
CS E6204 Lecture 4
Algorithm for a Genus Distribution
of 3-Regular Outerplanar Graphs

Abstract

We present a quadratic-time algorithm for calculating the sequence
of numbers g0, g1, g2, ... of topologically distinct ways to draw a
3-regular outerplanar graph G on each of the respective orientable
surfaces S0, S1, S2, ... (without edge-crossings). The total number
of ways over all surfaces is 2n, where n is the number of vertices of
G. The key algorithmic features are a characterization of 3-regular
outerplanar graphs in terms of plane trees and a subsequent synthesis
of the graphs by sequences of amalgamations of building-block graphs
according to post-order traversals of those plane trees.

1. Introduction

2. Characterizing cubic outerplane graphs

3. Partials and productions for edge-amalgamations

4. Genus distribution of star-ladders

5. Algorithm for a cubic outerplanar graph

* This lecture is based on a recent research paper by J. L. Gross.
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1 Introduction

Outerplanar and outerplane graphs

Figure 1.1: A 3-regular outerplane graph.

Notation # imbeddings G→ Si is denoted gi(G).

Def. The genus distribution for graph G is the sequence

{gi(G)}

Reading

Genus distribution was first studied in [GF87], [FGS89], and [GRT89]. Recent
calculations of the genus distribution of graph amalgamations for recursively de-
fined families of graphs appear in [GKP10], [Gr10a], [KPG10], [?], [PKG10b], and
[Gr10a].

Background in topological graph theory appears in [GrTu87] and [BWGT09].
([MT01] and [Wh01] are alternative sources.)
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Rotation systems (review)

Def. Two equivalent orientable imbeddings of a graph G
have the same rotation at every vertex of G.
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Figure 1.2: Two inequivalent rotation systems for K4.

Example 1.1 Imbeddings of the complete graph K4.

• 2 in S0 with four 3-gons, like top drawing

• 8 in S1 with 3-gon and 9-gon, like bottom drawing

• 6 in S1 with a 4-gon and an 8-gon

Thus, the genus distribution of K4 is

g0(K4) = 2 g1(K4) = 14
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Origin: Graph Isomorphism Problem

Q1: Can two 3-connected non-isomorphic graphs have the
same genus distribution? (an “iso-generic” pair)

Q2: If not, how much sampling is needed to distinguish them
with probability p. (a nearly iso-generic pair)

g-dist = (2, 38, 24) g-dist = (0, 40, 24)

Figure 1.3: Two non-isomorphic graphs.

However, suppose each of there graphs is suspended from a new
vertex. Then the resulting genus distributions are

γδ(RL2 + u) = 0 884 129150 2036086 3432600

γδ(K3,3 + v) = 0 588 110148 1973232 3514752
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Review: Two Basic Results

Prop 1.1 For any graph G,∑
i≥0

gi(G) =
∏

v∈V (G)

((deg(v)− 1)!)

Thm 1.2 The minimum-genus problem is NP-complete.

Research Problem – Pot of Gold

Is there a sequence of graph operations with the following
property: Given an iso-generic pair or a nearly iso-generic pair,
the genus distributions of the pairs obtained by the sequence
become progressively easier to distinguish statistically?
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2 Characterizing Cubic Outerplane Graphs

A plane tree is a rooted tree such that at each vertex, there is
a linear ordering of the children.

Prop 2.1 Every cubic outerplane graph G→ R2 can be obtained
by adding non-intersecting inner chords to a cycle in the plane.

Proof See Figure 2.1 (left). ♦

Figure 2.1: An outerplane graph and a characteristic tree.
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Prop 2.2 The dual of a cubic outerplane graph is the join of a
plane tree to a vertex in the exterior region.

Proof We select an arbitrary dual vertex within the outer cycle
as a root and an arbitrary child of that root as its leftmost child
to make the tree a plane tree, which we call a characteristic
tree – see Fig 2.1 (right) – of the outerplane graph. ♦
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We recall (see [AHU83] or [GrYe06]) that the post-order for
a plane tree is obtained from a traversal of the fb-walk for its
only face, starting with the edge from the root to its leftmost
child. Figure 2.2 assigns integer labels to the vertices of the
characteristic tree from Figure 2.1, according to their post-order.
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Figure 2.2: Postorder for the characteristic tree.
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Overview of the calculation

Outline of our calculation plan:

1. Cut the outerplane graph along every chord, so that the
chord appears on both sides of the cut as an edge with two
2-valent endpoints.

