CS W3134: Data
Structures in Java

Lecture #12: Linked lists cont’d., recursion
10/14/04
Janak J Parekh

Administrivia
m HW#2 due today
m I’ll put up both HW#1 and HW#2 solutions
before the midterm so you have them as a
resource

m I’d return HW#1 today, but I'm waiting on
Matthew. :-/

m HW#3 out this afternoon
m Today’s lecture technically last topic for midterm

m Although we will reinforce today’s concepts next
time
m Use the syllabus to help you study

Agenda

m Finish linked list basics

m Start recursion




Doubling up

® Double-ended lists

m Contains pointer to last element

m Makes insertLast() much faster (how much?)
= Doubly-linked lists

m Keep a back (prev) pointer at every node

m Advantage: faster to go backwards

m Disadvantage: more memory and bookkeeping
m Be careful of syntax!

m What does last.prev.next = null mean?

Linked list complexity?

m Similar to arrays

m O(1) insert/delete at beginning (also end of list
for double-ended)

m Other operations take O(N), but faster than
array if “sliding” is needed in array

= Memory?

m Linked list more efficient, although it has to keep
lots of references

Revisit abstraction

m Book finally covers abstraction here

m We can redo all of our previous data structures,
previously array-backed, as linked list-backed

m [nterface — high-level contract, while the dirty details are
hidden

m How to do a stack?
m How to do a queue?

® You should read through this section




Other linked-list considerations

m Sorted List: how to do?
m Cases when inserting at beginning, middle, or end
m Sorting an unsorted List

m Insertion sort is faster than the other two sorts, since
“sliding” is very easy to do

Iterators

m With lists, frequently need to walk through a list
m Increase minimum wages of all employees, etc.
m But there’s no array index! How to step through?
m One way is to keep references to current cell, but
requires “outsider” to know the internals of how the list
works

Iterators (II)

m Structure: list, current, and previous references
m Methods — book suggests:

m reset() — go back to beginning

m nextLink()

m getCurrent()

m atEnd() — /as? element, not after it

m insertAfter()

m insertBefore()

m deleteCurrent()




Iterators (III)

m Java has its own, simpler, Iterator, with next()
and hasNext(), and that’s it

m Supports more than linked lists

Iteration vs. Recursion

m So, what is iteration, anyway?

m Dictionary.com: “The process of repeating a set
of instructions a specified number of times or until a
specific result is achieved.”

m Any other way of repeating over and over?

m Well, let’s think about it...

How to calculate...

m What’s the sequence 1, 3, 6, 10, 15, 21, 28,
36...
m Triangle numbers
m How to do as loop?

m How to do as addition on previous resulf?

m Recursion!




A better example

m Simpler, you say?

m What’s the sequence 1, 1,2, 3,5, 8, ...
m Basy to define in terms of recursion, right?
m How to iterate over this?

m In other words, there are problems that are
more intuitive recursively

Formalizing Recursion

m Recursive algorithms have the following
properties
m They call themselves

m They call themselves to solve a smaller problem, and
then work with the result

m There’s a stopping condition, e.g., a call which is
simple enough to solve explicitly

m Generally avoid explicit loops

Recursion vs. Iteration

m Recursion is, generally:
m A bit less intuitive at first...
m Simpler to implement / elegant
m Less efficient

m Conceptually simpler




Some more examples

m FindMax
m Recursive binary search (p. 268)
m Divide-and-conquer approach

m Take a big problem, split into smaller
problems, solve separately

m Very powerful methodology, works well with
recursion

m Usually two recursive calls

Next time...

m Finish up recursion

m Mergesort




