Math 131

CLASS NOTES
(Supplement,)
Predicate Logic

1 Introduction

We have studied propositional logic, the logic of statements made up of basic or atomic true-or-false proposi-
tions using —, V, A, —. This logic is not sufficiently expressive to capture all mathematical reasoning however.
We have no way, in propositional logic, of talking about individuals, members of a set which may have or
fail to have certain properties, and there is no way of quantifying over individuals, i.e. talking about some
or all individuals in a set. For example consider the following statement about the natural numbers, (which
asserts that there is no biggest number).

For every number x there is a number y such that z < y.

which is written symbolically:
Vaedy(z < y)

where V (“for all”) is called a universal quantifier, and 3 (“exists”) is called an existential one. Notice that
with propositional logic we cannot even make sense of the subformula

T <y

This is an atomic formula, with no propositional connectives, yet it is neither true nor false until we assign
values to x or y. By using quantifiers 3,V we can bind these variables, and construct a statement which is
capable of being true or false, such as VaVy(x +y = y +x). We now develop the syntax and semantics of the
calculus of predicates, or predicate logic, in which such concepts can be formalized, and extend the notions
of proof and validity to include these new notions.

2 Languages, terms and formulas

Assume given a countably infinite set of variables. We recall that a language Lis a triple (C,F,R) where
C is a set of constants, F a set of function symbols f™ paired with a natural number n called the arity of
the function symbol f, and R a set of relation symbols R™ of arity n.

When the context makes it clear, we will often display a language by directly listing its function, relation
and constant symbols, without bothering to name the sets C , F , R . For example the language of arithmetic
with ineqaulity £ 4,< = (0,1, 42, x?, <?) has constant symbols 0, 1, function symbols +, x each of arity 2,
and relation symbol < of arity 2.

In propositional logic we never made use of relation symbols. We will now use them to build atomic
formulas. But first we recap the definition of terms, here generalized to include expressions with variables.

Definition 2.1 Let L be a language. Then the set of open terms over L is given inductively by the following
rules.

1. If ¢ is a constant in L then c is a term.

2. Any variable x is a term.



3. If f is a function symbol in L of arity n and ty,... ,t, are terms, then fty,... ,t, is a term.
4. Nothing else is a term.

A term is said to be closed (or ground) if it contains no free variables. if t1 and t2 are terms and x is a
variable, we use the notation t1[t2/x] to denote the term resulting from the replacement of every occurrence
of x in t1 by ty.

Problem 1 Give a rigorous definition of t1[ta/x] by induction on the structure of t1. [For example, the
atomic case is c[ta/x] := c, the result of substituting ta for x in c is ¢, since c is a constant, hence a term in
which © does not even occur.]

We are now ready to define formulas: the assertions in predicate logic.

Definition 2.2 Let L be a language. Then the set of open formulas over L is given inductively by the
following rules.

1. if R is a relation symbol of arity n and t1,...,t, terms, then R(t1,...,t,) is a formula (called an
atomic formula).

2. If a and B are formulas then so are
(@avp) (anp) (a—=pB) (na)

3. If a is a formula and x is a variable then Iza and Yxoa are formulas. o is said to be in the scope of
the quantifier Vx or Jx.

4. Nothing else is a formula.

Any occurrence of the variable z in a formula not in the scope of a a quantifier is said to be a free occurrence.
Otherwise it is a bound occurrence. Thus, if z is free in « it is bound in dza and Vza. A formula with no
free variables is called closed.

Problem 2 Let L be the language (b, £?) where b is the constant whose intended interpretation is “my baby”
and £(x,y) will express “x loves y”. Transcribe the following sentences into formulas over L .

1. Everybody loves my baby.
2. My baby don’t love nobody but me.

Cook up a language to capture Lewis Carroll’s interesting assertions:
1. Nobody who can handle crocodiles is despised.

2. Babies cannot handle crocodiles.

We will discuss some of the consequences in later lectures. Note than we can give an inductive definition
of free and bound occurrence. If x occurs in any of the terms ¢; then that occurrence of z is free in
R(t1,--- ,tp)- A free occurrence of = in « is also a free occurrence of z in —a, a V 3, etc.

Problem 3 Complete the inductive definition of free and bound occurrence. Does x occur free in P(z) A
VxB(x)? Does it occur bound?

If o is a formula, we also define the substitution at/z] to denote the formula obtained by replacing every
free occurrence of z in a by t.

