CS W3134: Data
Structures in Java

Lecture #18: Trees
11/11/04
Janak ] Parekh

Administrivia
m HW#4 due today
m 15 minutes and counting...

m HW#5 going out today

m I’ll talk about it briefly after we finish trees

Agenda

m Finish trees

m Start hashing if we have time




Trees as arrays

m Array[0] is the root
m 2*index+1 is the left child
m 2¥index+2 is the right child
m Parent of a node is, cotrespondingly, (index-1)/2
m Actually works surprisingly well, but...
m No unlimited growth
m Inefficient use of memory

m Deletes are slow

Expression trees

m Operators are root and intermediate nodes,
operands are leaf nodes

m To create
m Start with postfix expression and a stack

m Operand: form unit tree with value and push onto
the stack

m Operator: pop two things off of stack, combine “by”
operator, push result on stack

m When done, one element on stack

m What does inorder, preorder, postorder mean?

Huffman trees

m Goal: form trees that let us figure out short
binary string prefixes for each letter
m We can then represent each letter with fewer # of
bits
m Ordinarily, each letter eats 8 or 16 bits (what’s a bit?)
m Procedure
m Create unit trees with each character and its
frequency
m Put all of these in a priority queue sorted by
frequency




Huffman trees (II)

m Procedure (cont’d)
m While there’s more than one element in the priority
queue. ..
m Pull off two elements

m Combine them with a “blank” parent node, whose
frequency is the sum of the two children

m Push back onto priority queue
m When priority queue has one element, pop it; that’s
the Huffman tree
m Navigating the tree
m Left == 0, Right == 1

Dictionary, set models

m Many applications are interested in keeping a 2-
tuple (coordinate pair) of data
m (key, value), i.e., index maps to data
m For example,
m (Dictionary, definition) — this is why it’s called a
“dictionary” structure

m (SSN, Employee Record)
m Also called Map model

Dictionary, set models (II)

m Alternative: se# data model

m Does it exist, or does it not?
m Trees support both

m Trees can /ndex dictionaries for fast lookup
m Book’s tree code uses this model

m Let’s take a quick look at it

m Next data structure (hash table) will support
even faster dictionary/set operations




Dealing with duplicates

m Especially common with dictionaries

m Example: given a last name, return all matching
people in the database

m To do this, make the value/data node a List
instead of just one data element

m Need to check for equality in insert/find/delete
in addition to inequalities

HW#5 programming

m Email search capability
= How?
m Read mbox mail format
m Generate an EmailHeader object

m Create a tree indexed (keyed) by each body word,
linking to EmailHeader object

m Let’s draw a picture

m Surprisingly straightforward to do

Quick review

m We've learned. ..
m Array Lists
m Linked Lists
m Stacks
m Queues
m Trees

m Various performance metrics?

m We can do better on a number of them!




Hash Table

m Believe it or not, we can build a data structure
that has O(1) performance for insert, search,
remove

m Several disadvantages

m Array-based, so sometimes difficult to expand
m Performance can suffer based on various parameters

m Can’t visit items in order

Keys?

m In general, we want to make lookup by keys very
fast
m In an array, the index number is the key

m Not useful as a “real” key, as this number may
change

m But numbers are very fast.
m OK, so how do we use a “word” as a key?

m We convert it to a number somehow

Here’s a simple one...

m Take the numeric value of all the letters
ma=1b=2..,2=26
m Add them together
m Put the word in that cell
m cats == 43
m How well would this work?
m What’s the minimum value?
® What’s the maximum value for a 10-letter word?

m How many words could be in between?




m Hashing

Next time




