
Snob : a C++ toolkit for fast Fourier transforms on the symmetric

group

Development version (unstable)

Risi Kondor
Department of Computer Science

Columbia University in the City of New York

November 28, 2006

Contents

1 Introduction 2

2 Mathematical Background 3

2.1 The irreducible representations of the symmetric group . 4
2.2 Fast Fourier Transforms . 5
2.3 Two forms of sparsity . 7
2.4 Two-sided cosets and twisted transforms . 8

3 Using Snob 10

3.1 Operations on group elements . 10
3.2 The group Sn and its irreducibles . 12
3.3 Computing Fourier transforms . 17
3.4 Partial and sparse Fourier transforms . 20

4 Reference 23

The header file Sn.h . 23
The Sn classes . 24

Sn::Sn . 24
Sn::Element . 25
Sn::Irreducible . 26
Sn::Function . 28
Sn::FourierTransform . 29
Sn::Ftree . 30

Helper classes . 32
Cycles . 32
Partition . 33
StandardTableau . 34
Matrix<FIELD> . 35

1

Chapter 1

Introduction

Snob is an object oriented C++ library for computing fast Fourier transforms (FFTs) and inverse fast Fourier
transforms (iFFTs) on the symmetric group Sn. Snob supports partial Fourier transforms and Fourier
transforms on sparse functions, making computations possible in the n = 10 ∼ 40 range, where enumerating
all n! group elements is no longer feasible. Snob can also perform operations on individual group elements,
compute characters, and compute representation matrices.

Snob is optimized for speed and designed to provide a clean, easy to use application programming inter-
face. Where this does not hinder performance, Snob uses the STL Standard Template Library. Snob does
not use any general purpose numerical analysis or matrix libraries.

The current release of Snob is a development version, subject to corrections and design changes.
Snob comes with absolutely no guarantees regarding the accuracy of the results of its computations,
the soundness of the code, or the documentation. Please reports errors and send suggestions to
risi@cs.columbia.edu. Feedback is greatly appreciated.

Snob is distributed in the form of a collection of source files, and has been tested on a Linux system
with the GNU C++ compiler.

Snob is open source software, released into the public domain under the GNU General Public License.
Commercial use of Snob is prohibited. For details see http://www.gnu.org/copyleft/gpl.html or the file
LICENSE, which is distributed along with the source code. The copyright to the present document is reserved
by the author.

Please cite Snob in all scientific publications reporting computations performed with Snob, presenting
extensions of Snob, or describing Snob itself. The appropriate bibtex entry is supplied with the package in
the file SnOB.bib.

Risi Kondor, New York, August, 2006

2

Chapter 2

Mathematical Background

Given n distinct objects x1, x2, . . . , xn, a permutation of these objects is a bijective map σ : {1, 2, . . . , n} →
{1, 2, . . . , n}, where σ(i) expresses which position xi appears in in the permuted sequence. Thus, the per-
mutation of x1, x2, . . . , xn induced by σ is

(
xσ−1(1), xσ−1(2), . . . , xσ−1(n)

)
.

The product of two permutations σ1 and σ2 is defined by composition, i.e, (σ2σ1)(i) = σ2(σ1(i)) for all
i = 1, 2, . . . , n. The inverse of σ is the permutation σ−1 corresponding to the inverse mapping. Under these
operations the n! different permutations of n objects form a group called the symmetric group of order

n. We denote this group Sn. The identity element e of Sn is the identity permutation, e(i) = i.
We use the letter ρ to denote complex valued matrix representations of Sn, and the dimensionality of ρ

we denote by dρ. Thus, ρ is a map Sn → Cdρ×dρ . A complete set of inequivalent irreducible representations
of Sn we denote by Rn.

The Fourier transform (FT) of a function f : Sn→C is defined as the set of matrices

f̂(ρ) =
∑

σ∈Sn

f(σ) ρ(σ) ρ ∈ Rn. (2.1)

The inverse transform is

f(σ) =
1

n!

∑

ρ∈Rn

dρ tr
[
f̂(ρ) ρ(σ)

]
σ ∈ Sn. (2.2)

The Fourier transform F : f 7→ f̂ is a linear transformation from Cn! to
⊕

ρ∈R
Cdρ×dρ , sharing several

important properties with the classical Fourier transforms. In particular, F is a unitary map with respect to
the inner products

〈f, g〉 =
1

n!

∑

σ∈Sn

f(σ) g(σ) and 〈 f̂ , ĝ 〉 =
1

(n!)2

∑

ρ∈Rn

dρ 〈 f̂(ρ) , ĝ(ρ)〉S, (2.3)

where 〈·, ·〉S is the usual inner product of matrices tr
(
AB

)
. Another important property of F is that defining

the convolution of f, g : Sn → C as (g ∗ f)(σ) =
∑

τ∈Sn
g(τσ−1) f(σ),

(ĝ ∗ f)(ρ) = ĝ(ρ) · f̂(ρ) ρ ∈ Rn, (2.4)

where · denotes matrix multiplication. In fact, unitarity and the convolution theorem together uniquely
define F, up to conjugacy of Fourier components. Much of the practical interest in Fourier transformation
stems from these properties.

3

Snob manual Mathematical Background

2.1 The irreducible representations of the symmetric group

A partition of n is a sequence λ = (λ1, λ2, . . . , λk) of weakly decreasing positive integers such that
∑k

i=1 λi =
n. We use the notation λ ` n to denote that λ is a partition of n. Graphically partitions are represented by
Young diagrams, which consist of laying down λ1, λ2, . . . , λk boxes in consecutive rows. For example,

corresponds to λ = (4, 3, 1). There is a natural partial order induced on partitions by inclusion, whereby
λ′ � λ if and only if λ′

i ≤ λi for i = 1, 2, . . . , k (if k′ < k, we take λ′
i = 0 for k′ < i ≤ k). The partitions

λ ` n index the irreducibles of Sn. The representation corresponding to λ we denote ρλ; its dimensionality
dλ; the corresponding character χλ(σ) = tr [ρλ(σ)]; and the corresponding Fourier component f̂(λ).

Bijectively filling in the boxes of a Young diagram with the numbers 1, 2, . . . , n gives a Young tableau.
A tableau such as

1 2 4
3 5

which satisfies the property that in each row the numbers increase from left to right and in each column
they increase from top to bottom is called a standard tableau. A key result in the representation theory
of the symmetric group asserts that the Young tableaux of shape λ are in bijection with the dimensions of
ρλ. We use standard tableaux to index the rows and columns of the representation matrices.

There are several alternatives for constructing the actual matrix entries. Because of its computational
advantages, in Snob we exclusively use Young’s orthogonal representation (YOR). To present YOR
we need a few more concepts. A transposition (i, j) is a permutation that exhanges i and j and leaves
everything else invariant, i.e., (i, j)(i) = j, (i, j)(j) = i and (i, j)(k) = k for all k 6∈ {i, j}. Adjacent

transpositions are transpositions of the form τi = (i, i+1). It is not difficult to see that any σ ∈ Sn can be
expressed as a product of adjacent transpositions, in fact, one such factorization is given in the next section.
We define YOR by explicitly constructing the matrix entries of ρλ(τk). For general σ, the representation
matrix ρλ(σ) is then computed by factoring σ into a product of adjacent transpositions and multiplying the
corresponding ρλ(τk).

We define YOR through the action of permutations on tableaux: if t is a standard tableau, then τk(t) is
the tableau that we get by interchanging k and k+1 in t. However, τk(t) might or might not be a standard
tableau. Accordingly, there are two distinct cases to consider. If τk(t) is not a standard tableau, then the
column of ρλ(τk) labeled by t in YOR is all zero, except for the diagonal element

[ρλ(τk)]t,t = 1/dt(k, k+1). (2.5)

If τk(t) is a standard tableau, then in addition to this diagonal element, we also have a non-zero off-diagonal
element, namely

[ρλ(τk)]τk(t),t =
√

1− 1/dt(k, k+1)2. (2.6)

All other matrix entried of ρλ(τk) are zero. In the above dt(k, k+1) is a special signed distance defined on
Young tableaux. If i is a numeral in t, then the content of i, denoted c(i), is the column index minus the
row index of the cell where i is to be found. The distance dt(i, j) is then defined as c(j) − c(i). Part of
the computational appeal of YOR is that the ρλ(τk) matrices are very sparse, and hence can be mutliplied
together efficiently.

