process into microsteps. Given a real news headline such as “People Bending iPhones at 
Apple Stores", the system helps people write jokes relevant to the headline such as “I can’t 
believe people would just walk into an Apple Stores and start breaking things like it’s a Best 
Buy.” 

	  
Figure 3 Activity during Frenzy session-making. 
Multiple interleaved task types over time show the 
dynamic nature of the Frenzy algorithm. 

	  



 
HumorTools decomposes humor writing into microtasks that help novices explore the conceptual 
space of humor, such as identifying possible points of view, insult targets, and falsifiable 
assumptions. HumorTools teaches people to apply the microtasks in a dynamic algorithm that is 
derived from both the central principle of HCI – iterative design – and the AI technique of 
dynamic constraint satisfaction (See Figure 4). It combines conceptual search with dynamic 
constraint discovery, and uses backtracking when it gets stuck in a constraint that is difficult to 
meet.  
 
I tested the HumorTools website with 20 participants. My study showed that users could search a 
wider range of ideas, employ more solution patterns, and write better jokes. HumorTools 
externalizes the creative process and it helps dispel the myth that writing humor requires magic. 
HumorTools received a year-long grant from the Brown Institute for Media Innovation to extend 
the website to new creative domains and deploy a production humor-generation system. 

Future Work: Automating Iterative Design 
My work decomposes large, hard, ill-defined, and creative problems by using microtasks for 
people to explore a conceptual search space, and algorithms to guide them to a solution. My goal 
is to build hybrid human-computer systems that do open-ended problem solving. Iterative 
Design in HCI is a powerful open-ended problem solving method. I am the first person to 
demonstrate that Iterative Design can be scaffolded with crowdsourced microtasks to carry out 

	  
Figure 4 HumorTools uses microtasks in the iterative design process to help people write news satire. On the 
left are the stages of the iterative design process with arrows showing typical transitions between states. On 
the right is an illustration of the process of generating two jokes – an exploration of conceptual spaces in a 
search-tree like structure. The red lines indicate the flow of activity, with the red line on the left indicating 
backtracking to find a humorous solution that satisfied the humor constraints. 



creative problem solving. I will generalize the process across domains, optimize the process with 
people, and automate the process with machine intelligence. My five year research plan is as 
follows: 
 

Apply Iterative Design Crowdsourcing to Other Domains 
Humor is creative and impactful. Persuasive argumentation is also creative and impactful. I will 
discover the search spaces of persuasive argumentation and extend the iterative design approach 
to this new conceptual search space. This method might be used to author opinion editorials (op-
eds) for local and national newspapers on issues ranging from education to medicine to 
technology. In addition to producing persuasive text, I will generalize my approach to producing 
persuasive visuals to accompany the articles and grab attention. 
 

Optimizing Transitions Between Iterative Design Stages 
In complex processes, the dynamic transitions between stages of the process (e.g., from 
prototyping to testing in iterative design) are often a source of difficulty for people. For example, 
should you wait to come up with a better idea or should you prototype the idea you have now? To 
optimize the process we can use optimization approaches, such as POMDPs and reinforcement 
learning, to model the transitions as a function of the current context and the user’s ability. 
POMDPs have been successfully used to optimize TurKit’s Improve-and-Vote algorithm and 
Cascade’s taxonomy creation algorithm. It is currently the best candidate to optimize humor or 
other domains that require complex, open-ended problem solving. 
 

Automating Conceptual Exploration 
Machine intelligence is quickly getting better at conceptual understanding, such as for image 
descriptions, and it may soon be better at conceptual search than people are. If this happens, we 
can embed this ability in a hybrid human-computer algorithm for dynamic content creation. The 
microtasks I identified in HumorTools represent a clear starting point to replace some or all of the 
conceptual search with machine intelligence. Eventually, we may need machine intelligence to 
solve problems that are too large and complex for us to solve in areas such as physics, biology, 
writing software and medicine. Advances in these fields will need humans in the loop for the 
foreseeable future, thus hybrid human-computer systems can guide us forward. 
 

Conclusion 
Richard Hamming challenges us to work on the most important problems in your field. To me, 
the most important problem in Human-Computer Interaction (HCI) is “enabling people and 
computers to do iterative design better.” Iterative design is fundamental to engineering usable, 
secure, efficient, and novel software. It solves open-ended problems that other methods cannot 
solve because it jointly discovers the real problem and solves it. We know iterative design is 
powerful, but we do not yet fully understand how it works. In the future, I am going to generalize, 
optimize, and automate iterative design to make hybrid human and machine problem solving 
approaches systematically more intelligent. 
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