CS W3134: Data Structures in Java

Lecture \#6: Ordered lists, complexity, sort 9/23/04
Janak J Parekh

Administrivia

\qquad

- Who has problems with command-line
\qquad arguments on HW\#1?
- Short demo of what to do with Song.java
- We might be switching a TA shortly; I'll keep you informed
\qquad
\qquad
\qquad
\qquad
\qquad

Agenda

- Ordered lists
- Big-Oh notation (complexity)
- Sorting algorithms, if time allows

Ordered lists

- What's an ordered list? \qquad
- How do we do...
- Insert()? Book page 60 has a clever technique
- Once you find the "right point", slide down in a "bottomup fasion"
- Find()? Book page 57
- Binary search
- Key: play the "number-guessing game", but as an algorithm. Start in the middle and keep on cutting your search space by half. Let's look at an example... \qquad
\qquad

Costs

\qquad

- How much do each of the previous operations cost in \qquad the worst case?
- Most are linear, some are unit
- Binary search is special - it's better than linear time \qquad
- Divide the range by half until too small to divide further == \# of comparisons needed
- Reverse: what's the range that can be covered with n steps? \qquad (Book page 63)
- i.e., $r=2^{\text {s }}$
- What's this expressed as in terms of s ? - $\mathrm{s}=\log _{2} \mathrm{r}$
- Algorithm grows logaritbmically
\qquad
\qquad
\qquad

Formalizing costs

- We're going to approach this informally \qquad
Time to insert one element is some constant K
- e.g., $\mathrm{T}(\mathrm{N})=\mathrm{K}$
- Time to search for an element (linearly) is $T(N)=K$ * N

■ "Big-Oh Notation": upper-bound on worst-case time \qquad

- We drop the constant K - for sufficiently large N, the constant is unimportant
- To be precise, we find a function $\mathrm{F}(\mathrm{x})$, where $\mathrm{T}(\mathrm{x})$ is $\mathrm{O}(\mathrm{F}(\mathrm{x})$) \qquad if $|\mathrm{T}(\mathrm{x})| \leq \mathrm{K}|\mathrm{F}(\mathrm{x})|$ for some $\mathrm{x}>\mathrm{c}$
- The idea of doubling your computer's speed is embedded in K \qquad
- $T(N)=O(N)$, for example

Examples of costs

- For lists using arrays? \qquad
- Linear search: $\mathrm{O}(\mathrm{N})$
- Etc.
- Draw a graph of the comparative costs, page 72
- What are bad about arrays?
- Slow search in unordered, slow insert in ordered can we speed both? Yes
- Fixed size: can we change that? Yes
\qquad
\qquad
\qquad
\qquad
\qquad

Sorts

\qquad

- Bubble (p. 85)
- Sort pairwise repeatedly
- Biggest placed each time
- Selection (p. 89)
- Search for smallest, swap with first
- Search for smallest, swap with second
- Insertion (p. 95)
- Take the next one, and put it into the existing sorted subset
- All $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- But they're not the exact same performance
- Let's write out a little bit of psuedocode for each
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

