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CLASS NOTES: HANDOUT # 1B
Propositional Logic: Rules for Reasoning

1 Propositional Logic

1.1 Formal Languages, Formal Rules

The validity of some statements and some steps in reasoning seems to have more to do with the form than
the content of the claims or inferences being made. Consider, for example, the following (not terribly
exciting) example of reasoning, related to computing earned income credit (EIC) on an income tax form.
Premisses (what we are given) are above the line, and the conclusion below.

If Bill is eligible for EIC then Bill is married and has income below 20K
Bill is eligible for EIC
Bill is married

Now consider the following argument:

If Alice can run for office then Alice is over 35 and (Alice is) a US citizen.
Alice can run for office
Alice is over 35

There is something the two arguments have in common, which is really independent of the fact that
one is about Bill and the other about Alice, or that one discusses marriage and the other age. The
conclusions are a consequence of the structure of the premisses, and not of all the detailed information
they convey.

In some sense the best way to bring out what steps of logic are really being used here, i.e. what the
two arguments have in common is to throw away what is contingent in each argument and reduce it to
bare bones:

If A holds then B and C both hold
A holds
B must hold

Or, to make it even more bare bones, using A — D for “if A then D” and the symbol “A” for “and”

A>(BAC) A
B 1)

where it is understood that if we are given the facts above the line then we may conclude what is below
the line. Note that in some sense the letters A, B and C' above are variables. The letter “A” doesn’t
actually say anything: it stands for any statement you want. Another way of saying this is you may
“plug in” or substitute any statement for the letters A, B, C' and the rule (1) remains valid. This is like
substituting in a number for the letter z in

T+ = 2.

But, whereas most of us feel that we know what numbers are, just what is a “statement” in the sense
used above?

We need to abstract the notion of statement and to provide rules for manipulating them that will
allow us to turn elementary steps of reasoning into a mathematical discipline, like algebra. To this end



we are going to work with a formal language, a language built up from variables or symbols using logical
connectives, analogous to the + and x operations of arithmetic.

The reader might wonder at this point why not just let “statements” be sentences in English. There
are two reasons. First, a psychological one suggested above, is we are likely to confuse the contingent
information with structural information. Also, in order to give a mathematical treatment of the subject,
we need to have a precise definition of what a correctly formed statement is. What constitutes a correctly
formed statement in English is harder to pin down than one might first imagine. (When we write some
programs that read sentences this will become clearer). What we will do is start with basic building
blocks called atomic statements or propositions and then show how to make compound statements using
the all important logical connectives and, or, implies and not. Atomic statements will be be assumed to
lack such connectives. We will just use certain letters for these atomic statements, like A, B, ... because
from the standpoint of logic it doesn’t matter what they say.

1.2 Propositions and Connectives

A proposition is any statement built up from atoms or atomic propositions (which might be letters
A, B, C..., or statements we agree not to analyze i.e. not to break up into smaller components), and the
logical constant falsity (written L) using the logical connectives

and, or, implies and not.

These connectives are also written

Aor & for and (2)
vV for or (3)

—or ~ for not (4)
— or D for implies (5)

We can define what a proposition is inductively, that is to say by telling you how to build them from the
ground up:

1. If A is an atom then A is a proposition.
2. 1 (falsity) is a proposition.

3. if P, are propositions then
(P and Q), (P or @), (P implies @), (not P)
are propositions. Writing this same statement symbolically:

(P/\Q),(PVQ),(P—)Q),(—!P)

are propositions.

1.3 Rules, Premisses and Conclusions
A logical rule is a figure of the form

P P --- P, ¢— premisses
Q <— conclusion

The premisses may consist of one, two or three propositions. The conclusion will always consist of one
proposition. The rules can be read in a number of ways:

1. From the facts P, and P, --- and P, we can infer the fact (), or we may read it upside-down as
follows:



2. In order to prove Q we must first prove P, and Py and --- Py.

In the next pages we will introduce rules for each logical connective. You should try reading them in
both of these ways.

Rules attempt to capture basic steps of reasoning. You can view them as the tiniest possible steps
that can be taken in an argument. All proofs or arguments are to be built up using these basic steps.
You can also look at them as a way to make precise mathematically what the connectives A,V,— mean.
We now list the basic rules of classical propositional logic. They may seem mystifying at first, but we
will devote ample time to them in class.

First the rules for conjunction or “and”. There are two sets of rules: and introduction rules, also
called Az, as well as the two and elimination rules , called the elim-left and elim-right rules, or Ag, and
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Recall: we may read the left hand rule as asserting:

and Ag,]

From the fact P and the fact Q we can infer the fact P A Q.
or:
In order to prove P A QQ we must first prove P and Q)

The right hand rules say: From the fact P AQ is true we may conclude P is true. We may also conclude
Q is true.

Rules for “implication”: These rules tell us when we may conclude a statement of the form P — @
is true, and what we can infer from such a statement. These have a new feature: premisses get cancelled.
The line through -P-is called a cancellation line. All rules with cancellation contain figures of the form

P

Q

(but with P cancelled) meaning from P we are able to infer Q.