Another special property of YOR is that the representations matrices are real. This allows us to restrict
the entire implementation of Snob to the real domain. In the following pages we consider the more general
complex case, while in the code the user is free to choose the base field by setting a master variable at
compile time.

4

Snob manual Mathematical Background

2.2 Fast Fourier Transforms

The Fourier transform on Sn is a linear transformation between n!-dimensional spaces. Thus, a naive
implementation of Fourier transformation would run in O(| Sn |

2
) = O((n!)2) time. The recent develop-

ment of fast Fourier transforms (FFTs) for non-commutative groups, starting with Clausen’s FFT for Sn

[Clausen, 1989] opened a new chapter in computational group theory by reducing this computational burden
to O(| Sn | log

k | Sn |) where k is a small integer. While Clausen’s result has since been improved [Maslen,
1998][Maslen and Rockmore, 2000], Snob is based on Clausen’s original algorithm, which is still the most
accessible. For some excellent surveys see [Maslen and Rockmore, 1997b] and [Maslen and Rockmore, 1997a].

Clausen’s algorithm uses a specific type of decomposition of permutations into a product of contiguous

cycles. The contiguous cycle Jp, qK ∈ Sn is the permutation

Jp, qK(i) =





i + 1 for p ≤ i ≤ q − 1

p for i = q

i otherwise

1 ≤ p ≤ q ≤ n.

In other words, Jp, qK cyclically permutes p, p+1, . . . , q and leaves everything else invariant. Jp, qK can easily
be factored into a product of q−p−1 adjacent transpositions:

Jp, qK = (p, p+1) . . . (q−2, q−1)(q−1, q).

Now observe that for any σ ∈ Sn, the product Jσ(n), nK−1 σ fixes n, i.e.,

σn−1 = Jσ(n), nK−1 σ ∈ Sn−1, (2.7)

where (as in the following) for k < n, Sk is the subgroup of Sn permuting 1, 2, . . . , k, and leaving k+1, k+
2, . . . , n fixed. Applying the same manoeuver to σn−1,

σn−2 = J σn−1(n−1) , n−1 K−1 Jσ(n), nK−1 σ ∈ Sn−2.

Iterating down to S1, we get Jp2, 2K
−1Jp3, 3K

−1 . . . Jpn, nK−1σ = e for some p2, p3, . . . , pn. Rather than the
actual values of p2, p3, . . . , pn, what is important is that this procedure furnishes a unique factorization of σ,

σ = Jpn, nK Jpn−1, n−1K . . . Jp2, 2K,

adapted to the chain of subgroups S1 < S2 < . . . < Sn in the sense that Jpk, kK ∈ Sk. We present the
recursive step at the heart of Clausen’s algorithm in the form of a theorem.

Theorem 1 Let f be a function Sn → C and let

f̂(λ) =
∑

σ∈Sn

ρλ(σ) f(σ) λ ` n (2.8)

be its Fourier transform with respect to Young’s orthogonal representation. Now for i = 1, 2, . . . , n define

fi : Sn−1 → C as fi(σ
′) = f(Ji, nKσ′) for σ′ ∈ Sn−1, and let

f̂i(λ
−) =

∑

σ′∈Sn−1

ρλ−(σ′) fi(σ
′) λ− ` n−1 (2.9)

be the corresponding Fourier transforms, again with respect to Young’s orthogonal representation. Then up

to reordering of rows and columns,

f̂(λ) =

n∑

i=1

ρλ(Ji, nK)
⊕

λ−∈R(λ)

f̂i(λ
−), (2.10)

where R(λ) = { λ− ` n−1 | λ−� λ }.

5

Snob manual Mathematical Background

J2, 3KJ1, 2K S1
J1, 3K S2

qq ccccc
mm [[[[[

J2, 3KJ2, 2K S1

J2, 3KJ1, 2K S1
S3

oo
xx

pppppppppppp

ff

NNNNNNNNNNNN J2, 3K S2
qq ccccc
mm [[[[[

J2, 3KJ2, 2K S1

J3, 3KJ1, 2K S1
J3, 3K S2

qq ccccc
mm [[[[[

J3, 3KJ2, 2K S1

function FFT(k, f) {

for i← 1 to k { f̂i ← FFT(k − 1, fi) ;}

for each λ ` k do {

f̂(λ)← 0dλ×dλ
;

for i← 1 to k {

f̂(λ)← f̂(λ) + ρλ(Ji, kK)
⊕

λ−∈R(λ) f̂i(λ
−) ;

}

}

return f̂;
}

Figure 2.1: Clausen’s FFT splits the Fourier transform into a combination of smaller Fourier tranforms over
left cosets of Sn, here illustrated for the case of S3. The pseudocode of the FFT is on the right.

Proof. Factoring σ as Ji, nKσ′ as in (2.7) allows us to write (2.8) in the form

f̂(λ) =

n∑

i=1

ρλ(Ji, nK)
∑

σ′∈Sn−1

ρλ(σ′) fi(σ
′) . (2.11)

The inner summation is similar to (2.9), but the two are not the same, since ρλ is in general not an irreducible
of the smaller group Sn−1. Rather, by standard results from representation theory, on restriction to Sn−1,
it splits into irreducibles of Sn−1 in the form

T−1ρλ(σ′) T =
⊕

ρ−

ρ−(σ′) σ′ ∈ Sn−1 (2.12)

for some invertible square matrix T . The sum extends over some subset of Rn−1, and in general may contain
repeats. For computational purposes it is highly desirable to have T = I. Representations Rn and Rn−1

achieving this are called adapted representations.
To prove that Young’s orthogonal representations are adapted in this sense, consider the standard

tableaux {t} labeling the dimensions of ρλ. The number n is always at an outer corner in these tableaux
(Figure (2.2)). The critical observation is that the way we defined the action of transpositions (in general,
the action of permutations) on tableaux, if σ′ is restricted to Sn, then it leaves n in the same box. Hence,
ρλ(σ′) splits into blocks corresponding to which outer corner n is located at in the corresponding standard
tableaux. Careful examination of the definition of YOR reveals that each such block is, in fact, identical
to ρλ−(σ′), where λ− ` n− 1 is the partition that we get by removing the box containing n from λ. This
proves that YOR is an adapted representation; that for the symmetric group the multiplicity of each ρ− in
(2.12) is just 1; and that ρ− runs over all irreducibles of Sn corresponding to those partitions that we get by
removing one of the outer corners from λ. The latter are just {ρλ−}λ−∈R(λ).

Substituting ρλ(σ′) =
⊕

λ−∈R(λ) ρλ−(σ′) in (2.11) and comparing with (2.9) gives exactly (2.11). �

Clausen’s FFT proceeds by recursively applying Theorem 1 down to S1. On S1 Fourier transformation
is trivial, since R1 consists of the single irreducible ρ(1) = ρtriv, and hence f̂((1)) = f(e). In effect, the FFT
employs a “divide and conquer” type strategy, dividing Sn into the n cosets Ji1, nKSn−1, which are in turn
each divided into n−1 cosets Ji1, nKJi2, n−1KSn−2, etc.. (Figure 2.1, left). The pseudocode of the algorithm
is presented in the same figure, on the right.

9

9
9

Figure 2.2: The possible positions of n = 9 in standard tableaux of shape λ = (4, 2, 2, 1).

6

Snob manual Mathematical Background

While the algorithmic implementation of the FFT is depth first, for purposes of analysis we can also look
at it as a sequence of transformations from a collection of FTs over Sk−1 cosets to Sk cosets. Given that
each of these transformations is a linear map Fk : Cn! → Cn!, it is remarkable that the total number of scalar

operations required by the FFT is just (n+1)n(n−1)
3 n!. The algorithm owes its efficiency to the following

factors:

1. As k decreases, the various f̂(λ) matrices rapidly decrease in size.

2. Thanks to the special properties of YOR, multiplying by ρλ(Ji, kK) can be accomplished very fast.

3. There is considerable overlap between R(λ) for different partitions, so we don’t have to recompute a

different set of {f̂(λ−)}λ−∈Rk−1
for each λ ∈ Rk.

As explained in the proof of Theorem 1, R(λ) are those partitions that we get by removing an outer corner
from λ. This splitting behavior is represented by a so-called Bratelli diagram (Figure 2.3, left). A schematic
of the entire FFT on Sn is presented in the same figure on the right. Such diagrams will be important for
understanding the partial Fourier transforms of the next section.

