CS W3134: Data
Structures in Java

Lecture #21: Graphs 1
11/23/04
Janak] Parekh

Administrivia

m Alternate exam time?

Agenda

m Finish heaps
m Let’s look at the book’s code briefly
m Graphs

m Last data structure

What are graphs?

m Linked list :: trees = trees = graphs

m In other words, we no longer limit the number
of children each node may have, and we don’t
forbid loops (sometimes!)

m Examples?
m Bridges of Konigsburg (p. 619)

m Solution: vertices of odd degree make it impossible

m Foundation of graph theory (1736)

Definitions

= Adjacency
m Path
m Multiple definitions @
m Connected graph
m Directed graph
m Weighted graph

m These two come latet!

Representing a graph

m The OO way
m The canonical (and book) way

m Adjacency matrix

m [lied — we wil/ use 2D matrices
m Adjacency list
m Advantages and disadvantages?
m Book => separate vertex class

m For some reason, the book does it the latter

Searching graphs?

m Goal: find connectivity
m Depth-first search
m Push node on a stack
m While stack not empty:
m Peck and get an unvisited adjacent node
m Visit it (pushing it on the stack)
m If no adjacent nodes, pop and repeat
m Game searching and branching factor
m Breadth-first search

m Same process, but queue instead

Complexity of BFS and DFS?

m Optimally, O(V+E) — we visit every vertex a
constant number of times and potentially travel
every edge a constant number of times

m But this is only for an adjacency list; in an
adjacency matrix version, it’s O(V?) — we scan
every row and every column in the adjacency
matrix once

m Admittedly inefficient, but we knew that

Minimum spanning trees

= A (minimum) spanning tree is a subgraph with
no cycles
m Different in weighted graphs

m Remove graph redundancy

m Useful for many applications
m Ex: minimize wiring

m In a minimum spanning tree, #E = #V — 1

Computing a MST

m Simple algorithm (p. 644): DFS and record the
edges traveled
m Don’t worry about backtracking
m Can also use BES...

Next time

m Directed graphs