A rule with a cancellation should be read as follows. First look at everything above the line, without
cancellations, and read if we can infer this...then we can infer what is below the line just from the
premisses remaining uncancelled. For example The first rule for — (implication introduction or —7)

looks like this:
P

implication

introduction P = Q

[—1]
It can be read as follows.

if you can infer QQ from the assumption P then you can prove P — Q without assuming P.
If you read it upside down, as suggested earlier, it reads:

In order to prove P — @ you should show that Q) can be inferred from the assumption P.

Yet another way to think about cancellation is as a “hypothetical inference” or a record of a thought
experiment in which you say: let’s “pretend” that P holds, and suppose that I can then infer (). Then
what do I know (whether or not P holds)? I know that P — Q. Here’s a somewhat fanciful example.



Consider the statement: “if the sun became a supernova, the atmosphere would be blown
away.” How does one establish this? By assuming that the conditions of a supernova sun
actually hold in our mathematical models and observing the consequences for the atmosphere.
After we have carried out this thought experiment, we can take a deep breath without fear.
The atmosphere is still there, because the sun is still its usual self. The premiss “The sun is
supernova” is not true. The conclusion “the earth has no atmosphere” is not true. All that
is true is that we now know the implication:

If the sun became a supernova the earth would have no atmosphere
i.e., in stages:
1. The thought experiment

the sun is a supernova

deduction using logic (and the

by some complicated chain of
laws of physics)

the earth has no atmosphere
2. the conclusion
the sun-isa supernova-

the earth has no atmosphere
the sun is a supernova — the earth has no atmosphere

Here are both the introduction and elimination rules for —, just so you can see them side by side.
p

P>Q P

implication [—1]

PoQ el

The second rule (implication elimination or — ) says:

From P — Q) and P you may infer Q. Or: from the fact that P implies Q) and the fact that
P is true you may infer Q.

This is the opposite of our thought experiment! This says if the premiss P should actually be true then
@ will be true!

Rules for “negation”: These rules will generate a good deal of discussion in class! The first one,
1 -elimination, says, from | you may infer anything. It’s a blank check. The meaning is that if you can
derive one falsehood you can derive anything. In logic there are no “small errors”: one error ruins all.
If 242 = 5 then I am the pope. In what follows, the proposition = A will be shorthand for A — 1. In
other words, “not A” will be treated the same as “if A then absurdity”. The merits and disadvantages
of this will be discussed in class.

=P

L

1
negation ﬁ[J—E‘] [-—E]

The second rule is often known as “reduction to the absurd”. It says:

If assuming P is false gives rise to absurdity, then P must be true (with no assumptions at
all).

Notice that both rules for falsehood are elimination rules. One cannot introduce falsehood.



Rules for “or”: There are two or-introduction rules, V, and Vp, asserting that if P is true then so is
PV Q, and if ) is true so is PV ). Notice that the logician’s or is non-ezxclusive. PV Q means P or )
or possibly both are true.

7 @
P Pv@ R R
or m[Vh] %[VIZ] 9 R [VE]

The elimination rule is complex. It is often called reasoning by cases. If you know PV @ and you know
that in either case (the P case or the @ case) you can infer R, then you know that in all cases (i.e.
with no assumptions about P being true or about @ being true) you can infer R. This is also a case of
hypothetical reasoning or a thought experiment. You are given that P V () is true but you don’t know
which. You “imagine” that P holds and infer R. Then you imagine that () holds, and are still able to
infer R. Then R must hold no matter what. Just from knowing P V () we may infer R.

1.4 Building proofs with rules

Rules are used to build proofs. The propositions you start with at the top are the assumptions or
axioms. The conclusions of the first rules are then used as premisses for the next. For example, let’s
take another look at the inference (1) discussed in the first section of the handout

A (BAC) A
B

This can now be proved using the rules of inference just given, as follows:

A— (BAC) A

BAC (A,

[—&]

which could be described in English as follows.
We are given that

e If A then BAC.
o A holds.

Using the rule called — g we conclude that BAC' holds. Then using the rule A, we conclude
B holds.



2 Problems

Problem 1 Consider Smullyan’s riddle of the three caskets each with different inscriptions:

GOLD SILVER LEAD
“the portrait is not in “the portrait is not in “the portrait is in this
the silver casket” this casket” casket”

If you know that
1. at least one of the statements is true and at least one is false, and
2. the portrait is in one of the caskets,

then which one is it in? Can you prove your claim? Write the statements og,0s,0r on the three bozes
and the conditions 1 and 2 above in symbolic form. (After we’ve finished covering natural deduction) try
to cast your argument in natural deduction form.

Problem 2 Show that from the assumption (A — B) A (A = C) you can conclude A — (BAC) Try
both natural deduction and English language proofs.

Problem 3 Argue, in English, for or against the statement:

From (AV B) A (—A) infer that B is true.