The ideas behind Clausen’s FFT are easily adapted to computing the inverse Fourier transform as well.
The key observation is that each Fi is itself a unitary transformation, hence the FFT can be reversed simply
by applying the conjugate transpose transformation in each stage, and reversing the order of the stages. The
pseudocode for the inverse FFT is the following.

function iFFT(k, f̂ , σ){

if k = 1 { f(σ)← f̂; }

else {

for i← 1 to k {

for each λ− ` k − 1 do { f̂i(λ
−) = 0; }

for each λ ` k do {

M ← ρλ(Ji, kK−1) · f̂(λ);
c← 1;
for each λ− ∈ R(λ) do {

f̂i(λ
−)← f̂i(λ

−) + dλ

k d
λ−

M (c : c + dλ− − 1, c : c + dλ− − 1);

c← c + dλ;

}}

iFFT(k − 1, f̂i, σ · Ji, kK);
}}}

The inverse FFT appears to be more complicated than the forward FFT, but that is mostly due to
the fact that decomposing M into blocks of specified sizes is more difficult to notate than it is to notate
assembling it from similar blocks. The notation M(a : b, c : d) stands for the block of elements in M from
row a to row b and from column c to column d (inclusive). The factor dλ

k d
λ−

is required to compensate for

the dλ/n! multipliers in the inner products in (2.3). Note that in YOR ρλ(Ji, kK−1) = [ρλ(Ji, kK)]>.

2.3 Two forms of sparsity

While the O(n!n3) run time of the FFT is much less than the run time of a naive Fourier Transform, for
n greater than about 12 it is still forbiddingly expensive. Considering that 12! is close to 500 million, even
storing f in memory becomes problematic in this range. One way to exploit the theory of harmonic analysis
on Sn is to appeal to smoothness properties of f and only maintain the first few components of f̂ . As in
the classical case, this will correspond to band-limited functions on Sn [Kueh et al., 1999]. Since now the
components are not conveninetly labeled by real numbers, which of them are “low-frequency” components
is a somewhat delicate question that we cannot discuss here in detail. We content ourselves by stating that
in general, the smoothest components are (n), (n−1, 1), (n−2, 2), (n− 2, 1, 1), etc..

7

Snob manual Mathematical Background

ff

MM
MM

M

oo
ff

MMMM
jj

VVV
V

ff

MMMMM
oo
ff

MMMMM

tt
hhhh

ff

MMMMM

jj
VVVVV

ff

MMMMM

xx

qqqqq
oo tt

hhhhh
jj

VVVVV
tt

hhhhhh

oo
xx

qqqqq xx

qqqqq
jj

VVVVV
xx

qqqqqq

oo
xx

qqqqq
tt

hhhhhh

xx

qqqqqq

oojj

UUUUUUUUUUU
qq

ddddddddd
hh

PPPPPPPPPP^^

==
==

==
==

==
==

==
== tt

iiiiiiiiiiiioo

ss

ffffffffffffffffffffff
dd

IIIIIIIIIIIIIIIIIIIIIIIIIIIIYY

33
33

33
33

33
33

33
33

33
33

33
33

33
33

33
33

33
33

33
33

33
33

33
3UU

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,
oojj

UUUUUUUUUUU{{

xxxxxxxxxxxxxvv

nnnnnnnnnnnnqq
dddddddddd

cc

FFF
FFFFFFFFFFhh

PPPPPPPPPPPmm ZZZZZZZZZZZ
tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU��

����������������vv

nnnnnnnnnnnnmm
ZZZZZZZZZZZ

tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU
qq

ddddddddd
hh

PPPPPPPPPP^^

==
==

==
==

==
==

==
==

��

���������������������������������
pp

aaaaaaaaaaaaaaaaaaaaaa
aa

DD
DD

DD
DD

DDD
DD

DDD
DD

DDD
DD

DDD
DD

DDXX

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11

zz

uuuuuuuuuuuuuuuuuuuuuuuuuuu
kk

XXXXXXXXXXXXXXXXXXXXXXX
]]

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;WW

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU{{

xxxxxxxxxxxxxvv

nnnnnnnnnnnnqq
dddddddddd

cc

FFF
FFFFFFFFFFhh

PPPPPPPPPPPmm ZZZZZZZZZZZ
tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU��

����������������vv

nnnnnnnnnnnnmm
ZZZZZZZZZZZ

tt

iiiiiiiiiiiioo��

���
vv

nnnnnnnnnnnnnnnnnnnnnnnnn
hh

PPPPPPPPPPPPPPPPPPPPPPPPP
[[

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

6 oojj

UUUUUUUUUUU
qq

ddddddddd
hh

PPPPPPPPPP^^

==
==

==
==

==
==

==
== tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU{{

xxxxxxxxxxxxxvv

nnnnnnnnnnnnqq
dddddddddd

cc

FFF
FFFFFFFFFFhh

PPPPPPPPPPPmm ZZZZZZZZZZZ
tt

iiiiiiiiiiiioo

__

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

?
nn

]]]]]]]]]]]]]]]]]]]]]]]]
}}

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz��

dd

IIIIIIIIIIIIIIIIIIIIIIIIIIII
ss

fffffffffffffffffffffff
��

�������������������������������������

��
oojj

UUUUUUUUUUU��

����������������vv

nnnnnnnnnnnnmm
ZZZZZZZZZZZ

tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU
qq

ddddddddd
hh

PPPPPPPPPP^^

==
==

==
==

==
==

==
== tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU{{

xxxxxxxxxxxxxvv

nnnnnnnnnnnnqq
dddddddddd

cc

FFF
FFFFFFFFFFhh

PPPPPPPPPPPmm ZZZZZZZZZZZ
kk

XXXXXXXXXXXXXXXXXXXXXXXXX
zz

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu
��

���		

��

tt

iiiiiiiiiiiioo

oojj

UUUUUUUUUUU��

����������������vv

nnnnnnnnnnnnmm
ZZZZZZZZZZZ

tt

iiiiiiiiiiiioo

Figure 2.3: The Bratelli diagram for S5 and the information flow in the FFT on S4.

One of the ways in which Snob extends Clausen’s FFT is by implementing fast partial Fourier trans-

forms, which compute f̂ only at a subset P of the partitions {λ ` n}. This makes non-trivial computations
possible on a regular desktop machine with n well into the twenties.

Fast partial Fourier transforms are computed by restricting Clausen’s algorithm to those paths in the
Bratelli diagram that lead to the desired components (Figure 2.4, left). More explicitly, if f is a P -band-

limited function on Sn, then at each level k only { fλ− | λ− ` k, λ− � λ for some λ ∈ P } components
are non-zero, so only these need to be computed. Otherwise, the FFT and its inverse are much the same as
described in the previous section.

In practical applications sparsity in f̂ is likely to co-occur with sparsity in f . While the former restricts
the algorithm to a subset of the paths in the Bratelli diagram, the latter restricts it to a subset of the
paths connecting the various cosets (Figure (2.4), right). Snob contains a special recursive data structure,
Sn::Ftree to handle both types of sparsity.

In general, the philosophy behind Snob is to regard the graph shown in Figure (2.3) as a network on
which computations pass messages from one node to another. The Sn::Ftree data structure is used to
construct the active subnetwork for a given combination of sparsity and band limits. Fourier transforms and
other operations are then carried out on this structure, as opposed to the original network. Computations
starting and finishing at internal nodes are also possible.

2.4 Two-sided cosets and twisted transforms

Clausen’s algorithm, as described in Section 2.2, hinges on splitting Sn into a union of cosets J1, nK Sn−1,
J2, nK Sn−1, . . . , Jn, nK Sn−1, but this is not the only possible Sn−1-coset partition of Sn. We could equally

ff

MM
MM

M

oo
ff

MMMM
jj

VVV
V

ff

MMMMM
oo
ff

MMMMM

tt
hhhh

ff

MMMMM

jj
VVVVV

ff
xx

oo tt
hhhhh

jj
VVVVV

tt
hhhhhh

oo xx xx
jj

xx

ooxx tt

xx

qq
mm

(2, 3)(2, 2) S1
S3

oo
xx

ff

NNNNNNNNNNNN (2, 3) S2
qq ccccc
mm

(3, 3)(2, 2) S1
(3, 3) S2

qq ccccc
mm [[[[[

(3, 3)(2, 2) S1

Figure 2.4: Two forms of sparsity: partial Fourier transforms restrict us to a subtree of the Bratelli diagram,
while sparse functions restrict us to a subtree of the coset tree.

