CS W3134: Data
Structures in Java

Lecture #16: Quicksort
11/4/04
Janak ] Parekh

Administrivia
m HW#2 returned today at end of class
m Grades not up yet

m If you haven’t started HW#4...

m Brief discussion on alphabetic radix sort

Agenda

m Quicksort
m T'wo parts: partition and recursion

m Begin trees as time permits




Quicksort: Partition

m Relies on concept of partition
= A number s.t. two groups are formed: those smaller
than the number, and those larger than the number
m “Pivot”
m Walk from both edges
m [f left is smaller than pivot, walk left
m If right is larger than pivot, walk right
m Otherwise, swap the two
m What if we cross?

m Last element is the pivot?

m Code? p. 338

Quicksort: Recursion

m Given pivot, we:
m Partition the array in two;
m Quicksort the left “half”;
m Quicksort the right “half”.
And recurse!

That’s it (p. 338)

m Well, must be very, very careful

m Analysis?
m Usually O(n log n), and in-memory
m But there are some problems...

Quicksort: Picking the pivot

m Imagine a reverse-sorted array
m How long does Quicksort take then? O(n?)
m How can we fix this?

m Pick pivot more intelligently

m Two popular mechanisms:

m Random
m Median-of-three

m Also, inefficient for small arrays

m Use insertion sort as a degenerate case...




Trees

m Linked Lists are generally connected to oz other
link

m What if we connect to multiple other links?

m A Tree is one generalization of a Linked List

m Key definition: no “cycles” amongst children
m Graphs are more general

m Terminology

m Node, Edge, Path, Root, Parent, Child, Leaf,
Subtree, Level

Binary search trees

m What’s a binary tree?
m Two children, always
m Main concept:

m Max(left subtree) must be < current node, min(right subtree)
must be > current node

m Why?
m Combines advantages of a linked list and an ordered array
m Can insert fast and search fast
m Unlimited growth
m Relatively fast indexed access

Writing the Tree in Java

m “Node” class, with left and right children
m Data in node as well
m Very similar to Link

®m Main “Tree” class that links to 700z, with find,
insert, delete, etc. methods




Operations in a BST

m Search

m Simple: walk left or right depending if < or > than
current

m If we hit the bottom, we can’t find it
m O(log N) time
m Insert
m “Search”, and then put in the appropriate place

m Need a “current” and a “parent” pointer, similar to
linked-list

Traversing the tree

m Unlike search, want to walk in an abstract order,
sort of like arrays
m Three means of traversal; all recursive
m Inorder
m Visit left subtree
m Visit node
m Visit right subtree
u Preorder
m Postorder

m The latter two have use in expressions (pg. 386)

Next time

m Continue trees




