## CS W3134: Data Structures in Java

Lecture \#20: Hashing II, Heaps
11/18/04
Janak J Parekh

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Agenda

- Finish hashing
- Let's look at the book's code first to get an idea of how it works $\qquad$
- Heaps


## Maps and sets, redux

- Since hashtables don't store the data in linear $\qquad$ order, they can't work as a list
- Sets - insert and verify - works fine
- Maps - insert and lookup - also work fine
- Both trees and hash tables are great for this, but hash tables can potentially be faster


## Hash functions

$\qquad$

- What makes a good hash function? $\qquad$
- Fast to compute
- Random keys?
- If already random distribution, just mod it
- Non-random keys

■ Need to "compress" information

- Use as much data as possible
$\qquad$
- Table size should be prime
- Book's String example on page 565


## Hash functions and efficiency

$\qquad$

- Folding: Break into groups and add together - $\qquad$ for example, SSN
- 1000 cells $=>3$-digit numbers $\qquad$
- Efficiency?
- All $\mathrm{O}(1)$ in theory, but...
- Load factor: \% of table actually used - directly affects performance
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Hashing efficiency, cont'd.

- In general, quadratic probing and double $\qquad$ hashing fare better than linear probing as the load factor goes up
- Separate chaining: linear function of load factor (can be $>1$, since multiple entries per cell) $\qquad$
- Generally want to avoid high loads...


## What can't you do?

$\qquad$

Specific ordering - it's essentially random $\qquad$

- Growable - can't use a linked list and maintain performance metrics
$\qquad$
- Expect it to be automagically fast - need good $\qquad$ hash functions
- Although Java does have a number of hash functions built in... hashCode( )


## Heaps

- More efficient way of implementing a priority queue as opposed to array
- Modeled as binary tree, but usually implemented as an array
- Not a binary search tree, but instead a binary tree that fulfills the beap property: a node is larger (or smaller, depending) than all nodes below it
- Given a node $n$, left is $2 \mathrm{n}+1$ and right is $2 \mathrm{n}+2$; parent is ( $\mathrm{x}-$ 1)/2
- Complete binary tree: we fill each level from left-to-right
- Performance: $O(\log n)$ insert and remove
$\qquad$


## Heap operations

- Insert $\qquad$
- If root, simple
- If not, put it at the "end", i.e., next leaf, and then $\qquad$ bubble up until we hit the appropriate node
- Remove
- Always "remove" the root
- Take the last element and put it into the root to replace the removed element
- Then, bubble (trickle) down
- Bubbling doesn't require individual swaps...


## Other operations

$\qquad$

- Key change
- Given an index and a new value
- Then bubble up or bubble down, depending on the situation
- Finding the index can be a problem if it's not supplied
- Expanding array
- Just like a list - don't need to rehash


## Tree-based heaps

- Can represent heaps as real trees $\qquad$
- Parent pointers needed
- Advantage: growable
- Disadvantage: finding last node is a problem $\qquad$
- Convert index into bitstring, and ignore the first digit
- Then, 0 is left, 1 is right
- Don't need to move nodes around, just values (why?)
$\qquad$
$\qquad$
$\qquad$


## Heapsort

- If we insert N elements into a heap... $\qquad$
- Then remove N elements...
- We've got a sorted heap!
- Can we make it more efficient?
- Don't bubble up for each new insert; instead, add everything and then start trickling (heapifi)
- Don't need to trickle leaf nodes, just intermediate nodes, e.g. start at $\mathrm{n} / 2-1$ and work backwards from there
- Recursive: heapify right heap, heapify left heap, and then trickle ourselves down (stopping condition is a leaf)


## Heapsort (II)

$\qquad$

- Other optimizations $\qquad$
- Work within the same array
- First, heapify
- Then, remove and put at bottom of array (since one less element in heap)
- Advantage over quicksort: less sensitive to distribution of data - always $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time $\qquad$
$\qquad$
$\qquad$