8

Snob manual Mathematical Background

well use the right cosets Sn−1 J1, nK, Sn−1 J2, nK, . . . , Sn−1 Jn, nK, or, at a slight computational penalty, for
fixed j, we could use the two-sided cosets J1, nK Sn−1 Jj, nK, J2, nK Sn−1 Jj, nK, . . . , Jn, nK Sn−1 Jj, nK.

Theorem 2 Let f be a function Sn → C and let

f̂(λ) =
∑

σ∈Sn

ρλ(σ) f(σ) λ ` n (2.13)

be its Fourier transform with respect to Young’s orthogonal representation. Let j be a fixed integer 1 ≤ j ≤ n.

Now for i = 1, 2, . . . , n define fL

i , fR

i : Sn−1 → C as fL

i (σ) = f(Ji, nKσ Jj, nK) and fR

i (σ) = f(Jj, nKσ Ji, nK).
Let

f̂L

i (λ−) =
∑

σ′∈Sn−1

ρλ−(σ′) fL

i (σ′) and f̂R

i (λ−) =
∑

σ′∈Sn−1

ρλ−(σ′) fR

i (σ′) λ ` n−1

be the corresponding Fourier transforms, again with respect to Young’s orthogonal representation. Then up

to reordering of rows and columns,

f̂(λ) =

[
n∑

i=1

ρλ(Ji, nK)
[⊕

λ−∈R(λ)

f̂L

i (ρλ−)
]]
· ρλ(Jj, nK), (2.14)

and

f̂(λ) = ρλ(Jj, nK) ·

[
n∑

i=1

[⊕

λ−∈R(λ)

f̂R

i (ρλ−)
]

ρ(Ji, nK)

]
, (2.15)

where R(λ) = { λ− ` n−1 | λ−� λ }.

The proof of this theorem is very similar to the proof of Theorem 1. Just as before, (2.14) and (2.15)
can be applied recursively down to S1 to yield a fast Fourier transform.

To distinguish the various cases, FFTs based on (2.14) and (2.15) we respectively call left-hand and
right-hand FFTs. When j = n (i.e., when ρ(Jj, nK) disappears), we say that the FFT is straight, otherwise
we say that it is twisted. When forming the full FFT, right-hand and left-hand steps may in priciple be
mixed, and j can be different at each level. Snob supports all of these variations.

The purpose of these generalizations is to be able to compute Fourier transforms at various combinations
of double cosets. In general, given k≤n, and two permutations σL, σR ∈ Sn with the property σL(i) = i and

σR(i) = i for 1 ≤ i ≤ k, and a (partial) Fourier transform f̂ : Sn → C, we compute the Fourier transform at
σLSkσR,

f̂σR

σL
(λ) =

∑

τ∈Sk

ρλ(τ) f(σLτ σR) λ ` k,

by factoring σL and σR as

σL = Jpn, nK Jpn−1, n−1K . . . Jpk+1, k+1K

σR = Jqk+1, k+1K Jqk+2, k+2K . . . Jqn, nK

and descending from f̂ through a succession of double cosets

Sn,

Jpn, nK Sn−1 Jqn, nK,

Jpn, nK Jpn−1, n−1K Sn−2 Jqn−1, n−1KJqn, nK,

...
...

...
...

Jpn, nK Jpn−1, n−1K . . . Jpk+1, k+1K Sk Jqk+1, k+1K . . . Jqn−1, n−1KJqn, nK.

9

Chapter 3

Using Snob

The source code of all the examples in this chapter may be found in the examples directory of the Snob pack-
age. Wherever possible we show both the complete source and the output of the examples in the text.

3.1 Operations on group elements

In Snob , permutations σ ∈ Sn are represented by objects of class Sn::Element. The constructor Sn::Element(n)
returns the unit element of Sn, while Sn::Element(p1,p2,...,pn,NULL) constructs σ ∈ Sn which would
permute (1, 2, . . . , n) to (p1, p2, . . . , pn), i.e., σ−1(i) = pi. The degree n is determined automatically from
the number of arguments to the constructor. Whenever a function takes a variable number of arguments in
Snob , the argument list must be terminated with NULL.

Our first example demonstrates multiplying permutations together and taking their inverses:

#include " SnElement.hpp"

#include < iostream>

main (){

Sn:: Element p1 (1,2,4,3,5, NULL);

Sn:: Element p2 (2,3,1,4,5, NULL);

Sn:: Element * a=p2*p1;

Sn:: Element * b=p2.inverse ();

Sn:: Element * c=(*b)*p1;

cout <<"p1 : "<< p1.str ()<< endl;

cout <<"p2 : "<< p2.str ()<< endl;

cout <<"p2*p1 : "<<a->str ()<< endl;

cout <<"p2 ^{-1} : "<<b->str ()<< endl;

cout <<"(p2 ^{-1})* p1 : "<<c->str ()<< endl;

delete a,b,c;

}

Note that the * operator and the inverse() method return pointers to new Sn::Element objects. This
is the standard way of returning new objects in Snob . The new objects are dynamically allocated, which
means that unless they are explicitly deleted, they remain in memory until the program terminates. It is the
responsibility of the user to keep track of dynamically allocated objects and delete them as soon as they are
no longer needed. Given the large size of some of the data structures in typical Snob applications, failure to
delete unneeded objects can quickly lead to the system runing out of memory.

10

Snob manual Using Snob

The str() function, which is common to all classes in Snob, returns a short string identifying the object,
similarly to toString in JAVA. For permutations str() returns the numbers σ−1(1), σ−1(2), . . . , σ−1(n)
enclosed in square brackets. Thus, the output of our code above is the following:

p1 : [1 2 4 3 5]

p2 : [2 3 1 4 5]

p2*p1 : [2 4 1 3 5]

p2 ^{-1} : [3 1 2 4 5]

(p2 ^{-1})* p1 : [4 1 2 3 5]

An easier to read way of specifying permutations is in terms of cycle notation. Section 2.2 described
a way of uniquely factoring σ into a product of contiguous cycles. In contrast, we now factor σ into a
product of disjoint but not necessarily contiguous cycles. In general, a cycle is a sequence (c1, c2, . . . , ck)
such that σ(cj) = cj+1 for j = 1, 2, . . . , k − 1, and σ(ck) = c1. Factorization into disjoint cycles is unique
up to permuting the cycles between each other and cyclically permuting the numbers within each cycle. In
Snob this factorization is performed using the class Sn::Cycles.

#include " SnElement.hpp"

#include " Cycles.hpp"

#include < iostream>

main (){

Sn:: Element p1 (1,2,4,3,5, NULL);

Sn:: Element p2 (2,3,1,4,5, NULL);

cout <<"v1 : "<< Cycles(p1).str ()<< endl;

cout <<"v2 : "<< Cycles(p2).str ()<< endl;

}

v1 : (1)(2)(3,4)(5)

v2 : (1,3,2)(4)(5)

Snob provides several methods to access the map σ : {1, 2, . . . , n} → {1, 2, . . . , n} itself. The member
function action(i) returns σ(i), while iaction(i) returns σ−1(i). Similarly, effect() returns an n-element
C++-style vector (σ(1) , σ(2) , . . . , σ(n)), while ieffect() returns

(
σ−1(1) , σ−1(2) , . . . , σ−1(n)

)
.

11

Snob manual Using Snob

3.2 The group Sn and its irreducibles

To compute Fourier transforms, Snob needs to construct the objects corresponding to the groups Sn >
Sn−1 > . . . > S1 and each of their irreducibles. This is all done automatically when the user defines a single
object of type Sn::Sn to represent the largest group Sn. The resulting objects are typically kept in memory
until the termination of the program.

The following program constructs S3 and prints out its elements.

#include "Sn.hpp"

#include " SnElement.hpp"

#include < iostream>

main (){

Sn::Sn G(3);

for(int i=0; i<G.order ; i++)

cout<<G[i]-> str ()<< endl;

}

[1 2 3]

[2 1 3]

[1 3 2]

[2 3 1]

[3 2 1]

[3 1 2]

The following program constructs S5 and goes through each of its irreducibles ρλ ∈ Rn, printing out their
identifiers. The identifier of ρλ is just the partition λ, so the program lists the set {λ ` 5}.

