## CS W3134: Data Structures in Java

Lecture \#22: Graphs II
11/30/04
Janak J Parekh

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Directed graphs

- As earlier mentioned, useful for situations where we need to model "one-way" information
- Streets
- Trees are a subclass of directed graphs
- Book: course prerequisites


## Topological sort

- Come up with a legitimate ordering of processing the nodes
- Often useful for partial ordering problems, such as aforementioned course prerequisites
- Result: a order where no vertex y comes before a vertex x where $\mathrm{x} \rightarrow \mathrm{y}$
- There can be multiple correct answers!


## Topological sort (II)

- Find a vertex that has no successors, i.e., arrows $\qquad$ that point to $i t$
- Look at columns of the adjacency matrix $\qquad$
- Delete that vertex and print it out
- Repeat
- What kinds of graphs doesn't this work for?
- Cycles - what happens?
- "Catch-22" in real life
- In other words, works on generalized trees (multiple roots, etc.) - $D A G$


## Topological sort (III)

- Complexity again $\mathrm{O}(\mathrm{V}+\mathrm{E}) / \mathrm{O}\left(\mathrm{V}^{2}\right)$ $\qquad$
- How to find node with no successors?
- How do you delete a node?


## Connectivity in directed graphs

$\qquad$

- Can't just do an arbitrary BFS or DFS $\qquad$
- Connectivity depends on starting node, i.e., "what can you reach from node X?" $\qquad$
- Do DFS from every vertex!
- Alternative: develop connectivity matrix from $\qquad$ adjacency matrix
- Transitive closure of adjacency matrix
- If $\mathrm{L} \rightarrow \mathrm{M}$ and $\mathrm{M} \rightarrow \mathrm{N}, \mathrm{L} \rightarrow \mathrm{N}$


## Warshall's Algorithm

$\qquad$

■ For all rows $y$,
■ For all columns $x$ in row $y$,
-If any value $(\mathrm{x}, \mathrm{y})$ is 1 , then for all rows $\approx$ in column $y$, $\qquad$ - If $(y, z)$ is 1 , then $(x, z)$ should be 1

■ i.e., "transitive closure"
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Warshall's Algorithm (II)

- That's it!
- Remember array references are "backwards" $[y][x]$
- Yes, this actually works in one pass - all the holes are filled
- What's the complexity of this algorithm?


## Weighted graphs

- How to represent? Not just 0s and 1 s in the
$\qquad$
$\qquad$ adjacency matrix; weight instead
- Example
- Roadmap!
- Can be directed or undirected


## Next time

- Continue weighted graphs $\qquad$
■ We're almost there. © $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

