CS W3134: Data
Structures in Java

Lecture #20: Hashing 11, Heaps
11/18/04
Janak ] Parekh

Administrivia

m Grades should be available from website

Agenda

m Finish hashing

m Let’s look at the book’s code first to get an idea of
how it works

m Heaps




Maps and sets, redux

m Since hashtables don’t store the data in linear
order, they can’t work as a list

m Sets — insert and verify — works fine
m Maps — insert and lookup — also work fine

m Both trees and hash tables are great for this, but
hash tables can potentially be faster

Hash functions

m What makes a good hash function?

m [ast to compute
m Random keys?

m If already random distribution, just mod it
= Non-random keys

m Need to “compress” information

m Use as much data as possible

m Table size should be prime

m Book’s String example on page 565

Hash functions and efficiency

m Folding: Break into groups and add together —
for example, SSN
m 1000 cells => 3-digit numbers

m BEfficiency?
m All O(1) in theory, but...

m Load factor: % of table actually used — directly
affects performance




Hashing efficiency, cont’d.

m In general, quadratic probing and double
hashing fare better than linear probing as the
load factor goes up

m Separate chaining: linear function of load factor
(can be > 1, since multiple entries per cell)

m Generally want to avoid high loads. ..

What can’t you do?

m Specific ordering — it’s essentially random

m Growable — can’t use a linked list and maintain
performance metrics

m Expect it to be automagically fast — need good
hash functions

m Although Java does have a number of hash
functions built in... hashCode()

Heaps

m More efficient way of implementing a priority queue as
opposed to array
m Modeled as binary tree, but usually implemented as an
array
m Noza binary search tree, but instead a binary tree that fulfills

the heap property: a node is larger (ot smaller, depending) than
all nodes below it

m Given a node 7, left is 2n+1 and right is 2n+2; parent is (x-
1)/2
m Complete binary tree: we fill each level from left-to-right

m Performance: O(log n) insert and remove




Heap operations

m Insert
m If root, simple

m If not, put it at the “end”, i.e., next leaf, and then
bubble up until we hit the appropriate node

m Remove
m Always “remove” the root

m Take the last element and put it into the root to
replace the removed element

u Then, bubble (trickle) down
m Bubbling doesn’t require individual swaps...

Other operations

m Key change
m Given an index and a new value

m Then bubble up or bubble down, depending on the
situation

m Finding the index can be a problem if it’s not
supplied
m Expanding array

m Just like a list — don’t need to rehash

Tree-based heaps

m Can represent heaps as real trees

m Parent pointers needed

m Advantage: growable

m Disadvantage: finding last node is a problem

m Convert index into bitstring, and ignore the first digit
m Then, 0 is left, 1 is right

m Don’t need to move nodes around, just values
(why?)




Heapsort

m If we insert N elements into a heap...
m Then remove N elements...
m We've got a sorted heap!

m Can we make it more efficient?
m Don’t bubble up for each new insert; instead, add everything
and then start trickling (beapify)
m Don’t need to trickle leaf nodes, just intermediate nodes, e.g.
start at n/2-1 and work backwards from there
m Recursive: heapify right heap, heapify left heap, and then
trickle ourselves down (stopping condition is a leaf)

Heapsort (II)

m Other optimizations
m Work within the same array
m First, heapify
m Then, remove and put at bottom of array (since one

less element in heap)

m Advantage over quicksort: less sensitive to
distribution of data — always O(n log n) time

Next time

m Finish heaps
m Start graphs




