CS W3134: Data Structures in Java

Lecture \#23: Graphs III
12/2/04
Janak J Parekh

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Agenda

- Graphs cont'd.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Topological sort

- Come up with a legitimate ordering of \qquad processing the nodes
- Often useful for partial ordering problems, such as aforementioned course prerequisites
- Result: a order where no vertex y comes before a vertex x where $\mathrm{x} \rightarrow \mathrm{y}$
- There can be multiple correct answers!

Topological sort (II)

- Find a vertex that has no successors, i.e., arrows \qquad that point to it
- Look at columns of the adjacency matrix \qquad
- Delete that vertex and print it out
- Repeat
- What kinds of graphs doesn't this work for?
- Cycles - what happens?
\qquad
- "Catch-22" in real life
- In other words, works on generalized trees (multiple \qquad roots, etc.) - DAG

Topological sort (III)

- Complexity again $\mathrm{O}(\mathrm{V}+\mathrm{E}) / \mathrm{O}\left(\mathrm{V}^{2}\right)$
\qquad
- How to find node with no successors?
- How do you delete a node?
\qquad
\qquad
\qquad
\qquad
\qquad

Connectivity in directed graphs

\qquad

- Can't just do an arbitrary BFS or DFS
- Connectivity depends on starting node, i.e., "what can you reach from node X?"
- Do DFS from every vertex!
- Alternative: develop connectivity matrix from adjacency matrix
- Transitive closure of adjacency matrix
- If $\mathrm{L} \rightarrow \mathrm{M}$ and $\mathrm{M} \rightarrow \mathrm{N}, \mathrm{L} \rightarrow \mathrm{N}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Warshall's Algorithm

\qquad

- For all rows y,
\qquad
- For all columns x in row y, \qquad
-If any value (x, y) is 1 , then for all rows $₹$ in column y, \qquad
- If (y, z) is 1 , then (x, z) should be 1

■i.e., "transitive closure"

Warshall's Algorithm (II)

- That's it! \qquad
- Remember array references are "backwards" $[y][x]$
- Yes, this actually works in one pass - all the \qquad holes are filled
- What's the complexity of this algorithm?
\qquad
\qquad
\qquad
\qquad

Weighted graphs

- How to represent? Not just 0s and 1 s in the \qquad adjacency matrix; weight instead
- Example
- Roadmap!
- Can be directed or undirected
\qquad
\qquad
\qquad
\qquad

MSTs with weights

\qquad

- Many possible STs; how do we figure out the \qquad minimum?
- Simple idea: grow the tree from one node
- Pick smallest edge from vertices that we know to nodes not in tree
- Add edge and corresponding destination vertex to tree
- Add edges from new vertex to unknown nodes into priority
\qquad queue
- Picking smallest edges: priority queue
- Applications
- Minimizing wiring given multiple choices
- In general, undirected graphs

However...

- If an edge to a destination vertex already exists \qquad in PQ, and we find a shorter path, need to replace the existing entry with shorter path \qquad
- Simplest way: scan through PQ, see if any such edges exist, remove them, and insert the new one \qquad
- Slicker ways of doing it include backpointers from vertices \qquad
- By the way, this is called "Prim"

Shortest-path problem

- Given a graph with weighted edges, and a starting \qquad vertex, find shortest path to a target
- Dijkstra's algorithm most canonical way of doing it \qquad
- So turns out you get shortest paths to all remote vertices from that starting vertex
- Can handle both directed and undirected graphs
- Produces a directed tree
- Cannot handle negative weights

Dijkstra's Algorithm: Basic idea

\qquad

- Initialize an array of distances from starting node to each vertex - if there doesn't exist a direct edge to a vertex, consider it at "infinite" distance
- Add the closest node not already in the shortest-path tree
- Update weights based on edges from newest node plus \qquad distance from starting to new - and keep track of the
\qquad
- Repeat
- To find a path to a node, go backwards through the parent nodes

Next time

\qquad
\qquad
Continue weighted graphs
■ We're almost there. © \qquad
\qquad
\qquad
\qquad
\qquad