Problem 4 Perform the indicated substitutions.

1. (P(z,y) = VeQ(z,y))[(u + 2) /2]



2. (P(z,y) = V2Q(z,y))[(u + 2)/y]
3. (P(z,y) = VzQ(z,y))[(u + 2)/7]
Give a rigorous definition of substitution a[t/z] by induction on the structure of the formula c.

The definition of subformula and immediate subformula is just like for propositional logic, except that now
we have to deal with quantified formulas. « is the immediate subformula of za and Vza. A subformula of
a quantified formula Qza (where ) is 3 or V) is either the whole formula, or « or a subformula of . The
only subformula of an atomic formula is itself.

Problem 5 List the subformulas of (P(x,y) — VzQ(z,y)). Give an inductive defintion of a parse tree for
a formula of predicate logic. [Note that the leaves of a parse tree must be atomic formulas, which are no
longer just letters. |

3 Proofs in predicate logic

In order to extend natural deduction to predicate logic we need to add only four more rules:

Intro Elim
P(z) Va P
v (V1 T) P (Ve
Py
P(t) dz P R
3 3
W (3r) R (3 1)
(f) z is not free in any premiss in the proof of P(x) (1) z is not free in R or in any premiss used in its proof ezcept P(z).

Note the very important side conditions given as footnotes. We now discuss these in turn.
V-intro The key use of variables in mathematical reasoning is to prove properties that are true in general,
for all individuals rather than a specific one. For example consider the following theorem and its proof.
Theorem 3.1 There are infinitely many primes: for every prime x there is a prime y withy > x

proof: Let z be prime. Let z1,... ,z, be the set of primes smaller than z. Let z =z - z1 -+ (z, + 1).
Claim z is not divisible by any of the z; or z, so any prime y dividing  must be greater than z. (the
claim is easy...if z; divides z it must also divide 1, a contradiction.) |



Now observe that we never said what number x was.. It might have been 7 or 13 or 29, and the above
argument would show that a greater prime existed. By arguing about a letter x about which no special
assumptions were made we proved a theorem about all numbers. This is captured by the V-intro rule

P()

VzP(x)

which allows you to conclude VxzP(z) just from having shown it for = provided you never used x in your
assumptions. To be even more precise about how this rule is used, we extend our inductive definition of a
natural deduction proof in the same style as in the preceding handout.

Suppose S is a proof with premisses o1, ... ,0, and conclusion P and that x does not occur free in any
of the ;. Then

o1 Onp

N/

Py
VxP(x)
is a proof with the same premisses o1, ... ,0, and conclusion VzP.

V-elim: The elimination rule for V is more obvious. If you have already established VzP it’s legal to
substitute in for  any term in the language.

F-elim One should look at the exist-elimination rule as an analogue to V-elim.
P(z)-

dx P R
R

(3r)

Suppose someone tells you that for some z the property P(z) holds and you are able to show that no matter
what x you pick, from P(z) you can infer the conclusion R. Then you are able to conclude R just from
AzP(z). The only way to be sure that the argument really doesn’t depend on the choice of z is to enforce
the same kind of condition we saw in V-intro: £ must not occur free in any premiss used to prove R except
P(z), and £ must not occur free in R. In the same spirit as (1) above, we now extend the formal inductive
definition of proof to include this rule.

If @ is a proof with premisses p; ... , pr and conclusion 3z P and if S is a proof with premisses o1,... ,0,
in which z doesn’t occur free in any o; except P(z) and with a conclusion R in which z doesn’t occur



free, then

PL Pk oy--oh,

N/

dz P R
- @)

is a proof with conclusion R and with premisses all the original p; --- p; and the os remaining after all
occurrences of P(z) have been cancelled from the original o4, ... ,0p,.

Problem 6 Extend the inductive definition of natural deduction proof in the style of (1) and (2) to include
the rules 3-intro and V-elim.

With these rules we can now justify such inferences as the Aristotelian syllogism:

All men are mortal.
Socrates is a man.
Socrates is mortal.

3.1 Exercises

Problem 7 Prove the following using natural deduction.
1. Yz (p(z) = ().
2. Vap(z) — Jzp(z).
3. Va(p(z) Ap(x)) = (Vap(z)) A (Voy(z)).
4. Va(p = 9(z)) = (¢ = Yo(z)), where z is not free in ¢(z).