2. Calculate the genus distribution of each of the graphs re-
sulting from this collection of cuts.

3. Reassemble the graph by an sequence of edge-amalgamations,
according to the post-order of the characteristic tree. With
each such edge-amalgamation, calculate the resulting genus
distribution of the partially reassembled piece.
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3 Partials and Productions for Edge-Amalgamations

Def. edge-amalgamation (G, d) ∗ (H, e) = X

(G,d) (H,e)* = X

Figure 3.1: Edge-amalgamation of two edge-rooted graphs.

In what follows, we assume

• a given edge-amalgamation is only one of the two possible
ways, not both.

• the endpoints of edge-roots d and e are 2-valent.
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(G,c) (H,d)* = X

Prop 3.1 There are exactly four imbeddings of

X = (G, c) ∗ (H, d)

that are consistent with a given pair of rotation systems for (G, c)
and (H, d), respectively. The genera of the four imbedding sur-
faces depends only on γ(SG), γ(SH), and the respective numbers
of faces in which the two edge-roots c and d lie.

Proof See [PKG10a]. ♦
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Partial imbedding distributions

We partition the imbeddings of a single-edge-rooted graph
(G, c) with deg(c) = 2 in a surface of genus i into the subset of
type-di imbeddings, in which edge-root c lies on two distinct
fb-walks, and the subset of type-si imbeddings, in which edge-
root c occurs twice on the same fb-walk. Moreover, we define

di(G, c) = the number of imbeddings of type-di, and

si(G, c) = the number of imbeddings of type-si.

Thus,
gi(G, c) = di(G, c) + si(G, c)

type-d0 type-s1

Figure 3.2: the two types of single-root partials.

Def. The numbers di(G, c) and si(G, c) are called single-root
partials. The sequences

{di(G, c) | i ≥ 0} and {si(G, c) | i ≥ 0}

are called partial genus distributions.
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Remark More generally, with a root of higher valence, there
would be more partials, corresponding to a larger number of
possible configurations of fb-walks at the root.

A double-edge-rooted graph (H, a, b) has many more partials
than a single-edge-rooted graph. The two double-root partials
of concern here, for the case in which both endpoints of both
edge-roots a and b are 2-valent, are as follows:

• The value of the double-root partial dd′′i (H, a, b) is the
number of imbeddings of graph H in the surface Si such
that edge-root a lies on two distinct fb-walks, and there is
an occurrence of edge-root b on each of these fb-walks.

• The value of the double-root partial ss 1
i is the number

of imbeddings of graph H in the surface Si such that both
occurrences of edge-root a lie on the same fb-walk, and
such that when that fb-walk is broken into two strands by
deleting the occurrences of edge a, one of these strands
contains both occurrences of edge-root b.
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Productions

A production for an edge-amalgamation

(G, c) ∗ (H, d) = X

of two single-edge-rooted graphs is a rule of the form

pi(G, t) ∗ qj(H, u) −→ ai+j di+j(X) + bi+j si+j(X)

+ ai+j+1 di+j+1(X) + bi+j+1 si+j+1(X)

where, pi and qj are partials, and where ai+j, bi+j, ai+j+1 and
bi+j+1 are integers. We often write such a rule in the form

pi ∗ qj −→ ai+j di+j + bi+j si+j + ai+j+1 di+j+1 + bi+j+1 di+j+1

A production for an edge-amalgamation

(G, c) ∗ (H, d, e) = (X, e)

of a single-edge-rooted graph to a double-edge-rooted
graph is a similar kind of rule.

Remark A series of fundamental papers ([GKP10], [Gr10a],
[KPG10], [PKG10a], [PKG10b], and [Gr10b]) is devoted to cal-
culating productions corresponding to various ways of synthe-
sizing graphs from graphs whose partial genus distributions are
known.
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Here is the result we need right now.

