
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java

Lecture #20: Hashing II, HeapsLecture #20: Hashing II, Heaps
11/18/0411/18/04

Janak J ParekhJanak J Parekh

AdministriviaAdministrivia
Grades should be available from websiteGrades should be available from website

AgendaAgenda

Finish hashingFinish hashing
LetLet’’s look at the books look at the book’’s code first to get an idea of s code first to get an idea of
how it workshow it works

HeapsHeaps

2

Maps and sets, Maps and sets, reduxredux

Since Since hashtableshashtables dondon’’t store the data in linear t store the data in linear
order, they canorder, they can’’t work as a listt work as a list
Sets Sets –– insert and verify insert and verify –– works fineworks fine
Maps Maps –– insert and lookup insert and lookup –– also work finealso work fine
Both trees and hash tables are great for this, but Both trees and hash tables are great for this, but
hash tables can potentially be fasterhash tables can potentially be faster

Hash functionsHash functions

What makes a good hash function?What makes a good hash function?
Fast to computeFast to compute

Random keys?Random keys?
If already random distribution, just mod itIf already random distribution, just mod it

NonNon--random keysrandom keys
Need to Need to ““compresscompress”” informationinformation
Use as much data as possibleUse as much data as possible
Table size should be primeTable size should be prime
BookBook’’s String example on page 565s String example on page 565

Hash functions and efficiencyHash functions and efficiency

Folding: Break into groups and add together Folding: Break into groups and add together ––
for example, SSNfor example, SSN

1000 cells => 31000 cells => 3--digit numbersdigit numbers

Efficiency?Efficiency?
All O(1) in theory, butAll O(1) in theory, but……
Load factor: % of table actually used Load factor: % of table actually used –– directly directly
affects performanceaffects performance

3

Hashing efficiency, contHashing efficiency, cont’’d.d.

In general, quadratic probing and double In general, quadratic probing and double
hashing fare better than linear probing as the hashing fare better than linear probing as the
load factor goes upload factor goes up
Separate chaining: linear function of load factor Separate chaining: linear function of load factor
(can be > 1, since multiple entries per cell)(can be > 1, since multiple entries per cell)

Generally want to avoid high loadsGenerally want to avoid high loads……

What canWhat can’’t you do?t you do?

Specific ordering Specific ordering –– itit’’s essentially randoms essentially random
GrowableGrowable –– cancan’’t use a linked list and maintain t use a linked list and maintain
performance metricsperformance metrics
Expect it to be Expect it to be automagicallyautomagically fast fast –– need good need good
hash functionshash functions

Although Java does have a number of hash Although Java does have a number of hash
functions built infunctions built in…… hashCodehashCode()()

HeapsHeaps

More efficient way of implementing a priority queue as More efficient way of implementing a priority queue as
opposed to arrayopposed to array
Modeled as binary tree, but usually implemented as an Modeled as binary tree, but usually implemented as an
arrayarray

NotNot a binary search tree, but instead a binary tree that fulfills a binary search tree, but instead a binary tree that fulfills
the the heap propertyheap property: a node is larger (or : a node is larger (or smallersmaller, depending) than , depending) than
all nodes below itall nodes below it
Given a node Given a node nn, left is 2n+1 and right is 2n+2; parent is (x, left is 2n+1 and right is 2n+2; parent is (x--
1)/21)/2
Complete binary tree: we fill each level from leftComplete binary tree: we fill each level from left--toto--rightright

Performance: Performance: O(logO(log n) insert and removen) insert and remove

4

Heap operationsHeap operations

InsertInsert
If root, simpleIf root, simple
If not, put it at the If not, put it at the ““endend””, i.e., next leaf, and then , i.e., next leaf, and then
bubble up bubble up until we hit the appropriate nodeuntil we hit the appropriate node

RemoveRemove
Always Always ““removeremove”” the rootthe root
Take the last element and put it into the root to Take the last element and put it into the root to
replace the removed elementreplace the removed element
Then, Then, bubble (trickle) downbubble (trickle) down

Bubbling doesnBubbling doesn’’t require individual swapst require individual swaps……

Other operationsOther operations

Key changeKey change
Given an index and a new valueGiven an index and a new value
Then bubble up or bubble down, depending on the Then bubble up or bubble down, depending on the
situationsituation
Finding the index can be a problem if itFinding the index can be a problem if it’’s not s not
suppliedsupplied

Expanding arrayExpanding array
Just like a list Just like a list –– dondon’’t need to rehasht need to rehash

TreeTree--based heapsbased heaps

Can represent heaps as real treesCan represent heaps as real trees
Parent pointers neededParent pointers needed
Advantage: Advantage: growablegrowable
Disadvantage: finding last node is a problemDisadvantage: finding last node is a problem

Convert index into Convert index into bitstringbitstring, and ignore the first digit, and ignore the first digit
Then, 0 is left, 1 is rightThen, 0 is left, 1 is right

DonDon’’t need to move nodes around, just values t need to move nodes around, just values
(why?)(why?)

5

HeapsortHeapsort

If we insert N elements into a heapIf we insert N elements into a heap……
Then remove N elementsThen remove N elements……
WeWe’’ve got a sorted heap!ve got a sorted heap!
Can we make it more efficient?Can we make it more efficient?

DonDon’’t bubble up for each new insert; instead, add everything t bubble up for each new insert; instead, add everything
and then start trickling (and then start trickling (heapifyheapify))
DonDon’’t need to trickle leaf nodes, just intermediate nodes, e.g. t need to trickle leaf nodes, just intermediate nodes, e.g.
start at n/2start at n/2--1 and work backwards from there1 and work backwards from there
Recursive: Recursive: heapifyheapify right heap, right heap, heapifyheapify left heap, and then left heap, and then
trickle ourselves down (stopping condition is a leaf)trickle ourselves down (stopping condition is a leaf)

HeapsortHeapsort (II)(II)

Other optimizationsOther optimizations
Work within the same arrayWork within the same array
First, First, heapifyheapify
Then, remove and put at bottom of array (since one Then, remove and put at bottom of array (since one
less element in heap)less element in heap)

Advantage over Advantage over quicksortquicksort: less sensitive to : less sensitive to
distribution of data distribution of data –– always always O(nO(n log n) timelog n) time

Next timeNext time

Finish heapsFinish heaps
Start graphsStart graphs

