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Semi-Supervised Learning 
• Semi-Supervised Learning 

• Exploiting Unlabeled Data 

• Transduction 

• Partially Labeled Data and EM 
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SVM Extensions 
Classification    Regression 

Feature/Kernel Selection  Meta/Multi-Task Learning 

Transduction/Semi-supervised Multi-Class/Structured 
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Semi-supervised Learning 

•  Why 

•  What 

Learning setting Learning from … 

Supervised Learning labeled data 

Semi-supervised Learning both labeled and unlabeled data 

Unsupervised Learning  Unlabeled data 

•  In many learning situations, labeling data is the most 
  difficult and labor-intensive part so labels are limited. 
•  But, getting unlabeled data is cheap. 
•  Unlabeled data can help sometimes. 
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Semi-Supervised Learning 

• Several approaches: 

• Transduction: discriminative, 
  find large margin region. 

• Hidden Labels: use generative 
  modeling to cluster data. 
  clusters have same labels 

• Graphs & Diffusion: spreading labels 
  across a graph or manifold via 
  spectral, kernel, or Markov walks. 
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Transduction 
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• Only min test error on test examples! Not all future test… 
• As with regular SVM, minimize error on training 
 but reduce generalization error term. 
• Theorem: generalization error again 
  depends on VC < D2/M2 
• Again minimize by max margin (why?) 
• Brute force: 
  find largest 
  margin over 
  2T settings of 
  T test points 
• C => labeled 
• C* => unlabeled 
• Impractical! 
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Transduction with SVMs 
• First train regular SVM on (x,y) labeled data 
• Use SVM to classify unlabeled (x*,y*) points 
• Use current labeling to retrain with low C*

+ & C*
- 

• Interleave regular SVM solution with unlabeled label swaps 
• Guaranteed 
  swap if 
• Slowly increase effect of unlabeled by C* doubling ‘til max 
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Transduction with SVMs 
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Transduction for Text 
• In X vector each dim is word 
   in language 
• Stem: combine similar words 
  physics, physician, => physic 
• Remove stop words: and, the, … 
• Represent words by TF-IDF 
  text freq times inv-doc freq 

• Evaluate by P/R breakeven 
  point (equal on ROC curve) 
• Train multi-class SVM 
• Map multi-class to a one 
  versus all binary decision 
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Generative Models and EM 
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Figure credit: tutorial on semi-supervised learning Xiaojin Zhu 
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• Instead of maxmizing likelihood of labeled data 

• Or maximizing likelihood of unlabeled data (needs EM) 

• Maximize a combination of both weighted by λ	



• Also, use a prior P(θ) to help (avoids zero-counts in 
  multinomial models)… 

Partially Labeled Data & EM 
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Partially Labeled Data & EM 
• Estimate λ by 
  cross-validation 
• Use multinomial model 
• Like Naïve Bayes 
• Generally improve 
 accuracy on text problems 


