CS W3134: Data
Structures in Java

Lecture #13: Recursion
10/19/04
Janak ] Parekh

Administrivia
m HW#3 out

m Noticeably smaller than the first two, but linked lists
are a little tricky.

m HW#1 returned today

m Solutions for HW#1 and HW#2 will also be up
today

m Midterm review for office hours
m Will occur here until 1pm

m Today’s lecture 7ot on midterm

Agenda

m Recursion




How to calculate...

m What’s the sequence 1, 3, 6, 10, 15, 21, 28,
36...
m Triangle numbers
= How to do as loop?

m How to do as addition on previous resulf?

m Recursion!

A better example

m Simpler, you say?

m What’s the sequence 1, 1,2, 3,5, 8, ...
m Hasy to define in terms of recursion, right?
m How to iterate over this?

m In other words, there are problems that are
more intuitive recursively

Formalizing Recursion

m Recursive algorithms have the following
properties
m They call themselves

m They call themselves to solve a smaller problem, and
then work with the result

m There’s a stopping condition, e.g., a call which is
simple enough to solve explicitly

m Generally avoid explicit loops




Recursion vs. Iteration

m Recursion is, generally:
m A bit less intuitive at first. ..
= Simpler to implement / elegant

m Less efficient

m But... conceptually simpler

Some more examples

m FindMax
m Recursive binary search (p. 268)
m Divide-and-conquer approach

m Take a big problem, split into smaller
problems, solve separately

m Very powerful methodology, works well with
recursion

m Usually two recursive calls

Method overloading (for HW#3)

m OO concept useful for recursion, but not only

® You can have multiple methods with the same
name
m As long as parameters differ

m For recursive algorithms, often will have a
“bootstrap” method

m Let’s look at the FindMax example. ..




Towers of Hanoi

m Three pegs
m Disks all on one peg
m Want to move it to third peg
m Second peg is a “work peg”
m Can’t move a disk until all smaller disks have
been moved
m Basic intuition
m Move the top disks from start to intermediate
m Move the largest disk to destination
m Move top disks from intermediate to destination

Hanoi (II)

m Three steps:
m First, move pile from “from” to “inter”, using “to” as a work
peg
m Then, move disk from “from” to “to”
m Then, move remainder of pile from “inter” to “to”, using
“from” as a work peg
m This works because we don’t have to put things
consecutively, just that larger disks must go on top of
smaller disks

m Page 278 for code

Mergesort

m Classic recursive algorithm

m Split arrays in half, sort each half, and then
merge them together
m “Divide and conquer”

m Sort is the “recursive” call

m Let’s do it intuitively first

= Now, psuedocode...




Metrgesort (II)

m Key aspect of code on page 287
m The header of the method contains enough information
to perform the recursive call
m In this case, partition information
m Efficiency?
m Partition: O(1)
m Merge: O(n)
m How many times each have to be done? O(log n)
m Ergo, O(n*log n)
m Disadvantage: lots of memory required

Next time...

m Finish up mergesort
m Two more complex sorts
m Radix sort

m Quicksort




