
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java
Lecture #14: Recursion and sortsLecture #14: Recursion and sorts

10/26/0410/26/04
Janak J ParekhJanak J Parekh

AdministriviaAdministrivia
Exams returnedExams returned

Mean: 37.93Mean: 37.93
Median: 41Median: 41
StDevStDev: 9.69: 9.69
Max: 50Max: 50
Min: 11Min: 11

WeWe’’ll go over the exam nowll go over the exam now
HW#3 due ThursdayHW#3 due Thursday

Questions?Questions?
MatthewMatthew’’s holding OH tomorrow morning because he was ill s holding OH tomorrow morning because he was ill
Monday morning; check Monday morning; check webboardwebboard for detailsfor details

HW#2 returned next TuesdayHW#2 returned next Tuesday

AgendaAgenda

Recursion, continuedRecursion, continued

2

FindMaxFindMax, revisited, revisited

Last time, we divided in half and searched Last time, we divided in half and searched
both halvesboth halves
DoubleDouble recursionrecursion
We can something similar with only one We can something similar with only one
recursive callrecursive call……

Towers of HanoiTowers of Hanoi

Three pegsThree pegs
Disks all on one pegDisks all on one peg
Want to move it to third pegWant to move it to third peg
Second peg is a Second peg is a ““work pegwork peg””
CanCan’’t move a disk until all smaller disks have t move a disk until all smaller disks have
been movedbeen moved
Basic intuitionBasic intuition

Move the top disks from start to intermediateMove the top disks from start to intermediate
Move the largest disk to destinationMove the largest disk to destination
Move top disks from intermediate to destinationMove top disks from intermediate to destination

Hanoi (II)Hanoi (II)

Three steps:Three steps:
First, move pile from First, move pile from ““fromfrom”” to to ““interinter””, using , using ““toto”” as a work as a work
pegpeg
Then, move disk from Then, move disk from ““fromfrom”” to to ““toto””
Then, move remainder of pile from Then, move remainder of pile from ““interinter”” to to ““toto””, using , using
““fromfrom”” as a work pegas a work peg

This works because we donThis works because we don’’t have to put things t have to put things
consecutively, just that larger disks must go on top of consecutively, just that larger disks must go on top of
smaller diskssmaller disks
Page 278 for codePage 278 for code
EmacsEmacs for visualization (really!)for visualization (really!)

3

MergesortMergesort

Classic recursive algorithmClassic recursive algorithm
Split arrays in half, sort each half, and then Split arrays in half, sort each half, and then
merge them togethermerge them together

““Divide and conquerDivide and conquer””

Sort is the Sort is the ““recursiverecursive”” callcall
LetLet’’s do it intuitively firsts do it intuitively first
Now, Now, psuedocodepsuedocode……

MergesortMergesort (II)(II)

Key aspect of code on page 287Key aspect of code on page 287
The header of the method contains enough information The header of the method contains enough information
to perform the recursive callto perform the recursive call

In this case, partition informationIn this case, partition information
Efficiency?Efficiency?

Partition: O(1)Partition: O(1)
Merge: Merge: O(nO(n))
How many times each have to be done? How many times each have to be done? O(logO(log n)n)
Ergo, Ergo, O(nO(n*log n)*log n)

Disadvantage: lots of memory requiredDisadvantage: lots of memory required

Radix SortRadix Sort

Radix is the Radix is the ““basebase”” of a system of numbersof a system of numbers
Very simple, fast algorithmVery simple, fast algorithm
Sort by Sort by digitdigit, one at a time, one at a time

Sort on the 1s digitSort on the 1s digit
Sort on the 10s digit; keep relative order of equal 10s the sameSort on the 10s digit; keep relative order of equal 10s the same, i.e., go , i.e., go
leftleft--toto--right on the 1s digitright on the 1s digit
Sort the 100s digitSort the 100s digit
Etc.Etc.

Problem: where to store intermediate results?Problem: where to store intermediate results?
Can sort 100 numbers in 2 passes! ~ O(2n)Can sort 100 numbers in 2 passes! ~ O(2n)
ButBut…… thatthat’’s essentially s essentially O(nO(n log n)! log n)!
ThereThere’’s no free lunch, but this works very well for specialized s no free lunch, but this works very well for specialized
keyskeys

4

QuicksortQuicksort: Partition: Partition

Relies on concept of Relies on concept of partitionpartition
A number A number s.ts.t. two groups are formed: those smaller than the . two groups are formed: those smaller than the
number, and those larger than the numbernumber, and those larger than the number
““PivotPivot””
Walk from both edgesWalk from both edges

If left is smaller than pivot, walk leftIf left is smaller than pivot, walk left
If right is larger than pivot, walk rightIf right is larger than pivot, walk right
Otherwise, swap the twoOtherwise, swap the two
What if we cross?What if we cross?

Last element is the pivot?Last element is the pivot?
Code? p. 338Code? p. 338

QuicksortQuicksort: Recursion: Recursion

Given pivot, we:Given pivot, we:
Partition the array in two;Partition the array in two;
QuicksortQuicksort the left the left ““halfhalf””;;
QuicksortQuicksort the right the right ““halfhalf””..

And And recurserecurse!!
ThatThat’’s it (p. 338)s it (p. 338)

Well, must be very, very carefulWell, must be very, very careful
Analysis?Analysis?
UsuallyUsually O(nO(n log n), and inlog n), and in--memorymemory

But there are some problemsBut there are some problems……

Next timeNext time

Finish Finish QuicksortQuicksort
Start treesStart trees

