
1

CS W3134: Data CS W3134: Data 
Structures in JavaStructures in Java

Lecture #8: Sorts, stacks, queuesLecture #8: Sorts, stacks, queues
9/30/049/30/04

Janak J ParekhJanak J Parekh

AdministriviaAdministrivia

HW#1 due todayHW#1 due today

AgendaAgenda

Sorting algorithmsSorting algorithms
Basic stacksBasic stacks
Basic queuesBasic queues



2

(Comparison(Comparison--based) Sortsbased) Sorts

Bubble (p. 85)Bubble (p. 85)
Sort Sort pairwisepairwise repeatedlyrepeatedly
Biggest placed each timeBiggest placed each time

Selection (p. 89)Selection (p. 89)
Search for smallest, swap with firstSearch for smallest, swap with first
Search for smallest, swap with secondSearch for smallest, swap with second

Insertion (p. 95)Insertion (p. 95)
Take the next one, and put it into the existing sorted subsetTake the next one, and put it into the existing sorted subset

All O(nAll O(n22))
But theyBut they’’re not the exact same performancere not the exact same performance

LetLet’’s write out a little bit of s write out a little bit of psuedocodepsuedocode for eachfor each

Sorts IISorts II

Lexicographical comparisons?Lexicographical comparisons?
Stability of existing items?Stability of existing items?
Sidebar: Comparable interfaceSidebar: Comparable interface

All you have to do is implement All you have to do is implement booleanboolean
compareTo(ObjectcompareTo(Object o)o)
Generally a good thing to program to, I prefer to Generally a good thing to program to, I prefer to 
bookbook’’s examples example
Arrays.sortArrays.sort()()

Stacks and QueuesStacks and Queues

Useful programmerUseful programmer’’s tools, will encounter it in s tools, will encounter it in 
many placesmany places

Very easy and fast to implementVery easy and fast to implement
Runs very fast as wellRuns very fast as well

““Restricted accessRestricted access””: no index : no index –– only manipulate only manipulate 
one item at a timeone item at a time
More abstract More abstract –– the underlying implementation the underlying implementation 
is unimportant or not remotely similar to the is unimportant or not remotely similar to the 
structure, unlike listsstructure, unlike lists



3

StacksStacks

Basic operations: Basic operations: ““LIFOLIFO”” strategystrategy
PushPush
PopPop
PeekPeek

Analogy: mail basketAnalogy: mail basket
Not as rigorous as a real stack, of courseNot as rigorous as a real stack, of course

Another analogy: lifeAnother analogy: life
ConversationsConversations
WorkdayWorkday

Extraordinarily simple!Extraordinarily simple!

ArrayArray--based stacksbased stacks

Limited size; ways to get around thisLimited size; ways to get around this
Decoupled from array index!Decoupled from array index!
Very simple to implementVery simple to implement

Keep Keep toptop variable, initialized to variable, initialized to 
--11

Boundary conditions?Boundary conditions?
Complexity bounds?Complexity bounds?

Apart from simplicity, biggest reason to useApart from simplicity, biggest reason to use

Basic Stack examplesBasic Stack examples

Reverse a wordReverse a word
ConversationConversation

Sentence with parentheses?Sentence with parentheses?

Delimiter matching: {}()Delimiter matching: {}()
Conceptually simple to use, less errorConceptually simple to use, less error--prone than prone than 
arrayarray

Function/method callsFunction/method calls



4

QueuesQueues

FIFO, instead of LIFOFIFO, instead of LIFO
““Standing in lineStanding in line””: print queue: print queue

Insert: places at rear of queueInsert: places at rear of queue
Remove: takes from frontRemove: takes from front
Peek: looks at frontPeek: looks at front

BookBook’’s convention: front is at bottom, near beginning s convention: front is at bottom, near beginning 
of arrayof array
Problem: how to represent in array?Problem: how to represent in array?

We canWe can’’t stick it at one end or the other, unless we slide all t stick it at one end or the other, unless we slide all 
the elements aroundthe elements around
ThereThere’’s a better approachs a better approach

Circular queueCircular queue

DonDon’’t move elements around, keep front and t move elements around, keep front and 
back pointersback pointers
Yes, back/front can wrap around: Yes, back/front can wrap around: ““broken broken 
sequencesequence””
Keep track of number of elements Keep track of number of elements –– i.e., i.e., 
full/emptyfull/empty
Convention: initialize rear to Convention: initialize rear to --1, front to 01, front to 0

Circular queue operations (I)Circular queue operations (I)

Be very careful of keeping pointers consistentBe very careful of keeping pointers consistent
Pointers should not Pointers should not ““crosscross”” unless emptyunless empty

InsertInsert
If rear at last element (lengthIf rear at last element (length--1), reset to 1), reset to --11
Increment rear, and then place the object in the new rearIncrement rear, and then place the object in the new rear
Increment # of itemsIncrement # of items

RemoveRemove
Grab element at front, and then increment itGrab element at front, and then increment it
If front is off the end (== length), reset to 0If front is off the end (== length), reset to 0
Decrement # of itemsDecrement # of items



5

Circular queue operations (II)Circular queue operations (II)

Why Why --1?1?
Convention so that rear actually points to the Convention so that rear actually points to the 
newestnewest--added elementadded element
You can program with 0 if youYou can program with 0 if you’’re carefulre careful

Efficiency of operations?Efficiency of operations?

Circular queue: miscellanyCircular queue: miscellany

Having to keep count is a little extra workHaving to keep count is a little extra work
Book has sample code to deal with Book has sample code to deal with ““nono--countcount””
implementation, but more compleximplementation, but more complex

Basic problem: how to tell queue empty vs. fullBasic problem: how to tell queue empty vs. full
Trick: if full, leave an empty space (i.e., make array one cell Trick: if full, leave an empty space (i.e., make array one cell 
larger than maximum # of items), and check for the empty larger than maximum # of items), and check for the empty 
spacespace

One apart => empty; two apart => fullOne apart => empty; two apart => full
Two cases for each:Two cases for each:

If front is If front is ““aheadahead”” of rearof rear
If front is If front is ““behindbehind”” rearrear

Next timeNext time……

Continue with queuesContinue with queues
More complex examplesMore complex examples