Thm 3.2 Let (X, f) = (G, d)∗(H, e, f) be an edge-amalgamation
where the endpoints of root-edge d are 2-valent in G and the end-
points of root-edges e and f are 2-valent in H. Then the genus
distribution of (X, f) conforms to the following productions:

di(G, d) ∗ dd′′j (H, e, f) −→ 2di+j(X, f) + 2si+j+1(X) (3.1)

si(G, d) ∗ dd′′j (H, e, f) −→ 4di+j(X, f) (3.2)

di(G, d) ∗ ss 1
j (H, e, f) −→ 4si+j(X, f) (3.3)

si(G, d) ∗ ss 1
j (H, e, f) −→ 4si+j(X, f) (3.4)

Proof See Theorems 3.1 and 3.2 of [?]. ♦

Figure 3.3: Production di(G, d)∗dd′′
j (H, e, f) −→ 2di+j(X, f)+2si+j+1(X).
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In the next subsection, we apply Theorem 3.2 to the example
[FGS89] of closed-end ladders, with attention here to the time
required for recursive calculation of their genus distributions.

Calculating the genus distribution of a ladder Ln

Def. closed-end ladder Ln. A few closed-end ladders with
edge-roots are shown in Figure 3.4.

L1L0 L3L2

Figure 3.4: Some closed-end ladders, with edge-roots.

For our present purposes, we trisect one of the edges at the end
of the ladder and regard the middle sector as the edge-root.
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L1L0 L3L2

Recursion basis. The ladder L0 has the single-root partitioned
genus distribution

d0(L0, w) = 1

and the double-root partitioned genus distribution

d′′0(L0, x, y) = 1

Reiterated step. The single-rooted ladder Lj is the edge-
amalgamation of a copy of Lj−1 to a double-rooted copy of L0.
For instance, using Production (3.1), we calculate the single-root
partitioned genus distribution of the ladder L1:

d0(L1, x) = 2 s1(L1, x) = 2

Next, using Production (3.1) and Production (3.2), we calculate
the single-root partitioned genus distribution of the ladder L2:

d0(L2, x) = 4 d1(L2, x) = 8 s1(L2, x) = 4

To obtain the single-root partitioned genus distribution of the
ladder Lj from the single-root distribution for Lj−1 and the
double-root distribution for L0, Productions (3.1) and (3.2) are
sufficient. We continue applying these rules until we obtain a
partitioned genus distribution for Ln.
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L1L0 L3L2

Prop 3.3 The time needed to calculate the partitioned genus
distribution of the ladder Ln is in O(n2).

Proof In three steps.

1. The number of non-zero partials (over all surfaces Si) of the
ladder Ln−1 is proportional to n, and the time needed to
apply the relevant production is proportional to the number
of non-zero partials.

2. It follows that the time needed to calculate the partials for
Ln from the partials for Ln−1 is proportional to n.

3. Accordingly, the time needed to calculate the partials for
Ln, starting from L0, is proportional to n2. ♦
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4 Genus Distribution of Star-Ladders

Closed-end ladders are the simplest cubic outerplanar graphs.
Their generalization to star-ladders is a base case of our algo-
rithm for the genus distribution of any cubic outerplanar graph.
The star-ladder SL(1,2,3) is shown in Figure 4.1.

Figure 4.1: The star-ladder SL(3,2,1).

Terminology Each of the closed-end ladders is a ray of the
star.

Terminology We may refer to any graph homeomorphic to
a star-ladder as a star-ladder. That is, a star-ladder remains a
star-ladder after one or more edges is subdivided.
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Prop 4.1 Two star-ladders are isomorphic if the signature of
one can be obtained by a rotation and/or a reversal of the sig-
nature of the other.

Remark However, placing an edge-root at the tip of one of the
rays may not be equivalent to placing it at the tip of another
ray.
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Splitting a single edge-root into a double edge-root

From Figure 4.1 (reproduced above), it appears that one might
need r edge-roots to paste on r rays.

Prop 4.2 OUCH! is an appropriate reaction to the preceding
sentence.

Proof The # of partials increases rapidly with the # of edge-
roots. Thus, using more than two roots is formidable. ♦

To avoid the need for having more than two roots at a time,
we now introduce a fundamental new method.
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Let (G, a) be an edge-rooted graph such that both endpoints
of edge a are 2-valent. By splitting the root-edge a we mean
trisecting edge a and regarding the two outer segments as edge-
roots of the resulting graph. (We may call one of these outer
segments a.)

a

a

b

Figure 4.2: Splitting an edge-root.
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Thm 4.3 Let (G, a, b) be a double-edge-rooted graph such that
both endpoints of root-edges a and b are 2-valent, and such that
there is a path from a to b along which every internal vertex is
2-valent. Then for every non-negative integer i,

dd′′i (G, a, b) = di(G, a) (4.1)

ss 1
i (G, a, b) = si(G, a) (4.2)

Moreover, every other double-root partial of (G, a, b) is zero-
valued.

