CS W3134: Data
Structures in Java

Lecture #1: Introduction
9/7/04
Janak J Parekh

What?

m This is the second Computer Science class in a two-
course sequence for non-majors
m As opposed to CS3137, this one more focused on “practical”
m Minors: special curriculum info session 4-6pm, Catleton
m The first class introduced fundamental Computer
Science concepts; this class will build on them and
continue to develop your programming and algorithmic
skills
m Prerequisite: COMS W1004 or equivalent, i.e., basic
fluency in Java and CS
m If unsure about anything, find me today right after
class!

Who?

m Instructor: Janak ] Parekh
(janak@cs.columbia.edu)
m Call me Janak, please
m 10t year student at Columbia (sort of)

m TAs
m William Beaver (wmb2013@columbia.edu)
m Rachel Goldman (1g2020@barnard.edu)
m Matthew Waymost (mw708@columbia.edu)




Where? When?

m Class will be held here, in 833 Mudd, TR 11-
12:15

m “Tell me if youre not here”
m Class website:
http://www.cs.columbia.edu/~janak/cs3134
m Lecture slides will be posted there
m Office hours
m Mine will be held right after class or by appointment
m T'As’ office hours TBD

How?

m Textbook

m Lafore, Robert. Data Structures &
Algorithms in Java, Second Edition. SAMS,
2003.

m ] really like this book — very practical, lots
of code examples, applets to demonstrate
concepts

m Available from Morningside Bookshop,
SW 114t and Broadway

How? (II)

m Course structure: 300 points
m 6 homeworks * 25 points ea. = 150 points
m 50 point midterm
= 100 point final
m Occasional extra credit
m Class participation is important
m ] hate standing up here and talking nonstop
m Board material is fair game
m “Reasonable person principle”

m Feedback!




How? (III)

m Homeworks: theory and programming parts
m Important — they’re worth 50% of the class
m Submission, late policy
m Computing environment: CUNIX

m Please, don’t try to plagiarize or cheat — you will get
caught

m Exams are open-book, open-notes
m Midterm tentatively on 10/21

Poll

m Why are you here?

m School (GS, SEAS, CC)

m Level of Java knowledge

CS1004: With Prof. Aho? With me? No 1004?
Basic applications

Basic applets, AWT, Swing

OO: Subclassing, interfaces, polymorphism, inheritance, visibility
modifiers
m Java Collections: Vector/ArrayList, Hashtable/HashMap, etc.
m C/C++ knowledge
= Don’t worry if you don’t know most of these
m Java recitation/basic hands-on?

Why?

m What are the two primary things computers do?
m Store information
m Manipulate information
m Why do we need to know how? Doesn’t Java
have built-in data structures?
m There’s no one way of doing it
m Hach approach has advantages and disadvantages
m Raw CPU power can’t overcome inefficiency

m Java “Collections” don’t handle everything




Why? (II)

m Don’t we need to know the problem beforehand?
m Not necessarily
m We want to develop a “toolkit” to be useable in the future
m One fundamental concept makes it feasible: abstraction
m Abstraction
m Fundamental concept in Computer Science, especially applies
here
m Lafore defines it as “considered apart from detailed
specifications or implementation”

m Car analogy

Abstraction

m We create a layered system
w _Abstract data tjpes as fundamental building blocks of
information
m What data types does Java support?
m Primitive vs. reference data types
u _Abstract algorithms as fundamentally useful to a broad
range of applications
m Data manipulation, sorts, searches
m You won’t always have to design them, but you’ll
always have to use them

m Understanding how they work, even under the scenes, is key
in making your code work better

Example

m Music database
m How can we represent this information?
m What kinds of operations would we do on such a
application?
m What problems do we encounter with a naive
implementation?
m Can we do better?
m Can an abstract knowledge of data structures
and algorithms help?




What’s out there?

m Data structures?
m Arrays (sorted or unsorted), stacks, queues, linked lists, trees,
hashtables, heaps, graphs
m Algorithms?
m Insert
m Secarch
m Delete
m Jterate
m Sort

m Recurse

Object-Oriented Programming

and Java

m What is OO?
m How does OO help?

m Improves abstraction

m Allows code reuse

m Access control to data: makes it more reliable — encapsulation
m Why do we use Java in a class like this?

m OO is nice, but...

m Java has no pointers

m Strongly-typed

m Garbage collection

What we’ll be doing the rest of
the semester...

m earning about these data structures
m Learning about some of the algorithms for them
m Learning which is best when

m Elementary analysis of algorithms

m Take the real class if you want to know the details

m Becoming better programmers!




Homework & Next Time

m No “official” homework until next week

m HWO posted on webpage — no submission
m Intended to get you up to speed

m Get the book

m Next time: start looking at ADT's and OO

design more closely, “refresher” on Java OO
constructs




