CS W3134: Data
Structures in Java

Lecture #24: Graphs IV
12/7/04
Janak ] Parekh

Administrivia
m HW#6 due on Monday
m Any questions?
m Fill out recommendations

m Final exam review time?

m Maybe next class

Agenda

m Graphs cont’d.




Prim revisited

Book’s code only inserts one edge to an unvisited node
given existing sources

m Then occasionally has to “update” it with a cheaper edge
You can actually do it either way

m If you insert all edges, when you’re ready to remove, just keep
on removing until you find one to an unvisited vertex

By the way, I don’t like how the book describes this
algorithm that much

Shortest-path problem

Given a graph with weighted edges, and a starting
vertex, find shortest path to a target

Dijkstra’s algorithm most canonical way of doing it
So turns out you get shortest paths to all remote
vertices from that starting vertex
Can handle both directed and undirected graphs

m Produces a directed tree

Cannot handle negative weights

Dijkstra’s Algorithm: Basic idea

Initialize an array of distances from starting node to
each vertex — if there doesn’t exist a direct edge to a
vertex, consider it at “infinite” distance

Add the closest node not already in the shortest-path
tree

Update weights based on edges from newest node plus
distance from starting to new — and keep track of the
node we used to get to that target

Repeat

To find a path to a node, go backwards through the
parent nodes




Floyd’s Algorithm

m For all-pairs shortest path, in V* time

m Idea based on Warshall’s algorithm, but add
weights together
m For all rows y,
m For all columns x in row y,
m If any value (x,y) is 1,
m For all rows zin column y,

m If (y,z) + (xy) is less than (x,z), then update (x,z)
m Optionally, store path (x,z) through y

m Remember, array references are “backwards”

Putting it all together...

m What have we studied?
m Low-level structutes
m Arrays, references
m High-level structures
m Lists, hash tables, trees, graphs

Algortithms
m Recursion

m Insertion sort, Quicksort, Mergesort, Heapsort

Multiple ways to slice-and-dice
m Book: “general-purpose” vs. “specialized”

Nifty tables on pgs 722, 724, 725

Intractable problems

m There are graph (and other!) problems that can’t be
done in any reasonable time (linear, logarithmic,
polynomial) — they’re often exponential time, e.g., X —
and grow way too quickly

m Considered NP-complete (Non-deterministic
Polynomial)

m Insta-Ph.D.: prove P==NP (or vice-versa)

m Example: traveling salesman problem -- visit all cities
exactly once, and return to starting point, taking
minimum-cost path

m Hamiltonian cycle problem
= N! time!




Java data structures

m Collections (container) API

m Collections and maps
m Collections: Sets, SortedSets and Lists
® Maps: Map and SortedMap

Implementations:

m Sets: HashSet, TreeSet

m Lists: ArrayList, LinkedList

® Maps: HashMap, TreeMap
Lots of utility methods

m Sort, shuffle, search, findMax/findMin
Works with generic “Object”s

m In the real wotld, get comfortable with these — they work well!

The Exam

Similar to midterm, but about 50-75% longer

What you don’t need to know

m Shellsort

m Red-black trees

m 2-3-4 trees/external storage

m Floyd’s algorithm (too hard to do on the exam)
m What you do need to know
m Pretty much everything else

m Remembert, stuff in class — use my slides

Chapter 15 is a useful overview

Next time

m If you see this slide on Tuesday, it means
we’re done.

m Review session on Thursday?