#include "Sn.hpp"

#include " SnIrreducible.hpp"

#include < iostream>

main (){

Sn::Sn G(5);

for(int i=0; i<G.irreducibles.size (); i++)

cout<<G.irreducibles[i]-> str ()<< endl;

}

(5)

(4,1)

(3,2)

(3,1,1)

(2,2,1)

(2,1,1,1)

(1,1,1,1,1)

12

Snob manual Using Snob

The subgroups Sn−1, . . . , S1 are accessed by repeated reference to the subgroup variable of Sn. The following
code finds the S3 object that was created when S5 was constructed, and prints out the identifiers of its
irreducibles.

#include "Sn.hpp"

#include " SnIrreducible.hpp"

#include < iostream>

main (){

Sn::Sn G(5);

Sn::Sn& Gsub=*G.subgroup -> subgroup;

for(int i=0; i<Gsub.irreducibles.size (); i++)

cout<<Gsub.irreducibles[i]-> str ()<< endl;

}

(3)

(2,1)

(1,1,1)

Each irreducible ρλ of Sk has pointers to the irreducibles { ρλ− | λ− ∈ R(λ) } into which it decomposes
by Young’s rule on restriction to Sk−1 (see equation (2.12)). The following program, the output of which is
too lengthy to reproduce here, uses this mechanism to print out a textual text version of the Bratelli diagram
of S5 (Figure 2.3):

#include "Sn.hpp"

#include " SnIrreducible.hpp"

#include < iostream>

string printAncestors(Sn:: Irreducible & rho, string indenter){

ostringstream result;

result << indenter <<rho.str ()<< endl;

for(int i=0; i<rho.eta.size (); i++){

result << printAncestors (*rho.eta[i], indenter +" ");

}

return result.str ();

}

main (){

Sn::Sn G(5);

for(int i=0; i<G.irreducibles.size (); i++)

cout<< printAncestors (*G.irreducibles[i],"");

}

13

Snob manual Using Snob

Other features of Sn::Irreducible include functions for returning the degree of ρλ, the standard tableaux
indexing its dimensions, the characters χλ(µ) for µ ` λ, and the representation matrices ρλ(σ) for σ ∈ Sn.
The following example demonstrates all this for the (3, 2) irreducible of S5.

#include " SnIrreducible.hpp"

#include < iostream>

main (){

Sn::Sn G(5);

Sn:: Irreducible & rho=*G.irreducibles [2];

Partition lambda (2,2,1, NULL);

Partition mu (3,1,1, NULL);

Sn:: Element sigma (2,3,1,4,5, NULL);

cout <<" Irreducible : "<< rho.str ()<< endl<<endl;

cout <<" Degree : "<< rho.degree <<endl<<endl;

cout <<" Tableaux : "<< endl<<endl;

for(int i=0; i<rho.degree ; i++)

cout<<rho.tableau(i)-> str ()<< endl;

cout <<" Character at mu : "<< rho.character(mu)<< endl<<endl;

cout <<" Representation matrix at sigma : "<< endl<<endl<<rho.rho(sigma)-> str ()<< endl;

}

Irreducible : (3,2)

Degree : 5

Tableaux:

1 3 5

2 4

1 2 5

3 4

1 3 4

2 5

1 2 4

3 5

1 2 3

4 5

Character at mu: -1

Representation matrix at sigma:

-0.5 0.866025 0 0 0

-0.866025 -0.5 -0 -0 -0

0 0 -0.5 0.866025 0

-0 -0 -0.866025 -0.5 -0

0 0 0 0 1

14

Snob manual Using Snob

Note that the representation matrices are given in Young’s orthogonal representation, and the columns/rows
are indexed according to the same order as the standard tableaux are ordered by the tableau function.
The rho function returns a pointer to a Matrix object. Matrix is a custom Snob matrix class supporting
standard operations, such as addition, matrix mutliplication, etc..

An easy way to test the representation matrices is to verify the identity ρλ(σ2) ρλ(σ1) = ρλ(σ2 σ1) using
the * operator of the Matrix class.

#include " SnIrreducible.hpp"

#include < iostream>

main (){

Sn::Sn G(5);

Sn:: Irreducible & rho=*G.irreducibles [2];

Sn:: Element sigma1 (1,2,4,3,5, NULL);

Sn:: Element sigma2 (2,3,1,4,5, NULL);

cout<<rho.rho (*(sigma2*sigma1))-> str ()<< endl;

cout <<((* rho.rho(sigma2))*(* rho.rho(sigma1)))-> str ()<< endl;

}

0.5 0.866025 0 0 0

0.866025 -0.5 0 0 0

0 0 -0.5 0.288675 0.816497

-0 -0 -0.866025 -0.166667 -0.471405

0 0 0 0.942809 -0.333333

0.5 0.866025 0 0 0

0.866025 -0.5 0 0 0

0 0 -0.5 0.288675 0.816497

0 0 -0.866025 -0.166667 -0.471405

0 0 0 0.942809 -0.333333

15

Snob manual Using Snob

Our final example in this section is the program chartable.cpp, which takes n as an argument and prints
out the character table of Sn.

#include " SnIrreducible.hpp"

main(int argc, char ** argv){

int n=5;

if(argc >=2) sscanf(argv [1],"%d",&n);

Sn G(n);

int Npartitions=G.irreducibles.size ();

Matrix<double > chartable(Npartitions,Npartitions);

for(int i=0; i<Npartitions ; i++)

for(int j=0; j<Npartitions ; j++)

chartable(i,j)= round(G.irreducibles[i]-> character(G.irreducibles[j]-> partition));

cout<< chartable.str ()<< endl;

}

Applying round to the computed values eliminates round-off errors but does not corrupt the characters,
since, thanks to yet another special property of Sn, the characters are always integer valued. Below is the
output of chartable for n = 6.

1 1 1 1 1 1 1 1 1 1 1

-1 0 -1 1 -1 0 2 -1 1 3 5

0 -1 1 -1 -0 0 0 3 1 3 9

1 -0 0 0 1 -1 1 -2 -2 2 10

0 0 -1 -1 2 1 -1 -3 1 1 5

0 1 -0 -0 -2 0 -2 0 0 0 16

-1 0 0 0 1 1 1 2 -2 -2 10

0 0 -1 1 2 -1 -1 3 1 -1 5

0 -1 1 1 -0 0 0 -3 1 -3 9

1 0 -1 -1 -1 0 2 1 1 -3 5

-1 1 1 -1 1 -1 1 -1 1 -1 1

16

Snob manual Using Snob

3.3 Computing Fourier transforms

The principal devices for computing Fourier transforms in Snob are the classes Sn::Function and Sn::Fourier

Transform. The following program generates a random function f on S4, computes its Fourier transform
F , and then recovers f ′ = f by the inverse transform. To save space we truncated the output, omitting the
result of the inverse transform (the result is identical to to the original function).

#include " SnFunction.hpp"

#include " SnFourierTransform.hpp"

#include < iostream>

main (){

Sn::Sn G(4);

Sn:: Function f(G);

f.randomize ();

cout<<f.str ()<< endl;

Sn:: FourierTransform * F=f.FFT ();

cout<<F->str ()<< endl;

Sn:: Function * fdash=F->iFFT ();

cout<<fdash ->str ()<< endl;

}

[1 2 3 4] : 0.840188
[2 1 3 4] : 0.394383
[1 3 2 4] : 0.783099
[2 3 1 4] : 0.79844
[3 1 2 4] : 0.911647
[3 2 1 4] : 0.197551
[1 2 4 3] : 0.335223
[2 1 4 3] : 0.76823
[1 3 4 2] : 0.277775
[2 3 4 1] : 0.55397
[3 1 4 2] : 0.477397
[3 2 4 1] : 0.628871
[1 4 2 3] : 0.364784
[2 4 1 3] : 0.513401
[1 4 3 2] : 0.95223
[2 4 3 1] : 0.916195
[3 4 1 2] : 0.635712
[3 4 2 1] : 0.717297
[4 1 2 3] : 0.141603
[4 2 1 3] : 0.606969
[4 1 3 2] : 0.0163006
[4 2 3 1] : 0.242887
[4 3 1 2] : 0.137232
[4 3 2 1] : 0.804177

13.0156

-0.124596 0.43564 1.75584
0.327114 -0.0937104 0.0160957
-1.11595 -0.424087 0.895225

1.13475 -0.634588
0.931515 0.44088

0.859317 -0.613531 -1.20201
0.0108037 -0.415673 1.07824
-0.956903 0.665582 -0.495672

2.12302

17

Snob manual Using Snob

The Fourier transform of a function with unit mass concentrated on a single permutation σ reproduces the
ρλ(σ) representation matrices. This is demonstrated by the following code.

