
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java

Lecture #7: Ordered lists, complexity, sortsLecture #7: Ordered lists, complexity, sorts
9/28/049/28/04

Janak J ParekhJanak J Parekh

AdministriviaAdministrivia

HW#1 due Thursday!HW#1 due Thursday!
Any general questions?Any general questions?

AkashAkash has replaced William as TAhas replaced William as TA
Note changed office hoursNote changed office hours

AgendaAgenda

Finish ordered listsFinish ordered lists
BigBig--Oh notation (complexity)Oh notation (complexity)
Sorting algorithmsSorting algorithms
Start stacks, if time allowsStart stacks, if time allows

2

Ordered listsOrdered lists

Find(), Find(), reduxredux
WhatWhat’’s the s the stopping conditionstopping condition for find()?for find()?

CostsCosts

How much do each of the previous operations cost in How much do each of the previous operations cost in
the the worst caseworst case??

Most are linear, some are unitMost are linear, some are unit
Binary search is special Binary search is special –– itit’’s better than linear times better than linear time

Divide the range by half until too small to divide further == Divide the range by half until too small to divide further ==
of comparisons needed# of comparisons needed
Reverse: whatReverse: what’’s the range that can be covered with s the range that can be covered with nn steps? steps?
(Book page 63)(Book page 63)
i.e., r = 2i.e., r = 2ss

WhatWhat’’s this expressed as in terms of s?s this expressed as in terms of s?
s = logs = log22rr

Algorithm grows Algorithm grows logarithmicallylogarithmically

Formalizing costsFormalizing costs

WeWe’’re going to approach this informallyre going to approach this informally
Time to insert one element is some constant Time to insert one element is some constant KK

e.g., T(N) = Ke.g., T(N) = K
Time to search for an element (linearly) is T(N) = K * Time to search for an element (linearly) is T(N) = K *
NN
““BigBig--Oh NotationOh Notation””: upper: upper--bound on worstbound on worst--case timecase time

We drop the constant K We drop the constant K –– for for sufficiently large Nsufficiently large N,, the constant the constant
is unimportantis unimportant
To be precise, we find a function To be precise, we find a function F(xF(x), where), where T(xT(x) is) is O(F(xO(F(x))))
if |if |T(xT(x)|)| ≤ ≤ K|F(xK|F(x)| for some x > c)| for some x > c
The idea of doubling your computerThe idea of doubling your computer’’s speed is embedded in s speed is embedded in
KK
T(N) = O(N), for exampleT(N) = O(N), for example

3

Examples of costsExamples of costs

For lists using arrays?For lists using arrays?
Linear search: O(N)Linear search: O(N)
Etc.Etc.
Draw a graph of the comparative costs, page 72Draw a graph of the comparative costs, page 72

What are bad about arrays?What are bad about arrays?
Slow search in unordered, slow insert in ordered Slow search in unordered, slow insert in ordered ––
can we speed both? Yescan we speed both? Yes
Fixed size: can we change that? YesFixed size: can we change that? Yes

SortsSorts

Bubble (p. 85)Bubble (p. 85)
Sort Sort pairwisepairwise repeatedlyrepeatedly
Biggest placed each timeBiggest placed each time

Selection (p. 89)Selection (p. 89)
Search for smallest, swap with firstSearch for smallest, swap with first
Search for smallest, swap with secondSearch for smallest, swap with second

Insertion (p. 95)Insertion (p. 95)
Take the next one, and put it into the existing sorted subsetTake the next one, and put it into the existing sorted subset

All O(nAll O(n22))
But theyBut they’’re not the exact same performancere not the exact same performance

LetLet’’s write out a little bit of s write out a little bit of psuedocodepsuedocode for eachfor each

Sorts IISorts II

Lexicographical comparisons?Lexicographical comparisons?
Stability of existing items?Stability of existing items?
Sidebar: Comparable interfaceSidebar: Comparable interface

All you have to do is implement All you have to do is implement booleanboolean
compareTo(ObjectcompareTo(Object o)o)
Generally a good thing to program to, I prefer to Generally a good thing to program to, I prefer to
bookbook’’s examples example
Arrays.sortArrays.sort()()

4

Stacks and QueuesStacks and Queues

Useful programmerUseful programmer’’s tools, will encounter it in s tools, will encounter it in
many placesmany places

Very easy and fast to implementVery easy and fast to implement
Runs very fast as wellRuns very fast as well

““Restricted accessRestricted access””: no index : no index –– only manipulate only manipulate
one item at a timeone item at a time
More abstract More abstract –– the underlying implementation the underlying implementation
is unimportant or not remotely similar to the is unimportant or not remotely similar to the
structure, unlike listsstructure, unlike lists

StacksStacks

Basic operations: Basic operations: ““LIFOLIFO”” strategystrategy
PushPush
PopPop
PeekPeek

Analogy: mail basketAnalogy: mail basket
Not as rigorous as a real stack, of courseNot as rigorous as a real stack, of course

Another analogy: lifeAnother analogy: life
ConversationsConversations
WorkdayWorkday

Extraordinarily simple!Extraordinarily simple!

ArrayArray--based stacksbased stacks

Limited size; ways to get around thisLimited size; ways to get around this
Decoupled from array index!Decoupled from array index!
Very simple to implementVery simple to implement

Keep Keep toptop variable, initialized to variable, initialized to
--11

Boundary conditions?Boundary conditions?
Complexity bounds?Complexity bounds?

Apart from simplicity, biggest reason to useApart from simplicity, biggest reason to use

5

Next timeNext time……

Reasons to use stacksReasons to use stacks
QueuesQueues
Arithmetic expression parsingArithmetic expression parsing

