CS W3134: Data
Structures in Java

Lecture #4: Lists
9/16/04
Janak J Parekh

Administrivia
m Homework 1 out today

m Webboard up

m We'll post some of the recitation notes for those
of you who couldn’t make it

Agenda

m Couple last Java points. ..

m Start list basics

Java refresher

m Static and main(), revisited

m Avoid overuse of static (in fact, you won’t need it
much at all right now...)

m Default constructor

m Any other questions for now?

Motre complex example

m We’re not going to spend too much time on OO
concepts right now
m Will introduce them as they come up
m Let’s start building an Employee database
m What classes?
® What methods/variables?
m What kinds of operations?

m How do we store many Employees?

We use arrays

m Chapter 2
m Arrays are the simplest way to store lists (but not
the only way)
m Creating and using arrays
m New: new type[];
m Initialization of arrays in Java — default and custom ({})

m Access an element by index

Array-backed lists

m First sample book program starts with these
primitives and works with them manually
m Similar to 1004/1007 strategy
m Works, but... kind of awkward — we must always
worry about the array throughout the program

m Wouldn’t it be nice if we could separate all of the
array “stuff” into a separate class and let it worry
about it?

Smarter lists!

m We want to create an interface for a list: what the
user has to deal with
m Next refinement: setElem(i) and getElem(i)
m Still too much work!
m Who thinks of arrays or indices when making a
shopping list?
m Higher-level interface definitions: abstraction

m What operations can you think of?

“Unordered” lists

= How do we do...
m Insert()?
m Delete()?
m Find()?
m Display()?
m Sort()? (We wait)
m Play with the sample applet

m Operations include New, Fill, Insert, Find, Delete

Ordered lists

® What’s an ordered list?
m How do we do...
m Insert()? Book page 60 has a clever technique

m Find()? Book page 57

m JowerBound, upperBound

Costs

m How much do each of the previous operations cost in
the worst case?
m Most are linear, some are unit
m Binary search is special — it’s better than linear time
m Divide the range by half until too small to divide further ==
of comparisons needed
m Reverse: what’s the range that can be covered with 7 steps?
(Book page 63)
mie,r=2°
m What's this expressed as in terms of s?
m s = logyr
m Algorithm grows logarithmically

Formalizing costs

m Terminology differs based on details; we’ll go light
m Time to insert one element is some constant K
meg, TN) =K
m Time to search for an element is T(N) = K * N
m “Big-Oh Notation”: upper-bound on worst-case time

m We drop the constant K — for sufficiently large N, the constant
is unimportant

m The idea of doubling your computer’s speed is embedded in
K

= T(N) = O(N), for example

Examples of costs

m For lists using arrays?

m Linear search: O(N)

m Etc.

m Draw a graph of the comparative costs, page 72
m What are bad about arrays?

m Slow search in unordered, slow insert in ordered —
can we speed both? Yes

m Fixed size: can we change that?

Next Time

m Big-Oh notation, cont’d

m Sorting lists