#include " SnFunction.hpp"

#include " SnFourierTransform.hpp"

#include " SnIrreducible.hpp"

#include < iostream>

main (){

Sn::Sn G(5);

Sn:: Element sigma (4,1,3,5,2, NULL);

Sn:: Function f(G);

f[sigma]=1;

Sn:: FourierTransform F(f);

Sn:: Irreducible & rho=*G.irreducibles [3];

cout<<F.matrix [3]-> str ()<< endl;

cout<<rho.rho(sigma)-> str ()<< endl;

}

-0.333 0.471 0.816 0 0 0

0.118 0.208 -0.0722 -0.484 -0.28 -0.791

-0.204 0.0722 -0.125 0.28 0.807 -0.456

0.456 0.807 -0.28 0.125 0.0722 0.204

-0.791 0.28 -0.484 -0.0722 -0.208 0.118

0 0 0 -0.816 0.471 0.333

-0.333 0.471 0.816 0 0 0

0.118 0.208 -0.0722 -0.484 -0.28 -0.791

-0.204 0.0722 -0.125 0.28 0.807 -0.456

0.456 0.807 -0.28 0.125 0.0722 0.204

-0.791 0.28 -0.484 -0.0722 -0.208 0.118

-0 -0 -0 -0.816 0.471 0.333

18

Snob manual Using Snob

Yet another way to test the Fourier transform is via the convolution property. Sn::Function has a convolve

member, which performs convolution using the convolution theorem (2.4). The following program computes
g ∗ f and compares it to a traditional slow convolution on S4. To save space we omit the output.

#include " SnFunction.hpp"

#include " SnFourierTransform.hpp"

#include < iostream>

main (){

Sn::Sn G(4);

Sn:: Function f(G);

f.randomize ();

Sn:: Function g(G);

g.randomize ();

Sn:: Function * h=g.convolve(f);

cout<<h->str ()<< endl;

Sn:: Function hdash(G);

for(int i=0; i<G.order ; i++)

for(int j=0; j<G.order ; j++){

Sn:: Element * x=G[j];

Sn:: Element * z=G[i];

Sn:: Element * xinv=x-> inverse ();

Sn:: Element * y=(*z)*(* xinv);

hdash [*z]+=g[*y]*f[*x];

delete x,xinv,y,z;

}

cout<<hdash.str ()<< endl;

}

.
Finally, the diffuse(beta) member of Sn::Function implements diffusion smoothing on the Cayley

graph of Sn generated by transpositions.

#include " SnFunction.hpp"

#include " SnFourierTransform.hpp"

#include < iostream>

main (){

Sn::Sn G(4);

Sn:: Function f(G);

f.randomize ();

cout<<f.str ()<< endl;

f.diffuse (0.1);

cout<<f.str ()<< endl;

}

19

Snob manual Using Snob

3.4 Partial and sparse Fourier transforms

One of the most flexible features of Snob is the Fourier tree data structure. A Fourier tree on Sn is a rooted
tree with at most n levels, labeled n, n− 1, n− 2, . . ., in which each node at level k corresponds to some
two-sided coset σLSkσR of Sn. In particular, the root corresponds to the entire group, while leaves at level
1 (if there are any) stand for individual group elements.

Which two-sided coset a particular node corresponds to is determined by the labels on the edges. Specif-
ically, each edge between levels k and k−1 is labeled with a pair of contiguous cycles Ji, kK and Jj, kK. The
semantics is that if the level k parent node corresponds to σLSkσR, then the level k−1 child note will stand
for the two-sided coset σLJi, kK−1Sk−1Jj, kK−1σR.

The nodes of the tree are objects of class Sn::Ftree. Each node at level k can store the Fourier transform
of a function on the corresponding Sk two-sided coset. Computations are performed on the tree by passing
messages along the edges and updating the Fourier transforms attached to the nodes.

A function f on the entire group Sn would be represented by constructing a complete tree with n! nodes.
A possible choice for the edge labels is to always take j = k, while i takes on all possible values 1, 2, . . . , k. The
function values f(σ) are then stored as trivial Fourier transforms at the leaves. By propagating messages up
the tree, Fourier transforms are computed at intermediate nodes, until finally the global Fourier transform
appears at the root. This is just a message passing implementation of Clausen’s algorithm described in
Section 2.2 (left-hand version). It is apparent that we could equally well have taken i ≡ k and split the tree
at each level according to σR = Ji, kK ∈ S\Sk−1, which would have lead to the right-hand FFT.

The novelty in the Fourier tree data structure is its ability to represent sparse functions on Sn by
selectively including only those branches in the tree that lead to non-zero leaves. The Fourier transform is
computed by the same message passing scheme as before, but thanks to sparsity, the resulting algorithm is
potentially much more efficient than a complete FFT would be.

Sparsity is often coupled with partial Fourier transforms. Sn::Ftree handles this by maintaining a vector
Iindex listing the indices of the “active” Fourier components. Inactive components are not stored and not
updated in the message passing sweeps.

The following example constructs a function on S4 which is non-zero only at σ1 and σ2, and compares
taking its Fourier transform with the Fourier tree data structure exploiting its sparsity to taking an ordinary
Fourier transform.

#include " SnFtree.hpp"

main (){

Sn::Sn G(4);

Sn:: Function f(G);

f[Sn:: Element (1,2,4,3, NULL)]=3;

f[Sn:: Element (2,3,1,4, NULL)]=7;

cout <<" The dense Fourier transform :"<< endl;

cout<<Sn:: FourierTransform (f).str ()<< endl;

Sn:: Ftree fsparse(f);

for(int i=0; i<G.irreducibles.size (); i++)

fsparse.Iindex.push_back(i);

fsparse.FFT ();

cout <<" The sparse Fourier transform :"<< endl;

cout<< fsparse.str ()<< endl;

}

20

Snob manual Using Snob

The dense Fourier transform:
10

-0.5 6.06 0
-6.06 -2.5 2.83
0 2.83 6

-6.5 6.06
-6.06 -0.5

8 2.83 0
2.83 -4.5 6.06
0 -6.06 -6.5

4

The sparse Fourier transform:
(4)
10

(3,1)
-0.5 6.06 0
-6.06 -2.5 2.83
0 2.83 6

(2,2)
-6.5 6.06
-6.06 -0.5

(2,1,1)
8 2.83 0
2.83 -4.5 6.06
0 -6.06 -6.5

(1,1,1,1)
4

To take partial Fourier transforms, all we need to do, is to restrict Iindex to the indices of those
components that we are interested in. The following example computes only the first m Fourier components
of a sparse function on S5. It then performs an inverse transform. Unless m is set to the total number
of irreducibles of S5, which is 7, the reconstruction of the original function will only be approximate. The
output of the code is shown for m = 5.

#include " SnFtree.hpp"

main(int argc, char ** argv){

int m=5;
if (argc >=2) sscanf(argv [1],"%d",&m);

Sn::Sn G(5);
Sn:: Function f(G);
f[Sn:: Element (1,2,3,4,5, NULL)]=9;
f[Sn:: Element (1,2,4,3,5, NULL)]=3;
f[Sn:: Element (2,3,1,4,5, NULL)]=7;

Sn::Ftree fsparse(f);
for(int i=0; i<G.irreducibles.size () && i<m; i++)

fsparse.Iindex.push_back(i);

cout <<"The function :"<< endl<<endl;
cout<< fsparse.str ()<< endl;

fsparse.FFT();
cout <<"The sparse partial Fourier transform :"<< endl<<endl;
cout<< fsparse.str ()<< endl;

fsparse.iFFT ();
cout <<"The result of the inverse transform :"<< endl<<endl;
cout<< fsparse.str ()<< endl;

}

21

Snob manual Using Snob

The function:

[1 2 4 3 5] : 3

[2 3 1 4 5] : 7

[1 2 3 4 5] : 9

The sparse partial Fourier transform:

(5)

19

(4,1)

8.5 6.06 0 0

-6.06 6.5 2.83 0

0 2.83 15 0

0 0 0 19

(3,2)

2.5 6.06 0 0 0

-6.06 8.5 0 0 0

0 0 8.5 6.06 0

0 0 -6.06 6.5 2.83

0 0 0 2.83 15

(3,1,1)

17 2.83 0 0 0 0

2.83 4.5 6.06 0 0 0

0 -6.06 2.5 0 0 0

0 0 0 8.5 6.06 0

0 0 0 -6.06 6.5 2.83

0 0 0 0 2.83 15

(2,2,1)

17 2.83 0 0 0

2.83 4.5 6.06 0 0

0 -6.06 2.5 0 0

0 0 0 2.5 6.06

0 0 0 -6.06 8.5

The result of the inverse transform:

[1 2 4 3 5] : 3.30833

[2 3 1 4 5] : 5.65833

[1 2 3 4 5] : 7.65833

For more information about the Sn::Ftree class, see the Reference section.

