CS W3134: Data Structures in Java

Lecture \#14: Recursion and sorts

$$
10 / 26 / 04
$$

Janak J Parekh

Administrivia

\qquad

- Exams returned
- Mean: 37.93
\qquad
- Median: 41
- StDev: 9.69 \qquad
- Max: 50
- Min: 11
- We'll go over the exam now
\qquad
- HW\#3 due Thursday
- Questions?
- Matthew's holding OH tomorrow morning because he was ill Monday morning; check webboard for details
- HW\#2 returned next Tuesday

Agenda

- Recursion, continued \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FindMax, revisited

- Last time, we divided in half and searched \qquad both halves
- Double recursion
- We can something similar with only one \qquad recursive call...

Towers of Hanoi

\qquad

- Three pegs \qquad
- Disks all on one peg
- Want to move it to third peg \qquad
- Second peg is a "work peg"
- Can't move a disk until all smaller disks have \qquad been moved
Basic intuition
- Move the top disks from start to intermediate
- Move the largest disk to destination
- Move top disks from intermediate to destination
\qquad
\qquad
\qquad

Mergesort

Classic recursive algorithm

- Split arrays in half, sort each half, and then
\qquad merge them together
- "Divide and conquer" \qquad
- Sort is the "recursive" call
- Let's do it intuitively first
- Now, psuedocode...
\qquad
\qquad
\qquad

Mergesort (II)

- Key aspect of code on page 287
- The header of the method contains enough information to perform the recursive call
- In this case, partition information
- Efficiency?
- Partition: $\mathrm{O}(1)$
- Merge: $\mathrm{O}(\mathrm{n})$
- How many times each have to be done? $\mathrm{O}(\log \mathrm{n})$ \qquad
- Ergo, O(n*log n$)$
- Disadvantage: lots of memory required

Radix Sort

- Radix is the "base" of a system of numbers \qquad
- Very simple, fast algorithm
- Sort by digit, one at a time
- Sort on the 1 s digit
- Sort on the 10 s digit; keep relative order of equal 10 s the same, i.e., go left-to-right on the 1s digit
- Sort the 100 s digit
- Etc.
- Problem: where to store intermediate results?
- Can sort 100 numbers in 2 passes! $\sim \mathrm{O}(2 \mathrm{n})$
- But... that's essentially $O(n \log n)$!
- There's no free lunch, but this works very well for specialized keys

Quicksort: Partition

- Relies on concept of partition
- A number s.t. two groups are formed: those smaller than the number, and those larger than the number
- "Pivot"
- Walk from both edges - If left is smaller than pivot, walk left
- If right is larger than pivot, walk right
- Otherwise, swap the two
- What if we cross?
- Last element is the pivot?
- Code? p. 338
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quicksort: Recursion

\qquad

- Given pivot, we:
- Partition the array in two;
- Quicksort the left "half";
- Quicksort the right "half".
\qquad
- And recurse!
- That's it (p. 338)
- Well, must be very, very careful
- Analysis?
- Usually $\mathrm{O}(\mathrm{n} \log \mathrm{n})$, and in-memory
- But there are some problems...

Next time

\qquad

- Finish Quicksort \qquad
- Start trees \qquad
\qquad
\qquad
\qquad
\qquad

