CS W3134: Data
Structures in Java

Lecture #9: Stacks, queues cont’d
10/5/04
Janak] Parekh

Administrivia

m HW#2 went out last week
m Let’s briefly review the homework and what it asks

m How does one write algorithms without writing
code?

Agenda

m Finish stack implementation
m Queue implementation

m Stack/queue examples

Array-based stacks

m Very simple to implement
m Keep #gp variable, initialized to

m Boundary conditions?
m Complexity bounds?

m Apart from simplicity, biggest reason to use
m Limited size

m Just like growable lists, we can make growable arrays
= How?

A stack example

m Delimiter matching: {}()
m Conceptually simple to use, less error-prone than
ﬂf!'ay
m We'll see a more complex example at the end of
class

Queues

m FIFO, instead of LIFO
m “Standing in line”: print queue
m Insert: places at rear of queue
m Remove: takes from front
m Peck: looks at front
m Book’s convention: front is at bottom, near
beginning of array

m Problem: how to represent in array?

Circular queue

= Don’t move elements around, keep front and
back pointers

m Yes, back/front can wrap around: “broken
sequence”

m Keep track of number of elements —i.e.,

full/empty

m Convention: initialize rear to -1, front to 0

Circular queue operations (I)

m Be very careful of keeping pointers consistent
m Pointers should not “cross” unless empty
m Insert
m If rear at last element (length-1), reset to -1
m Increment rear, and then place the object in the new rear
m Increment # of items
m Remove
m Grab element at front, and then increment it
m If front is off the end (== length), reset to 0
m Decrement # of items

Circular queue operations (II)

m Why -1?
m Convention so that rear actually points to the
newest-added element
® You can program with 0 if you’re careful
m Efficiency of operations?
m Have you heard of the mod operator?
m Useful when doing fancy queue manipulations

m Might want to use it in your homework

Circular queue: miscellany

m Having to keep count is a little extra work

m Book has sample code to deal with “no-count”
implementation, but more complex
m Basic problem: how to tell queue empty vs. full
m Trick: if full, leave an empty space (i.e., make atray one cell
larger than maximum # of items), and check for the empty
space
= One apart => empty; two apart => full
m Two cases for each:
m If front is “ahead” of rear
m If front is “behind” rear

Other queues

m Deque: “double-ended” queue — essentially a stack and
queue combined: insert/remove left/right
m Priority queue
m Object of “highest priority” will be next to be dequeued
m After insert, front points to highest-priority element

m Book’s implementation does insertion sort: starts at end, and
moves elements up until it’s in the right position

m No benefit to using circular constructs, so very similar to
naive qUCUC ﬂppf()/rlch

m Complexity? (Heaps are better, but later)

More complex stack example

m How do computers parse arithmetic
expressions?

m First step: transform expression into postfix
notation

m Second step: evaluate postfix expression using a
stack

Postfix

m Also called Reverse Polish Notation (RPN); HP
calculators

= Why?
m Parentheses unneeded — no ambiguity
m Can process in one pass from left-to-right

m [airly straightforward to translate from infix to
postfix, but let’s hold off on this

Evaluating a Postfix expression

m Go left-to-right
m If operand, push on stack

m If operator, pop two operands, use operator, and
push result on stack

m When done, there should be one value on the
stack

m Pop it

Converting Infix to Postfix

m See pages 158-159, although I think these bullets make
more sense ;)

m Need to encode gperator precedence

m To process:
m Operand: write straight to output
m (: push on stack
m): pop all items until (encountered, and output them; don’t
write the (
m Input complete: pop all items and write out
m Operator: interesting problem

Converting Infix-to-Postfix (II)

m Operator handling
m If stack is empty, push

m Hlse, pop, determine precedence of new vs. popped

m If popped is a (, put it back on the stack, and put the new
operator on top

m Else if new has higher precedence, push popped back on,
and push new on top of it

m Else if popped has higher or equal precedence, output it,
and repeat this process

m (PE)MDAS for precedence

Next time...

m Linked lists