22

Chapter 4

Reference

This chapter contains a brief description of the Snob classes and their most important public member func-
tions and member variables. Copy constructors, destructors, and private members are not listed. Whether
members are const or not is generally not indicated.

Optional arguments are enclosed in []. A variable number of paramaters is indicated by Note
that in Snob such a sequence of arguments must always be terminated with NULL.

Snob uses inheritance, for example, Sn inherits some members from the more general class FiniteGroup.
However, the current version of Snob being focused solely on the symmetric group, this mechanism has little
operational significance. To simplify the reference section, we therefore list inherited members under the
description of the child class. The parent classes are not listed separately in the reference.

Snob also uses nesting. In particular, the Element, Irreducible, Function and

The header file Sn.h

The global header file Sn.h defines the following constants.

Constant Default Description

FIELD double

The base field F for the irreducible representations. The most general choice
would be complex, but due to the special properties of Sn, it is possible to
limit ρ ∈ Rn to real representations. In particular, YOR is a real represen-
tation. In this case, FIELD can be chosen to be double. In fact, the current
version of Snob has only been tested with this setting.

STR PRECISION int The number of significant digits printed by the various str functions.

23

Snob manual Reference

The Sn classes

Sn::Sn

This class represents the symmetric group Sn. The object Sn::Sn(n) must be constructed before accessing
any irreducible representations of Sn, or constructing functions or Fourier transforms on Sn.

Parent class: FiniteGroup

CONSTRUCTORS

Sn(const int n)

The symmetric group Sn. Automatically constructs Sn−1, Sn−2, . . . down to S1, together with their
irreducibles.

MEMBER FUNCTIONS

Element* operator[](const int i)

Returns the group element with index i, where 0≤ i≤n!−1. The indexing scheme is specially adapted
to the left-hand FFT described in Section 2.2 and is identical to that used in Sn::Function.

Irreducible*(const Partition& lambda, int& index)

Returns a pointer to the Sn::Irreducible of shape lambda, and returns its index in index.

string str()

Identifies the group by its degree.

MEMBER VARIABLES

const int n

Degree of group.

Sn* subgroup

Pointer to the object representing Sn−1 (for n > 1).

vector<Irreducible*> irreducibles

Irreducible representations of Sn.

24

Snob manual Reference

Sn::Element

Represents a group element σ ∈ Sn, i.e., a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n}.

Parent class: FiniteGroup::Element

CONSTRUCTORS

Element(int n)

The identity element of Sn.

Element(const Sn& G)

The identity element of the group G.

Element(int p1, int p2, ... , NULL)

The permutation σ for which σ−1(i) is given by the i’th integer argument; n is determined by the total
number of arguments.

Element(int n, int* v)

The permutation σ ∈ Sn for which σ−1(i) = v[i-1]. The pointer v must point to an n-element C-style
array.

MEMBER FUNCTIONS

Element* operator*(Sn::Element& tau)

Returns a new permutation object corresponding to στ .

Element* inverse()

Returns a new permutation object corresponding to σ−1.

int action(const int i)

Returns σ(i).

int action(const int i)

Returns σ−1(i).

vector<int> effect()

Returns the vector (σ (1) , σ (2) , . . . , σ (n)).

vector<int> ieffect()

Returns the vector (σ−1 (1) , σ−1 (2) , . . . , σ−1 (n)).

string str()

Prints (σ−1(1), σ−1(2), . . . , σ−1(n)) to string.

MEMBER VARIABLES

const int n

n

25

Snob manual Reference

Sn::Irreducible

Represents an irreducible representation ρλ of Sn.

Parent class: FiniteGroup::Irreducible

CONSTRUCTORS

Irreducible(Sn* G, Partition& lambda)

Construct the irreducible representation of the symmetric group G corresponding to the partition
lambda.

MEMBER FUNCTIONS

Matrix<FIELD >* rho(const Sn::Element& sigma)

Returns ρ(σ), the representation matrix of permutation sigma in Young’s orthogonal representation.

FIELD character(const Partition& mu)

Returns χ(µ), the character of this representation at permutations of cycle type µ.

void computeTableaux()

Compute the standard tableaux of this irreducible if they have not already been computed. Because
this is an expensive operation, it is postponed until some function is called (such as rho or character)
which requires the tableaux of this particular irreducible. computeTableaux() is called automatically
by these functions, and once the tableaux have been computed they are stored for the lifetime of the
Irreducible.

StandardTableau* tableau(const int t)

Return a new standard tableaux of index t. This works even if tableauV has not been computed.

void computeYOR()

Compute and store the coefficients (2.5) and (2.6) in Young’s orthogonal representation for all adjacent
transpositions τk and all tableau t of shape λ. Because this is an expensive operation, these coeffi-
cients are not normally computed until they are demanded by functions such as rho or character.
computeYOR() is called automatically by these functions, and once the tableaux have been computed
they are stored for the lifetime of the Irreducible. computeYOR() also requires the tableaux, so it
calls computeTableaux() if those have not been computed yet.

void applyCycle(const int j, Matrix<FIELD>& M[, int m])

void applyCycle(const int j, Matrix<FIELD>& M[, int m])

Multiply M by the representation matrix of the cycle (m, j, j +1, . . . ,m−1). These are specialized, fast,
compute-in-place functions, and they are at the heart of the FFT and the iFFT. The default value of
m is n.

string str()

Identifies the irreducible by returning the partition λ.

MEMBER VARIABLES

Partition partition

The partition indexing this irreducible.

26

Snob manual Reference

int degree

Dimensionality of this irreducible.

vector<int> etaindex

The integer indices of those irreducibles of Sn−1, into which this irreducible decomposes when restricted
to Sn−1.

vector<Sn::Irreducible*> eta

Pointers to irreducibles of Sn−1 into which this irreducible decomposes when restricted to Sn−1.

bool tableauxComputed

Flag to show that the standard tableaux have been computed.

bool YORComputed

Flag to show that the YOR coefficients have been computed.

vector<StandardTableau> tableauV

The standard tableaux of this representation.

27

Snob manual Reference

Sn::Function

Represents a function f : Sn → F.

Parent class: FiniteGroup::Function

CONSTRUCTORS

Function(const Sn& group)

Construct a function on the symmetric group group and set f(σ) = 0 for all σ ∈ Sn.

Function(const FourierTransform& F)

Compute the inverse Fourier Transform of F with Clausen’s iFFT.

MEMBER FUNCTIONS

FIELD& operator[](const Element& sigma)

Return reference to f(σ).

void randomize()

Fill (f(σ))σ∈Sn
with random numbers uniformly distributed on the interval [0, 1).

FourierTransform* FFT()

Return a new Sn::FourierTransform which holds the Fourier transform of f . Alternative (syntactic
sugar) to computing the FFT with the constructor FourierTransform::FourierTransform(const

Function& f).

Function* convolve(Function& g)

Return a new function h = f ∗ g computed by FFT and the convolution theorem.

void diffuse(const double beta)

Diffuse f with parameter β on the Cayley graph generated by transpositions

string str()

Print f(σ) for each σ ∈ Sn.

MEMBER VARIABLES

const Sn* group

Pointer to Sn

28

Snob manual Reference

Sn::FourierTransform

Represents the Fourier transform f̂ of a function f : Sn → F.

Parent class: FiniteGroup::FourierTransform

CONSTRUCTORS

FourierTransform(const Sn& group)

Construct the Fourier transform of the zero function on the symmetric group group.

FourierTransform(const Sn& group, const vector<Matrix<FIELD>*> matrices)

Construct a FourierTransform with components matrices. The components must be listed in the
same order as the Irreducibles in group, and they must have the right sizes. Warning: the matrices
are not copied, only their addresses are duplicated in the new FourierTransform object. This matrices
are deleted when the FourierTransform object is destroyed. Attempting to delete them elswhere in
the code is liable to cause a segmentation fault.

