CS W3134: Data
Structures in Java

Lecture #8: Sorts, stacks, queues
9/30/04
Janak ] Parekh

Administrivia

m HW#1 due today

Agenda

m Sorting algorithms
m Basic stacks

m Basic queues




(Comparison-based) Sorts

Bubble (p. 85)
m Sort pairwise repeatedly
m Biggest placed each time
Selection (p. 89)

m Scarch for smallest, swap with first

m Scarch for smallest, swap with second
Insertion (p. 95)

m Take the next one, and put it into the existing sorted subset
All O(n?)

m But they’re not the exact same performance

m Let’s write out a little bit of psuedocode for each

Sorts 11

m Lexicographical comparisons?
m Stability of existing items?
m Sidebar: Comparable interface

= All you have to do is implement boolean
compareTo(Object o)

m Generally a good thing to program to, I prefer to
book’s example

m Arrays.sort()

Stacks and Queues

m Useful programmer’s tools, will encounter it in
many places
m Very easy and fast to implement
m Runs very fast as well
m “Restricted access™: no index — only manipulate
one item at a time
m More abstract — the underlying implementation
is unimportant or not remotely similar to the
structure, unlike lists




Stacks

m Basic operations: “LIFO” strategy
m Push
m Pop
m Peck
m Analogy: mail basket
m Not as rigorous as a real stack, of course
m Another analogy: life
m Conversations
m Workday
m Extraordinarily simple!

Array-based stacks

m Limited size; ways to get around this
m Decoupled from array index!

m Very simple to implement

m Keep 7p variable, initialized to
-1

m Boundary conditions?

m Complexity bounds?

m Apart from simplicity, biggest reason to use

Basic Stack examples

m Reverse a word
m Conversation

m Sentence with parentheses?
m Delimiter matching: {}()

m Conceptually simple to use, less error-prone than
array

m Function/method calls




Queues

m FIFO, instead of LIFO
m “Standing in line”: print queue
m Insert: places at rear of queue
m Remove: takes from front
m Peck: looks at front
m Book’s convention: front is at bottom, near beginning
of array
m Problem: how to represent in array?

m We can’t stick it at one end or the other, unless we slide all
the elements around

m There’s a better approach

Circular queue

m Don’t move elements around, keep front and
back pointers

m Yes, back/front can wrap around: “broken
sequence”

m Keep track of number of elements —i.e.,
full/empty

m Convention: initialize rear to -1, front to 0

Circular queue operations (I)

m Be very careful of keeping pointers consistent
m Pointers should not “cross” unless empty
m Insert
m If rear at last element (length-1), reset to -1
m Increment rear, and then place the object in the new rear
m Increment # of items
m Remove
m Grab element at front, and then increment it
m If front is off the end (== length), reset to 0
m Decrement # of items




Circular queue operations (II)

m Why -1?
m Convention so that rear actually points to the
newest-added element

® You can program with 0 if you’re careful

m Efficiency of operations?

Circular queue: miscellany

m Having to keep count is a little extra work

m Book has sample code to deal with “no-count”
implementation, but more complex
m Basic problem: how to tell queue empty vs. full
m Trick: if full, leave an empty space (i.e., make array one cell
latger than maximum # of items), and check for the empty
space
m One apart => empty; two apart => full
m Two cases for each:
m If front is “ahead” of rear
m If front is “behind” rear

Next time...

m Continue with queues

m More complex examples




