
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java

Lecture #13: RecursionLecture #13: Recursion
10/19/0410/19/04

Janak J ParekhJanak J Parekh

AdministriviaAdministrivia
HW#3 outHW#3 out

Noticeably smaller than the first two, but linked lists Noticeably smaller than the first two, but linked lists
are a little tricky.are a little tricky.

HW#1 returned todayHW#1 returned today
Solutions for HW#1 and HW#2 will also be up Solutions for HW#1 and HW#2 will also be up
todaytoday

Midterm review for office hoursMidterm review for office hours
Will occur here until 1pmWill occur here until 1pm

TodayToday’’s lecture s lecture notnot on midtermon midterm

AgendaAgenda

RecursionRecursion

2

How to calculateHow to calculate……

WhatWhat’’s the sequence 1, 3, 6, 10, 15, 21, 28, s the sequence 1, 3, 6, 10, 15, 21, 28,
3636……

TriangleTriangle numbersnumbers
How to do as loop?How to do as loop?
How to do How to do as addition on previous resultas addition on previous result??

Recursion!Recursion!

A better exampleA better example

Simpler, you say?Simpler, you say?
WhatWhat’’s the sequence 1, 1, 2, 3, 5, 8, s the sequence 1, 1, 2, 3, 5, 8, ……

Easy to define in terms of recursion, right?Easy to define in terms of recursion, right?
How to iterate over this?How to iterate over this?
In other words, there are problems that are In other words, there are problems that are
more intuitive recursivelymore intuitive recursively

Formalizing RecursionFormalizing Recursion

Recursive algorithms have the following Recursive algorithms have the following
propertiesproperties

They call themselvesThey call themselves
They call themselves to solve a smaller problem, and They call themselves to solve a smaller problem, and
then work with the resultthen work with the result
ThereThere’’s a s a stopping stopping condition, e.g., a call which is condition, e.g., a call which is
simple enough to solve explicitlysimple enough to solve explicitly
Generally avoid explicit loopsGenerally avoid explicit loops

3

Recursion vs. IterationRecursion vs. Iteration

Recursion is, Recursion is, generallygenerally::
A bit less intuitive at firstA bit less intuitive at first……
Simpler to implement / elegantSimpler to implement / elegant
Less efficientLess efficient

ButBut…… conceptually simplerconceptually simpler

Some more examplesSome more examples

FindMaxFindMax
Recursive binary search (p. 268)Recursive binary search (p. 268)
DivideDivide--andand--conquer approachconquer approach

Take a big problem, split into smaller Take a big problem, split into smaller
problems, solve separatelyproblems, solve separately
Very powerful methodology, works well with Very powerful methodology, works well with
recursionrecursion
Usually two recursive callsUsually two recursive calls

Method overloading (for HW#3)Method overloading (for HW#3)

OO concept useful for recursion, but not onlyOO concept useful for recursion, but not only
You can have multiple methods with the same You can have multiple methods with the same
namename

As long as parameters differAs long as parameters differ

For recursive algorithms, often will have a For recursive algorithms, often will have a
““bootstrapbootstrap”” methodmethod
LetLet’’s look at the s look at the FindMaxFindMax exampleexample……

4

Towers of HanoiTowers of Hanoi

Three pegsThree pegs
Disks all on one pegDisks all on one peg
Want to move it to third pegWant to move it to third peg
Second peg is a Second peg is a ““work pegwork peg””
CanCan’’t move a disk until all smaller disks have t move a disk until all smaller disks have
been movedbeen moved
Basic intuitionBasic intuition

Move the top disks from start to intermediateMove the top disks from start to intermediate
Move the largest disk to destinationMove the largest disk to destination
Move top disks from intermediate to destinationMove top disks from intermediate to destination

Hanoi (II)Hanoi (II)

Three steps:Three steps:
First, move pile from First, move pile from ““fromfrom”” to to ““interinter””, using , using ““toto”” as a work as a work
pegpeg
Then, move disk from Then, move disk from ““fromfrom”” to to ““toto””
Then, move remainder of pile from Then, move remainder of pile from ““interinter”” to to ““toto””, using , using
““fromfrom”” as a work pegas a work peg

This works because we donThis works because we don’’t have to put things t have to put things
consecutively, just that larger disks must go on top of consecutively, just that larger disks must go on top of
smaller diskssmaller disks
Page 278 for codePage 278 for code

MergesortMergesort

Classic recursive algorithmClassic recursive algorithm
Split arrays in half, sort each half, and then Split arrays in half, sort each half, and then
merge them togethermerge them together

““Divide and conquerDivide and conquer””

Sort is the Sort is the ““recursiverecursive”” callcall
LetLet’’s do it intuitively firsts do it intuitively first
Now, Now, psuedocodepsuedocode……

5

MergesortMergesort (II)(II)

Key aspect of code on page 287Key aspect of code on page 287
The header of the method contains enough information The header of the method contains enough information
to perform the recursive callto perform the recursive call

In this case, partition informationIn this case, partition information
Efficiency?Efficiency?

Partition: O(1)Partition: O(1)
Merge: Merge: O(nO(n))
How many times each have to be done? How many times each have to be done? O(logO(log n)n)
Ergo, Ergo, O(nO(n*log n)*log n)

Disadvantage: lots of memory requiredDisadvantage: lots of memory required

Next timeNext time……

Finish up Finish up mergesortmergesort
Two more complex sortsTwo more complex sorts

Radix sortRadix sort
QuicksortQuicksort

