CS W3134: Data
Structures in Java

Lecture #6: Ordered lists, complexity, sort
9/23/04
Janak J Parekh

Administrivia

m Who has problems with command-line
arguments on HW#1?
m Short demo of what to do with Song.java
= We might be switching a TA shortly; I'll keep
you informed

Agenda

m Ordered lists
m Big-Oh notation (complexity)

m Sorting algorithms, if time allows

Ordered lists

m What’s an ordered list?
= How do we do...
m Insert()? Book page 60 has a clever technique

m Once you find the “right point”, slide down in a “bottom-
up fasion”
m Find()? Book page 57
® Binary search
m Key: play the “number-guessing game”, but as an
algorithm. Start in the middle and keep on cutting your
search space by half. Let’s look at an example...

Costs

m How much do each of the previous operations cost in
the worst case?
® Most are linear, some are unit

m Binary search is special — it’s better than linear time

m Divide the range by half until too small to divide further ==
of comparisons needed

m Reverse: what’s the range that can be covered with 7 steps?
(Book page 63)
mie,r=2°
m What's this expressed as in terms of s?
m s = logyr
m Algorithm grows logarithmically

Formalizing costs

m We're going to approach this informally
= Time to insert one element is some constant K
meg, TIN) =K
m Time to search for an element (linearly) is T(N) = K *
N
m “Big-Oh Notation”: upper-bound on worst-case time

m We drop the constant K — for sufficiently large N, the constant
is unimportant

m To be precise, we find a function F(x), where T(x) is O(F(x))
if |T(x)| <K|F(x)| for somex > ¢

m The idea of doubling your computer’s speed is embedded in

.

m T(N) = O(N), for example

Examples of costs

m For lists using arrays?

m Linear search: O(N)

m Etc.

m Draw a graph of the comparative costs, page 72
m What are bad about arrays?

m Slow search in unordered, slow insert in ordered —
can we speed both? Yes

m Fixed size: can we change that? Yes

Sorts

Bubble (p. 85)
m Sort pairwise repeatedly
m Biggest placed each time
Selection (p. 89)
m Scarch for smallest, swap with first
m Scarch for smallest, swap with second
Insertion (p. 95)
m Take the next one, and put it into the existing sorted subset
All ()(nz)

m But they’re not the exact same performance

m Let’s write out a little bit of psuedocode for each

Next Time

m Finish sorting
m Stacks

