
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java

Lecture #12: Linked lists contLecture #12: Linked lists cont’’d., recursiond., recursion
10/14/0410/14/04

Janak J ParekhJanak J Parekh

AdministriviaAdministrivia
HW#2 due todayHW#2 due today
II’’ll put up both HW#1 and HW#2 solutions ll put up both HW#1 and HW#2 solutions
before the midterm so you have them as a before the midterm so you have them as a
resourceresource

II’’d return HW#1 today, but Id return HW#1 today, but I’’m waiting on m waiting on
Matthew. :Matthew. :--//

HW#3 out this afternoonHW#3 out this afternoon
TodayToday’’s lecture technically last topic for midterms lecture technically last topic for midterm

Although we will reinforce todayAlthough we will reinforce today’’s concepts next s concepts next
timetime
Use the syllabus to help you studyUse the syllabus to help you study

AgendaAgenda

Finish linked list basicsFinish linked list basics
Start recursionStart recursion

2

Doubling upDoubling up

DoubleDouble--ended listsended lists
Contains pointer to last elementContains pointer to last element
Makes Makes insertLastinsertLast() much faster (how much?)() much faster (how much?)

DoublyDoubly--linked listslinked lists
Keep a back (Keep a back (prevprev) pointer at every node) pointer at every node
Advantage: faster to go backwardsAdvantage: faster to go backwards
Disadvantage: more memory and bookkeepingDisadvantage: more memory and bookkeeping

Be careful of syntax!Be careful of syntax!
What does What does last.prev.nextlast.prev.next = null mean?= null mean?

Linked list complexity?Linked list complexity?

Similar to arraysSimilar to arrays
O(1) insert/delete at beginning (also end of list O(1) insert/delete at beginning (also end of list
for doublefor double--ended)ended)
Other operations take O(N), but faster than Other operations take O(N), but faster than
array if array if ““slidingsliding”” is needed in arrayis needed in array
Memory?Memory?

Linked list more efficient, although it has to keep Linked list more efficient, although it has to keep
lots of referenceslots of references

Revisit abstractionRevisit abstraction

Book finally covers abstraction hereBook finally covers abstraction here
We can redo all of our previous data structures, We can redo all of our previous data structures,
previously previously arrayarray--backedbacked, as , as linked listlinked list--backedbacked
InterfaceInterface –– highhigh--level contract, while the dirty details are level contract, while the dirty details are
hiddenhidden
How to do a stack?How to do a stack?
How to do a queue?How to do a queue?
You should read through this sectionYou should read through this section

3

Other linkedOther linked--list considerationslist considerations

Sorted List: how to do?Sorted List: how to do?
Cases when inserting at beginning, middle, or endCases when inserting at beginning, middle, or end

Sorting an unsorted ListSorting an unsorted List
Insertion sort is faster than the other two sorts, since Insertion sort is faster than the other two sorts, since
““slidingsliding”” is very easy to dois very easy to do

IteratorsIterators

With lists, frequently need to walk through a listWith lists, frequently need to walk through a list
Increase minimum wages of all employees, etc.Increase minimum wages of all employees, etc.

But thereBut there’’s no array index! How to step through?s no array index! How to step through?
One way is to keep references to current cell, but One way is to keep references to current cell, but
requires requires ““outsideroutsider”” to know the internals of how the list to know the internals of how the list
worksworks

IteratorsIterators (II)(II)

Structure: list, current, and previous referencesStructure: list, current, and previous references
Methods Methods –– book suggests:book suggests:

reset() reset() –– go back to beginninggo back to beginning
nextLinknextLink()()
getCurrentgetCurrent()()
atEndatEnd() () –– lastlast element, not after itelement, not after it
insertAfterinsertAfter()()
insertBeforeinsertBefore()()
deleteCurrentdeleteCurrent()()

4

IteratorsIterators (III)(III)

Java has its own, simpler, Java has its own, simpler, IteratorIterator, with next() , with next()
and and hasNexthasNext(), and that(), and that’’s its it

Supports more than linked listsSupports more than linked lists

Iteration vs. RecursionIteration vs. Recursion

So, what is iteration, anyway?So, what is iteration, anyway?
Dictionary.comDictionary.com: : ““The process of repeating a set The process of repeating a set
of instructions a specified number of times or until a of instructions a specified number of times or until a
specific result is achieved.specific result is achieved.””

Any other way of repeating over and over?Any other way of repeating over and over?
Well, letWell, let’’s think about its think about it……

How to calculateHow to calculate……

WhatWhat’’s the sequence 1, 3, 6, 10, 15, 21, 28, s the sequence 1, 3, 6, 10, 15, 21, 28,
3636……

TriangleTriangle numbersnumbers
How to do as loop?How to do as loop?
How to do How to do as addition on previous resultas addition on previous result??

Recursion!Recursion!

5

A better exampleA better example

Simpler, you say?Simpler, you say?
WhatWhat’’s the sequence 1, 1, 2, 3, 5, 8, s the sequence 1, 1, 2, 3, 5, 8, ……

Easy to define in terms of recursion, right?Easy to define in terms of recursion, right?
How to iterate over this?How to iterate over this?
In other words, there are problems that are In other words, there are problems that are
more intuitive recursivelymore intuitive recursively

Formalizing RecursionFormalizing Recursion

Recursive algorithms have the following Recursive algorithms have the following
propertiesproperties

They call themselvesThey call themselves
They call themselves to solve a smaller problem, and They call themselves to solve a smaller problem, and
then work with the resultthen work with the result
ThereThere’’s a s a stopping stopping condition, e.g., a call which is condition, e.g., a call which is
simple enough to solve explicitlysimple enough to solve explicitly
Generally avoid explicit loopsGenerally avoid explicit loops

Recursion vs. IterationRecursion vs. Iteration

Recursion is, Recursion is, generallygenerally::
A bit less intuitive at firstA bit less intuitive at first……
Simpler to implement / elegantSimpler to implement / elegant
Less efficientLess efficient

Conceptually simplerConceptually simpler

6

Some more examplesSome more examples

FindMaxFindMax
Recursive binary search (p. 268)Recursive binary search (p. 268)
DivideDivide--andand--conquer approachconquer approach

Take a big problem, split into smaller Take a big problem, split into smaller
problems, solve separatelyproblems, solve separately
Very powerful methodology, works well with Very powerful methodology, works well with
recursionrecursion
Usually two recursive callsUsually two recursive calls

Next timeNext time……

Finish up recursionFinish up recursion
MergesortMergesort

