
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java
Lecture #9: Stacks, queues contLecture #9: Stacks, queues cont’’dd

10/5/0410/5/04
Janak J ParekhJanak J Parekh

AdministriviaAdministrivia

HW#2 went out last weekHW#2 went out last week
LetLet’’s briefly review the homework and what it askss briefly review the homework and what it asks
How does one write algorithms without writing How does one write algorithms without writing
code?code?

AgendaAgenda

Finish stack implementationFinish stack implementation
Queue implementationQueue implementation
Stack/queue examplesStack/queue examples

2

ArrayArray--based stacksbased stacks

Very simple to implementVery simple to implement
Keep Keep toptop variable, initialized to variable, initialized to
--11

Boundary conditions?Boundary conditions?
Complexity bounds?Complexity bounds?

Apart from simplicity, biggest reason to useApart from simplicity, biggest reason to use
Limited sizeLimited size

Just like Just like growablegrowable lists, we can make lists, we can make growablegrowable arraysarrays
How?How?

A stack exampleA stack example

Delimiter matching: {}()Delimiter matching: {}()
Conceptually simple to use, less errorConceptually simple to use, less error--prone than prone than
arrayarray

WeWe’’ll see a more complex example at the end of ll see a more complex example at the end of
classclass

QueuesQueues

FIFO, instead of LIFOFIFO, instead of LIFO
““Standing in lineStanding in line””: print queue: print queue

Insert: places at rear of queueInsert: places at rear of queue
Remove: takes from frontRemove: takes from front
Peek: looks at frontPeek: looks at front

BookBook’’s convention: front is at bottom, near s convention: front is at bottom, near
beginning of arraybeginning of array
Problem: how to represent in array?Problem: how to represent in array?

3

Circular queueCircular queue

DonDon’’t move elements around, keep front and t move elements around, keep front and
back pointersback pointers
Yes, back/front can wrap around: Yes, back/front can wrap around: ““broken broken
sequencesequence””
Keep track of number of elements Keep track of number of elements –– i.e., i.e.,
full/emptyfull/empty
Convention: initialize rear to Convention: initialize rear to --1, front to 01, front to 0

Circular queue operations (I)Circular queue operations (I)

Be very careful of keeping pointers consistentBe very careful of keeping pointers consistent
Pointers should not Pointers should not ““crosscross”” unless emptyunless empty

InsertInsert
If rear at last element (lengthIf rear at last element (length--1), reset to 1), reset to --11
Increment rear, and then place the object in the new rearIncrement rear, and then place the object in the new rear
Increment # of itemsIncrement # of items

RemoveRemove
Grab element at front, and then increment itGrab element at front, and then increment it
If front is off the end (== length), reset to 0If front is off the end (== length), reset to 0
Decrement # of itemsDecrement # of items

Circular queue operations (II)Circular queue operations (II)

Why Why --1?1?
Convention so that rear actually points to the Convention so that rear actually points to the
newestnewest--added elementadded element
You can program with 0 if youYou can program with 0 if you’’re carefulre careful

Efficiency of operations?Efficiency of operations?
Have you heard of the mod operator?Have you heard of the mod operator?

Useful when doing fancy queue manipulationsUseful when doing fancy queue manipulations
Might want to use it in your homeworkMight want to use it in your homework

4

Circular queue: miscellanyCircular queue: miscellany

Having to keep count is a little extra workHaving to keep count is a little extra work
Book has sample code to deal with Book has sample code to deal with ““nono--countcount””
implementation, but more compleximplementation, but more complex

Basic problem: how to tell queue empty vs. fullBasic problem: how to tell queue empty vs. full
Trick: if full, leave an empty space (i.e., make array one cell Trick: if full, leave an empty space (i.e., make array one cell
larger than maximum # of items), and check for the empty larger than maximum # of items), and check for the empty
spacespace

One apart => empty; two apart => fullOne apart => empty; two apart => full
Two cases for each:Two cases for each:

If front is If front is ““aheadahead”” of rearof rear
If front is If front is ““behindbehind”” rearrear

Other queuesOther queues

DequeDeque: : ““doubledouble--endedended”” queue queue –– essentially a stack and essentially a stack and
queue combined: insert/remove left/rightqueue combined: insert/remove left/right
Priority queuePriority queue

Object of Object of ““highest priorityhighest priority”” will be next to be will be next to be dequeueddequeued
After insert, front points to highestAfter insert, front points to highest--priority elementpriority element
BookBook’’s implementation does insertion sort: starts at end, and s implementation does insertion sort: starts at end, and
moves elements up until itmoves elements up until it’’s in the right positions in the right position
No benefit to using circular constructs, so very similar to No benefit to using circular constructs, so very similar to
nanaïïve queue approachve queue approach
Complexity? (Heaps are better, but later)Complexity? (Heaps are better, but later)

More complex stack exampleMore complex stack example

How do computers parse arithmetic How do computers parse arithmetic
expressions?expressions?
First step: transform expression into postfix First step: transform expression into postfix
notationnotation
Second step: evaluate postfix expression using a Second step: evaluate postfix expression using a
stackstack

5

PostfixPostfix

Also called Reverse Polish Notation (RPN); HP Also called Reverse Polish Notation (RPN); HP
calculatorscalculators
Why?Why?

Parentheses unneeded Parentheses unneeded –– no ambiguityno ambiguity
Can process in one pass from leftCan process in one pass from left--toto--rightright

Fairly straightforward to translate from infix to Fairly straightforward to translate from infix to
postfix, but letpostfix, but let’’s hold off on thiss hold off on this

Evaluating a Postfix expressionEvaluating a Postfix expression

Go leftGo left--toto--rightright
If operand, push on stackIf operand, push on stack
If operator, pop two operands, use operator, and If operator, pop two operands, use operator, and
push result on stackpush result on stack

When done, there should be one value on the When done, there should be one value on the
stackstack

Pop itPop it

Converting Infix to PostfixConverting Infix to Postfix

See pages 158See pages 158--159, although I think these bullets make 159, although I think these bullets make
more sense ;)more sense ;)
Need to encode Need to encode operator precedenceoperator precedence
To process:To process:

Operand: write straight to outputOperand: write straight to output
(: push on stack(: push on stack
): pop all items until (encountered, and output them; don): pop all items until (encountered, and output them; don’’t t
write the (write the (
Input complete: pop all items and write outInput complete: pop all items and write out
Operator: interesting problemOperator: interesting problem

6

Converting InfixConverting Infix--toto--Postfix (II)Postfix (II)

Operator handlingOperator handling
If stack is empty, pushIf stack is empty, push
Else, pop, determine precedence of new vs. poppedElse, pop, determine precedence of new vs. popped

If popped is a (, put it back on the stack, and put the new If popped is a (, put it back on the stack, and put the new
operator on topoperator on top
Else if new has higher precedence, push popped back on, Else if new has higher precedence, push popped back on,
and push new on top of itand push new on top of it
Else if popped has higher or equal precedence, output it, Else if popped has higher or equal precedence, output it,
and repeat this processand repeat this process
(PE)MDAS for precedence(PE)MDAS for precedence

Next timeNext time……

Linked listsLinked lists

