CS W3134: Data
Structures in Java

Lecture #17: Quicksort, Ttees
11/9/04
Janak ] Parekh

Administrivia
m HW#4 due Thursday; last-minute questions?
m Reminder: use the webboatd to your advantage
m Important office hour changes
m Akash will not hold office hours on Wednesday
m Rachel will hold hers from 10:45am-12:45pm

m Matthew will hold an extra hour from 6:30pm-
7:30pm

Agenda

m Finish Quicksort

m Trees




Quicksort: Picking the pivot

m Imagine a reverse-sorted array
m How long does Quicksort take now? O(n?)
m How can we fix this?

m Pick pivot more intelligently

m Two popular mechanisms:

m Random
m Median-of-three

m Also, inefficient for small arrays

m Use insertion sort as a degenerate case. ..

Trees

m Linked Lists are generally connected to one other
link

m What if we connect to multiple other links?

m A Tree is one generalization of a Linked List

m Key definition: no “cycles” amongst children
m Graphs are more general

m Terminology

m Node, Edge, Path, Root, Parent, Child, Leaf,
Subtree, Level

Binary search trees

m What's a binary tree?
m Two children, always
= Main concept:

m Max(left subtree) must be < current node, min(right
subtree) must be > current node

m Why?
m Combines advantages of a linked list and an ordered
array
m Can insert fast and search fast
m Unlimited growth
m Relatively fast indexed access




Writing the Tree in Java

m “Node” class, with left and right children
m Data in node as well
m Very similar to Link

m Main “Tree” class that links to rvef, with find,
insert, delete, etc. methods

Operations in a BST

m Search

m Simple: walk left or right depending if < or > than
current

m If we hit the bottom, we can’t find it
m O(log N) time
m Insert
m “Search”, and then put in the appropriate place

m Need a “current” and a “parent” pointer, similar to
linked-list

Traversing the tree

m Unlike search, want to walk in an abstract order,
sort of like arrays
m Three means of traversal; all recutsive

m Inorder
m Visit left subtree
m Visit node
m Visit right subtree
m Preorder
m Postorder

m The latter two have use in expressions (pg. 3806)




Other operations

m Min/max values
m Deleting a node
m More complicated!
m If no children, then nuke
m One child
® More than one child
m Make one left, and go all the way right, or;

m Make one right, and go all the way left

m Take that node and put it at the deleted node’s location
m Move the right child of the moved node up one notch

m Book uses latter convention

Tree complexity

m # of levels of a full tree is log N
m Search, insert, delete is O(log N)
m What if it isn’t full? Difficult analysis
m Insert(1)
m Insert(2)
..

m In fact, this is the one downside of simple BST trees:
easy to make unbalanced

m There are alternatives; you can read chapter 9
(optional)

Trees as arrays

m Array[0] is the root
m 2*index+1 is the left child
m 2*index+2 is the right child
m Parent of a node is, correspondingly, (index-1)/2
m Actually works surprisingly well, but...
m No unlimited growth
m Inefficient use of memory

m Deletes are slow




Expression trees

m Operators are root and intermediate nodes,
operands are leaf nodes

m To create
m Start with postfix expression and a stack

m Operand: form unit tree with value and push onto
the stack

m Operator: pop two things off of stack, combine “by”
operator, push result on stack
m When done, one element on stack

m What does inorder, preorder, postorder mean?

Next time

m Finish trees

m Start hashing




