CS W3134: Data
Structures in Java

Lecture #10: Stacks, queues, linked lists
10/7/04
Janak J Parekh

Administrivia

m HW#2 questions?

Agenda

m Finish queues

m Stack/queue example

Circular queue: miscellany

m Having to keep count is a little extra work
m Book has sample code to deal with “no-count”
implementation, but more complex
m Basic problem: how to tell queue empty vs. full
m Trick: if full, leave an empty space

m We’re not going to do this

Other queues

m Deque: “double-ended” queue — essentially a stack and
queue combined: insert/remove left/right
m Priority queue
m Object of “highest priority” will be next to be dequeued
m After insert, front points to highest-priority element

m Book’s implementation does insertion sort: starts at end, and
moves elements up until it’s in the right position

m No benefit to using circular constructs, so very similar to
naive qUCUC ﬂppf()/rlch

m Complexity? (Heaps are better, but later)

More complex stack example

m How do computers parse arithmetic
expressions?

m First step: transform expression into postfix
notation

m Second step: evaluate postfix expression using a
stack

Postfix

m Also called Reverse Polish Notation (RPN); HP
calculators

= Why?
m Parentheses unneeded — no ambiguity
m Can process in one pass from left-to-right

m [airly straightforward to translate from infix to
postfix, but let’s hold off on this

Evaluating a Postfix expression

m Go left-to-right
m If operand, push on stack

m If operator, pop two operands, use operator, and
push result on stack

m When done, there should be one value on the
stack

m Pop it

Converting Infix to Postfix

m See pages 158-159, although I think these bullets make
more sense ;)

m Need to encode gperator precedence

m To process:
m Operand: write straight to output
m (: push on stack
m): pop all items until (encountered, and output them; don’t
write the (
m Input complete: pop all items and write out
m Operator: interesting problem

Converting Infix-to-Postfix (II)

m Operator handling
m If stack is empty, push

m Hlse, pop, determine precedence of new vs. popped

m If popped is a (, put it back on the stack, and put the new
operator on top

m Else if new has higher precedence, push popped back on,
and push new on top of it

m Else if popped has higher or equal precedence, output it,
and repeat this process

m (PE)MDAS for precedence

Linked lists

m Arrays are rather limited, cumbersome data structures —
cells are “fixed” together, limited length

What if we could break apart the cells?

We can!

In fact, linked list-style structures are used more
frequently unless you need very fast random index-
based access

m Trees, graphs, etc. are generalizations of linked lists

Linked List structure

= Two basic objects:

m The list “parent” itself

= An “element” (book calls “link”), with data

m Technically, we don’t need both
m Parent contains reference to the first element
w Each element contains a reference to the next element

m Last element’s “next” is set to null

Basic Linked List operations

m How to tell if empty?
m Insertions
m insertFirst()
m deleteFirst()
m displayList()
m insertlast()
= More complex operations
m How to find an arbitrary element?

m How to delete arbitrary element?

Double-ended list

m Contains pointer to last element

m Makes insertlast() much faster (how much?)

Linked list complexity?

m Similar to arrays

m O(1) insert/delete at beginning (or end of list
for double-ended)

m Other operations take O(N), but faster than
array if “sliding” is needed in array

= Memory?

m Linked list more efficient, although it has to keep
lots of references

Revisit abstraction

m Book finally covers abstraction here

m We can redo all of our previous data structures,
previously array-backed, as linked list-backed

m [nterface — high-level contract, while the dirty details are
hidden

m How to do a stack?
m How to do a queue?

m You should read through this section

Next time...

m Finish Linked Lists

m Start Recursion