Proof See Figure 4.3. ♦

Figure 4.3: Splitting a single-root partial.
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Algorithm for genus distribution of a star-ladder

To calculate the genus distribution of the star-ladder SLT with
signature T = (k1, k2, . . . , kr).

1. Start by placing an edge-root on each of the edges e2 and
e4 of the cycle-graph C2r.

2. Amalgamate the ladder Lk1
to the cycle graph on edge e2

and calculate the single-edge-root genus distribution for the
star-ladder (SL(k1), e4) using the given production rules.

e2e4

e6

L3

L2

L1

Figure 4.4: Assembling star-ladder SL(3,2,1).
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e2e4

e6

L3

L2

L1

3. Split root-edge e4 into two edge-roots. For this purpose,
the other edge-root may be regarded as edge e6. Theo-
rem 4.3 enables us to transform the single-edge distribu-
tion for (SL(k1), e4) into the double-root distribution for
(SL(k1), e4, e6).

4. Iterate this process of pasting a ladder across its only root-
edge to the growing star-ladder at the “older” of its two
edge-roots, and then splitting the remaining edge-root. Con-
tinue until all but one of the rays have been pasted onto
the star.

5. Build the rth ray by edge-amalgamating double-rooted copies
of L0 outward from the body of the ray, so that we finish
with a single edge-root at the tip of the rth ray, which we
will need for what follows in the next section.
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Example 4.1 Consider the star-ladder (SL(0,1,1), x), where the
edge-root x is at the tip of the ray corresponding to 0 in the
signature. As shown in Figure 4.5, we take (X0, x, y) to be a
cycle graph with two non-adjacent edges as roots, and we have
(L1, a) as a ladder with the middle sector of an end-rung as its
root. Let (X2, y) be the result of the amalgamation.

X0
L1

xy

z

a

Figure 4.5: Amalgamating ladder L1 to X0.

We start with the partials d0(L1, a) = 2, s1(L1, a) = 2, and
dd

′′

0(X0, x, y) = 1 and we apply the productions

di(L1, a) ∗ dd′′j (X0, x, y) −→ 2di+j(X1, y) + 2si+j+1(X1, y)

si(L1, a) ∗ dd′′j (X0, x, y) −→ 4di+j(X1, y)

It follows that

d0(X1) = 2 · 2 · 1 = 4 d1(X1) = 4 · 2 · 1 = 8
s1(X1) = 2 · 2 · 1 = 4

We continue with the next ladder.
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We split root-edge y and paste another copy of L1 onto X1,
as indicated in Figure 4.6.

X1

L1

y

z

b

Figure 4.6: Amalgamating ladder L1 to X1.

d0(L1, b) = 2 s1(L1, b) = 2
dd0(X1) = 4 dd1(X1) = 8 ss1(X1) = 4

We apply the productions

di(L1, b) ∗ dd′′j (X1, y, z) −→ 2di+j(X2, z) + 2si+j+1(X2, z)

si(L1, b) ∗ dd′′j (X1, y, z) −→ 4di+j(X2, z)

di(L1, b) ∗ ss 1
j (X1, y, z) −→ 4si+j(X2, z)

si(L1, b) ∗ ss 1
j (X1, x, z) −→ 4si+j(X2, z)

It follows that

d0(X2) = 2d0dd
′′
0 = 2 · 2 · 4 = 16

d1(X2) = 2d0dd
′′
1 + 4s1dd

′′
0 = 2 · 2 · 8 + 4 · 2 · 4 = 64

d2(X2) = 4s1dd
′′
1 = 4 · 2 · 8 = 64

s1(X2) = 2d0dd
′′
0 + 4d0ss

1
1 = 2 · 2 · 4 + 4 · 2 · 4 = 48

s2(X2) = 2d0dd
′′
1 + 4s1ss

1
1 = 2 · 2 · 8 + 4 · 2 · 4 = 64

We complete with the final ladder.
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X1

L0

y

z

c
d

Figure 4.7: Amalgamating ladder L0 to X2.

