CS W3134: Data
Structures in Java

Lecture #14: Recursion and sorts

10/26/04
Janak ] Parekh
Administrivia
m Exams returned

® Mean: 37.93

m Median: 41

m StDev: 9.69

= Max: 50

® Min: 11

m We'll go over the exam now
m HW#3 due Thursday
m Questions?

m Matthew’s holding OH tomorrow morning because he was ill
Monday morning; check webboard for details

m HW#2 returned next Tuesday

Agenda

m Recursion, continued




FindMax, revisited

m [ast time, we divided in half and searched
both halves

® Double recursion

m We can something similar with only one
recursive call...

Towers of Hanoi

m Three pegs
m Disks all on one peg
m Want to move it to third peg
m Second peg is a “work peg”
m Can’t move a disk until all smaller disks have
been moved
m Basic intuition
m Move the top disks from start to intermediate
m Move the largest disk to destination
m Move top disks from intermediate to destination

Hanoi (IT)

m Three steps:
m First, move pile from “from” to “inter”, using “to” as a work
peg
m Then, move disk from “from” to “to”
m Then, move remainder of pile from “inter” to “to”, using
“from” as a work peg
m This works because we don’t have to put things
consecutively, just that larger disks must go on top of
smaller disks
m Page 278 for code

m Emacs for visualization (reallyl)




Mergesort

m Classic recursive algorithm

m Split arrays in half, sort each half, and then

merge them together

m “Divide and conquer”

m Sort is the “recursive” call

m Let’s do it intuitively first

= Now, psuedocode...

Mergesort (1I)

Key aspect of code on page 287
The header of the method contains enough information
to perform the recursive call
m In this case, partition information
Efficiency?
m Partition: O(1)
m Merge: O(n)
®m How many times each have to be done? O(log n)
m Ergo, O(n*log n)
Disadvantage: lots of memory required

Radix Sort

m Radix is the “base” of a system of numbers
m Very simple, fast algorithm
m Sort by digit, one at a time

m Sort on the 1s digit
m Sort on the 10s digit; keep relative order of equal 10s the same, i.e., go
left-to-right on the 1s digit
m Sort the 100s digit
= Etc.
Problem: whete to store intermediate results?
Can sort 100 numbers in 2 passes! ~ O(2n)
But... that’s essentially O(n log n)!
There’s no free lunch, but this works very well for specialized
keys




Quicksort: Partition

m Relies on concept of partition
m A number s.t. two groups are formed: those smaller than the
number, and those larger than the number

m “Pivot”

m Walk from both edges
m If left is smaller than pivot, walk left
m If right is larger than pivot, walk right
m Otherwise, swap the two
m What if we cross?

m Last element is the pivot?

m Coder p. 338

Quicksort: Recursion

m Given pivot, we:

m Partition the array in two;
m Quicksort the left “half”;
m Quicksort the right “half”.
And recurse!

That’s it (p. 338)

m Well, must be very, very careful

m Analysis?
m Usually O(n log n), and in-memory
m But there are some problems...

Next time

m Finish Quicksort

m Start trees




