
Problem G Input: g.in Output: stdout/cout/System.out

Page 1 of 2

Symbolic Logic Mechanization

Marvin, the robot with a brain the size of a planet, followed some . . . markedly

less successful robots as the product line developed. One such was Monroe, the

robot — except, to help him recognize his name, he was referred to as Moe. He

is sufficiently mentally challenged that he needs external assistance to handle

symbolic logic.

Polish notation is the prefix symbolic logic notation developed by Jan Łukasiewicz (1929).

[Hence postfix expressions are referred to as being in Reverse Polish Notation — RPN.] The

notation developed by Łukasiewicz (referred to as PN below) uses upper-case letters for the logic

operators and lower-case letters for logic variables (which can only be true or false). Since

prefix notation is self-grouping, there is no need for precedence, associativity, or parentheses,

unlike infix notation. In the following table the PN operator is shown, followed by its operation.

Operators not having exactly equivalent C/C++/Java operators are shown in the truth table (using

1 for true and 0 for false). [The operator J is not found in Łukasiewicz’ original work but is

included from A.N.Prior’s treatment.]

PN

Operator

Operation

Cpq conditional

Np not

Kpq and

Apq (inclusive) or

Dpq nand

Epq equivalence

Jpq exclusive or

Truth Tables
p q Cpq Dpq Epq

0 0 1 1 1

0 1 1 1 0

1 0 0 1 0

1 1 1 0 1

For every combination of PN operators and variables, an expression is a “well-formed formula”

(WFF) if and only if it is a variable or it is a PN operator followed by the requisite number of

operands (WFF instances). A combination of symbols will fail to be a “well-formed formula” if

it is composed of a WFF followed by extraneous text, it uses an unrecognized character [upper-

case character not in the above table or a non-alphabetic character], or it has insufficient

operands for its operators. For invalid expressions, report the first error discovered in a left-to-

right scan of the expression. For instance, immediately report an error on an invalid character. If

a valid WFF is followed by extraneous text, report that as the error, even if the extraneous text

has an invalid character.

In addition, every WFF can be categorized as a tautology (true for all possible variable values), a

contradiction (false for all possible variable values), or a contingent expression (true for some

variable values, false for other variable values).

The simplest contingent expression is simply “p”, true when p is true, false when p is false. One

very simple contradiction is “KpNp”, both p and not-p are true. Similarly, one very simple

Problem G Input: g.in Output: stdout/cout/System.out

Page 2 of 2

tautology is “ApNp”, either p is true or not-p is true. For a more complex tautology, one

expression of De Morgan’s Law is “EDpqANpNq”.

Input

Your program is to accept lines until it receives an empty character string. Each line will contain

only alphanumeric characters (no spaces or punctuation) that are to be parsed as potential

“WFFs”. Each line will contain fewer than 256 characters and will use at most 10 variables.

There will be at most 32 non-blank lines before the terminating blank line.

Output

For each line read in, echo it back, followed by its correctness as a WFF, followed (if a WFF)

with its category (tautology, contradiction, or contingent). In processing an input line,

immediately terminate and report the line as not a WFF if you encounter an unrecognized

operator (even though it may fail to be well-formed in another way as well). If it has extraneous

text following the WFF, report it as incorrect. If it has insufficient operands, report that. Use

exactly the format shown in the Sample Output below.

Sample Input

q

Cp

Cpq

A01

Cpqr

ANpp

KNpp

Qad

CKNppq

JDpqANpNq

CDpwANpNq

EDpqANpNq

KCDpqANpNqCANpNqDpq

[this is an empty line]

Sample Output

q is valid: contingent

Cp is invalid: insufficient operands

Cpq is valid: contingent

A01 is invalid: invalid character

Cpqr is invalid: extraneous text

ANpp is valid: tautology

KNpp is valid: contradiction

Qad is invalid: invalid character

CKNppq is valid: tautology

JDpqANpNq is valid: contradiction

CDpwANpNq is valid: contingent

EDpqANpNq is valid: tautology

KCDpqANpNqCANpNqDpq is valid: tautology

