CS W3134: Data
Structures in Java

Lecture #7: Ordered lists, complexity, sorts
9/28/04
Janak J Parekh

Administrivia

m HW#1 due Thursday!
m Any general questions?
m Akash has replaced William as TA

m Note changed office hours

Agenda

m Finish ordered lists
m Big-Oh notation (complexity)
m Sorting algorithms

m Start stacks, if time allows

Ordered lists

m Find(), redux
m What’s the stopping condition for find()?

Costs

m How much do each of the previous operations cost in
the worst case?
® Most are linear, some are unit

m Binary search is special — it’s better than linear time

m Divide the range by half until too small to divide further ==
of comparisons needed

m Reverse: what’s the range that can be covered with 7 steps?
(Book page 63)
mie,r=2°
m What's this expressed as in terms of s?
m s = logyr
m Algorithm grows logarithmically

Formalizing costs

m We're going to approach this informally
= Time to insert one element is some constant K
meg, TIN) =K
m Time to search for an element (linearly) is T(N) = K *
N
m “Big-Oh Notation”: upper-bound on worst-case time

m We drop the constant K — for sufficiently large N, the constant
is unimportant

m To be precise, we find a function F(x), where T(x) is O(F(x))
if |T(x)| <K|F(x)| for somex > ¢

m The idea of doubling your computer’s speed is embedded in

.

m T(N) = O(N), for example

Examples of costs

m For lists using arrays?

m Linear search: O(N)

m Etc.

m Draw a graph of the comparative costs, page 72
m What are bad about arrays?

m Slow search in unordered, slow insert in ordered —
can we speed both? Yes

m Fixed size: can we change that? Yes

Sorts

Bubble (p. 85)
m Sort pairwise repeatedly
m Biggest placed each time
Selection (p. 89)
m Scarch for smallest, swap with first
m Scarch for smallest, swap with second
Insertion (p. 95)
m Take the next one, and put it into the existing sorted subset
All ()(nz)

m But they’re not the exact same performance

m Let’s write out a little bit of psuedocode for each

Sorts I1

m [exicographical comparisons?
m Stability of existing items?
m Sidebar: Comparable interface

m All you have to do is implement boolean
compareTo(Object o)

m Generally a good thing to program to, I prefer to
book’s example

m Arrays.sort()

Stacks and Queues

m Useful programmer’s tools, will encounter it in
many places
m Very easy and fast to implement
m Runs very fast as well
m “Restricted access™: no index — only manipulate
one item at a time
m More abstract — the underlying implementation
is unimportant or not remotely similar to the
structure, unlike lists

Stacks
m Basic operations: “LIFO” strategy
= Push
m Pop
m Peek

m Analogy: mail basket

m Not as rigorous as a real stack, of course
m Another analogy: life

m Conversations

m Workday
m Extraordinarily simple!

Array-based stacks

m Limited size; ways to get around this
m Decoupled from array index!
m Very simple to implement

m Keep #gp variable, initialized to
-1

m Boundary conditions?
m Complexity bounds?

m Apart from simplicity, biggest reason to use

Next time...

m Reasons to use stacks
m Queues

m Arithmetic expression parsing

