
1

CS W3134: Data CS W3134: Data 
Structures in JavaStructures in Java
Lecture #10: Stacks, queues, linked listsLecture #10: Stacks, queues, linked lists

10/7/0410/7/04
Janak J ParekhJanak J Parekh

AdministriviaAdministrivia

HW#2 questions?HW#2 questions?

AgendaAgenda

Finish queuesFinish queues
Stack/queue exampleStack/queue example



2

Circular queue: miscellanyCircular queue: miscellany

Having to keep count is a little extra workHaving to keep count is a little extra work
Book has sample code to deal with Book has sample code to deal with ““nono--countcount””
implementation, but more compleximplementation, but more complex

Basic problem: how to tell queue empty vs. fullBasic problem: how to tell queue empty vs. full
Trick: if full, leave an empty spaceTrick: if full, leave an empty space
WeWe’’re not going to do thisre not going to do this

Other queuesOther queues

DequeDeque: : ““doubledouble--endedended”” queue queue –– essentially a stack and essentially a stack and 
queue combined: insert/remove left/rightqueue combined: insert/remove left/right
Priority queuePriority queue

Object of Object of ““highest priorityhighest priority”” will be next to be will be next to be dequeueddequeued
After insert, front points to highestAfter insert, front points to highest--priority elementpriority element
BookBook’’s implementation does insertion sort: starts at end, and s implementation does insertion sort: starts at end, and 
moves elements up until itmoves elements up until it’’s in the right positions in the right position
No benefit to using circular constructs, so very similar to No benefit to using circular constructs, so very similar to 
nanaïïve queue approachve queue approach
Complexity?  (Heaps are better, but later)Complexity?  (Heaps are better, but later)

More complex stack exampleMore complex stack example

How do computers parse arithmetic How do computers parse arithmetic 
expressions?expressions?
First step: transform expression into postfix First step: transform expression into postfix 
notationnotation
Second step: evaluate postfix expression using a Second step: evaluate postfix expression using a 
stackstack



3

PostfixPostfix

Also called Reverse Polish Notation (RPN); HP Also called Reverse Polish Notation (RPN); HP 
calculatorscalculators
Why?Why?

Parentheses unneeded Parentheses unneeded –– no ambiguityno ambiguity
Can process in one pass from leftCan process in one pass from left--toto--rightright

Fairly straightforward to translate from infix to Fairly straightforward to translate from infix to 
postfix, but letpostfix, but let’’s hold off on thiss hold off on this

Evaluating a Postfix expressionEvaluating a Postfix expression

Go leftGo left--toto--rightright
If operand, push on stackIf operand, push on stack
If operator, pop two operands, use operator, and If operator, pop two operands, use operator, and 
push result on stackpush result on stack

When done, there should be one value on the When done, there should be one value on the 
stackstack

Pop itPop it

Converting Infix to PostfixConverting Infix to Postfix

See pages 158See pages 158--159, although I think these bullets make 159, although I think these bullets make 
more sense ;)more sense ;)
Need to encode Need to encode operator precedenceoperator precedence
To process:To process:

Operand: write straight to outputOperand: write straight to output
(: push on stack(: push on stack
): pop all items until ( encountered, and output them; don): pop all items until ( encountered, and output them; don’’t t 
write the (write the (
Input complete: pop all items and write outInput complete: pop all items and write out
Operator: interesting problemOperator: interesting problem



4

Converting InfixConverting Infix--toto--Postfix (II)Postfix (II)

Operator handlingOperator handling
If stack is empty, pushIf stack is empty, push
Else, pop, determine precedence of new vs. poppedElse, pop, determine precedence of new vs. popped

If popped is a (, put it back on the stack, and put the new If popped is a (, put it back on the stack, and put the new 
operator on topoperator on top
Else if new has higher precedence, push popped back on, Else if new has higher precedence, push popped back on, 
and push new on top of itand push new on top of it
Else if popped has higher or equal precedence, output it, Else if popped has higher or equal precedence, output it, 
and repeat this processand repeat this process
(PE)MDAS for precedence(PE)MDAS for precedence

Linked listsLinked lists

Arrays are rather limited, cumbersome data structures Arrays are rather limited, cumbersome data structures ––
cells are cells are ““fixedfixed”” together, limited lengthtogether, limited length
What if we could break apart the cells?What if we could break apart the cells?
We We cancan!!
In fact, linked listIn fact, linked list--style structures are used more style structures are used more 
frequently unless you need very fast random indexfrequently unless you need very fast random index--
based accessbased access
Trees, graphs, etc. are generalizations of linked listsTrees, graphs, etc. are generalizations of linked lists

Linked List structureLinked List structure

Two basic objects:Two basic objects:
The list The list ““parentparent”” itselfitself
An An ““elementelement”” (book calls (book calls ““linklink””), with data), with data
Technically, we donTechnically, we don’’t need botht need both

Parent contains reference to the first elementParent contains reference to the first element
Each element contains a reference to the next elementEach element contains a reference to the next element
Last elementLast element’’s s ““nextnext”” is set to nullis set to null



5

Basic Linked List operationsBasic Linked List operations

How to tell if empty?How to tell if empty?
InsertionsInsertions

insertFirstinsertFirst()()
deleteFirstdeleteFirst()()
displayListdisplayList()()
insertLastinsertLast()()

More complex operationsMore complex operations
How to find an arbitrary element?How to find an arbitrary element?
How to delete arbitrary element?How to delete arbitrary element?

DoubleDouble--ended listended list

Contains pointer to last elementContains pointer to last element
Makes Makes insertLastinsertLast() much faster (how much?)() much faster (how much?)

Linked list complexity?Linked list complexity?

Similar to arraysSimilar to arrays
O(1) insert/delete at beginning (or end of list O(1) insert/delete at beginning (or end of list 
for doublefor double--ended)ended)
Other operations take O(N), but faster than Other operations take O(N), but faster than 
array if array if ““slidingsliding”” is needed in arrayis needed in array
Memory?Memory?

Linked list more efficient, although it has to keep Linked list more efficient, although it has to keep 
lots of referenceslots of references



6

Revisit abstractionRevisit abstraction

Book finally covers abstraction hereBook finally covers abstraction here
We can redo all of our previous data structures, We can redo all of our previous data structures, 
previously previously arrayarray--backedbacked, as , as linked listlinked list--backedbacked
InterfaceInterface –– highhigh--level contract, while the dirty details are level contract, while the dirty details are 
hiddenhidden
How to do a stack?How to do a stack?
How to do a queue?How to do a queue?
You should read through this sectionYou should read through this section

Next timeNext time……

Finish Linked ListsFinish Linked Lists
Start RecursionStart Recursion