d0(X2) = 2d0dd
′′
0 = 2 · 2 · 4 = 16

d1(X2) = 2d0dd
′′
1 + 4s1dd

′′
0 = 2 · 2 · 8 + 4 · 2 · 4 = 64

d2(X2) = 4s1dd
′′
1 = 4 · 2 · 8 = 64

s1(X2) = 2d0dd
′′
0 + 4d0ss

1
1 = 2 · 2 · 4 + 4 · 2 · 4 = 48

s2(X2) = 2d0dd
′′
1 + 4s1ss

1
1 = 2 · 2 · 8 + 4 · 2 · 4 = 64

dd′′0(L0, c, d) = 1

We apply the productions

di(L1, b) ∗ dd′′j (X2, y, z) −→ 2di+j(X3, z) + 2si+j+1(X3, z)

si(L1, b) ∗ dd′′j (X2, y, z) −→ 4di+j(X3, z)

And we conclude

d0(X3) = 2d0dd
′′
0 = 2 · 16 · 1 = 32

d1(X3) = 2d1dd
′′
0 + 4s1dd

′′
0 = 2 · 64 · 1 + 4 · 48 · 1 = 320

d2(X2) = 2d2dd
′′
0 + 4s2dd

′′
0 = 2 · 64 · 1 + 4 · 64 · 1 = 384

s1(X2) = 2d0dd
′′
0 = 2 · 16 · 1 = 32

s2(X2) = 2d0dd
′′
0 = 2 · 64 · 1 = 128

s3(X2) = 2d0dd
′′
0 = 2 · 64 · 1 = 128
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Prop 4.4 The time needed to calculate the partitioned single-
root genus distribution of a star-ladder SLT is in O(n2), where
n is the total number of vertices.

Proof The number of non-zero partials for each ray is
proportional to the number of vertices in the ray.

Similarly, the number of non-zero partials for the body
of the growing star-ladder is proportional to its number of
vertices. (This is a benefit of bounded degree. More generally,
the number of non-zero partials over all surfaces in the genus
range grows in proportion to the number of edges.)

Each time a ray is amalgamated to the body of the growing
star-ladder, the time needed to apply the relevant pro-
duction rules is proportional to the product of the numbers
of non-zero partials in the new ray and in the pre-existing star-
ladder.

Since the sum
∑n

i=1 i
2 is proportional to n3, we need to be

concerned that the total number of multiplications required as
the entire star-ladder is constructed might be of order n3. How-
ever, let us suppose that the ith ray has ki vertices. Then the
total number of multiplications is approximately

r∑
j=1

kj

j−1∑
i=1

ki =
r∑

j=1

kjk1 + kjk2 + · · ·+ kjkj−1

≤ (k1 + · · ·+ kr)(k1 + · · ·+ kr)

= n2

Accordingly, the time needed to calculate the partials for the
star-ladder SLT is in O(n2). ♦
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5 Algorithm for a Cubic Outerplanar Graph G

Preliminary steps. Construct a characteristic tree for G and
the post-order for that tree, as in §2.

Basis step. If the characteristic tree has only one vertex, then
G is a cycle (with no chords), and the genus distribution is

d0(Cn, a) = 1

Ind hyp. Suppose that this algorithm works for every case in
which the characteristic tree has n− 1 vertices.

Ind step. Consider the case of a characteristic tree with n

vertices.

1. Construct the closed-end ladder corresponding to the first
vertex v1 in the post-order, with an edge-root at the tip
of the ray by which it is to be joined to the body of the
star-ladder correponding to its parent; and construct the
single-root genus distribution for that closed-end ladder.

2. Also construct the genus distributions for the subgraphs
(all cubic outerplanar!) corresponding to the subtrees at
each of the siblings (if any) of v1, each with an edge-root
at the tip of the ray by which it is joined to the body of
the parent star ladder, which is possible, by the induction
hypothesis.

3. Then one at a time, according to the post order, double the
edge-root of the parent star-ladder and edge-amalgamate
each of these sibling subgraphs to the parent. At the sur-
viving edge-root (obtained by doubling the edge-root prior
to edge-amalgamating the last subgraph among the sib-
lings), attach double-edge-rooted copies of L0 iteratively
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until a ladder of appropriate length is constructed, with an
edge-root exactly where needed to edge-amalgamate this
subgraph to its parent.

4. Continue until the graph G and its genus distribution are
fully constructed.

Figure 5.1: An outerplane graph and a characteristic tree.

Prop 5.1 The time needed to calculate the genus distribution
of a cubic outerplanar graph G is in O(n2), where n is the total
number of vertices.

Proof The proof is similar to that for the star-ladders. ♦
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