FourierTransform(const Function& f)

Compute the Fourier transform of the function f with Clausen’s FFT.

MEMBER FUNCTIONS

Function* iFFT()

Return a new Sn::Function which holds the inverse Fourier transform of F . Alternative (syntactic
sugar) to computing iFFT with the constructor Function::Function(const FourierTransform& F).

double norm2()

Squared norm of f̂ , as in (2.3).

string str()

Print each of the f̂(λ) matrices to string.

MEMBER VARIABLES

vector<Matrix<FIELD>*> matrix

The matrices f̂(ρ).

29

Snob manual Reference

Sn::Ftree

SnFtree objects represent individual nodes of the Fourier tree data structure described in Section 3.4. Each
intermediate node is at once a node in a larger tree and the root of its own tree consisiting of its descendants.
Thus, depending on the context, it either represents a specific σLSkσR two-sided coset in a larger group Sn,
or the group Sk itself. Each node can hold an Sk (partial) Fourier transform in its matrix member. Which

f̂(λ) components are maintained is determined by the Iindex member, which lists the indices of the corre-
sponding irreducibles of Sk.

Parent class: FiniteGroup::Ftree

CONSTRUCTORS

Ftree(const Sn& group, [const vector<int>& Iindex,] [int left, [int right]])

If group is Sn, then this constructs an Sn-coset node. Iindex lists the Fourier components active at
this node. If this node is descended from an Sn+1 two-sided coset node, then it will stand for the
Jleft, n+1K Sn Jright, n+1K coset in Sn+1.

Ftree(const Function& f)

Construct a sparse representation of f by only growing branches that lead to leaves for which f(σ) is
non-zero.

Ftree(const FourierTransform& F, int l1, int l2,...,NULL)

Construct an Ftree node which holds the restriction of F to the l1, l2,. . . components of F . Caveat: if
component 0 is to be in the list, it must be listed first, otherwise it will be confused with the end-of-list
NULL marker.

Ftree(const FourierTransform& F, const vector<int>& Iindex)

Construct an Ftree node which holds the restriction of F to the components in Iindex.

MEMBER FUNCTIONS

FFT()

Compute the (partial) FFT by deleting the content of interior nodes and propagating the values at the
leaves to the root. Which components ae computed is determined by Iindex. All nodes will be left
empty except the root.

iFFT()

Compute the inverse (partial) Fourier transform by distributing the content of the root to the leaves.
All nodes will be left empty except for the leaves.

FourierTransform* fourierTransform()

A new FourierTransform object which is the “full version” of this node. Whenever a component is
not present, it will be substitued with a zero matrix.

SnFunction* function()

A new SnFunction object holding the dense representation of the information at the leaves.

scout([bool zerobottom])

Descend the tree and then climb back up again setting each Iindex to the minimal set of active Fourier
components at each intermediate node required to compute the active components at this node from
the active components at the leaves, or vica versa. When zerobottom is set, the active components at

30

Snob manual Reference

the leaves are set to the maximal set of non-zero components computable from the components at the
root. This function is usually called before collect() or distribute().

unscout()

Delete the Iindex at each node between this node and the leaves (each internal node).

collect()

Collect f̂ from the descendants of this node. This is a recursive function used to compute fast (partial
and sparse) Fourier transforms on the Fourier tree data structure. At each node, only components
listed in that node’s Iindex will be computed.

distribute()

Distribute f̂ to the descendants of this node. This is a recursive function used to compute fast (par-
tial and sparse) inverse Fourier transforms on the Fourier tree data structure. At each node, only
components listed in that node’s Iindex will be computed.

norm2()

The squared L2 norm of the partial Fourier transform at this node.

Element* max(double& val)

Returns a pointer to the element of Sn maximizing f(σ) and sets val to be the maximum value.

str()

Print the non-zero elements of f to string.

MEMBER VARIABLES

int n

n

const Sn* group

pointer to Sn

int left,right

The left and right labels of the edge leading from its parent to this node.

bool protect

For efficient memory management, by default distribute() only leaves data at the leaves and collect()

only leaves data at the root. At all other nodes the Fourier matrices are deleted and the vector matrix
is left empty. However, when protect is set, the matrices at this node will be preserved.

bool addto

By default, collect() and distribute() pass through the Fourier tree, they delete pre-existing
matrices at intermediate nodes (except respectively the leaves and the root). When addto is set, they
will instead add the results of the computations to what is already stored at this node.

vector<Ftree*> child

Pointers to each child.

vector<int> Iindex

Indices of the Fourier components active at this node.

vector<Matrix<FIELD >*> matrix

The f̂(λ) Fourier components.

31

Snob manual Reference

Helper classes

Cycles

An object for storing the cycle representation of σ ∈ Sn.

Parent class: vector<vector<int>>

CONSTRUCTORS

Cycles(Element& sigma)

Compute the cycles making up σ.

MEMBER FUNCTIONS

size()

The number of cycles.

str()

Print the cycles to string.

32

Snob manual Reference

Partition

This class represents integer partitions λ = (λ1, λ2, . . . , λk) of n. It is derived from the STL class vector<int>,
hence all operations applicable to vectors of integers are applicable to Partition as well.

Parent class: vector<int>

CONSTRUCTORS

Partition()

The empty partition λ = ().

Partition(int p1, int p2, ..., NULL)

The partition λ = (p1, p2, . . . , pk)

Partition(const Sn::Element& p)

The cycle type of the permutation sigma.

MEMBER FUNCTIONS

n()

Compute n =
∑

i λi.

vector<Partition> restrictions

The partitions R(λ) = { λ− ` n−1 | λ−≺ λ }.

str()

Print partition to string.

33

Snob manual Reference

StandardTableau

Represents a standard Young tableau t of shape λ. This class is descended from vector<vector<int>>,
hence all operations applicable to vector of this class are also applicable to StandardTableau.

Parent class: vector<vector<int>>

CONSTRUCTORS

StandardTableau()

The empty tableau.

StandardTableau(const Partition& lambda)

The “first” standard tableau of shape lambda, i.e., the one in which the numbers increase sequentially
from left to right and then continue in the next row.

StandardTableau(int y1, int y2, ..., NULL)

The standard tableau with Yamanouchi symbol (y1, y2, . . . , yk), i.e., the tableau in which 1 is in row
y1, 2 is in row y2, e.t.c..

MEMBER FUNCTIONS

str()

Print tableau to string.

34

Snob manual Reference

Matrix<FIELD>

A matrix M with elements of class FIELD. FIELD is set in Sn.h, typically either to double or complex. At
this time, Snob has only been tested with the former.

CONSTRUCTORS

Matrix<FIELD>(int n)

Initialize M to be the n-dimensional identity matrix.

Matrix<FIELD>(int n, int m)

An n×m matrix with unitialized elements.

Matrix<FIELD>(int n, int m, FIELD a)

Initialize M to be an n×m matrix with elements [M]i,j = a.

Matrix<FIELD>(string filename)

Load M from an ASCII file.

MEMBER FUNCTIONS

FIELD& operator()(int i, int j)

FIELD& at(int i, int j)

Return reference to [M]i,j . (There is no difference between the two functions.)

Matrix<FIELD>* operator+(Matrix<FIELD>& P)

Matrix<FIELD>* operator*(Matrix<FIELD>& P)

Return a pointer to a new matrix respectively equal to the sum M +P and the matrix product MP .

Matrix<FIELD>& operator+=(Matrix<FIELD>& P)

Increment M by P and return a reference to it.

Matrix<FIELD>& operator*=(FIELD& a)

Multiply M by a and return a reference to the result.

FIELD trace()

Return the trace of M .

FIELD norm2()

Return the squared norm of M .

int save(string filename)

Save M in ASCII format.

str()

Print matrix to string.

35

Snob manual Reference

MEMBER VARIABLES

int n

The row dimension of M .

int m

The column dimension of M .

FIELD* array

Pointer to a an nm-element array storing the elements of M in row major order.

36

Bibliography

Michael Clausen. Fast generalized Fourier transforms. Theoretical Computer Science, 67:55–63, 1989.

K.-L. Kueh, T. Olson, D. Rockmore, and K.-S. Tan. Nonlinear approximation theory on finite groups.
Technical Report PMA-TR99-191, Department of Mathematics, Dartmouth College, 1999.

D. Maslen and D. Rockmore. Separation of variables and the computation of Fourier transforms on finite
groups. J. of the Amer. Math. Soc., 10, 10(1):169–214., 1997a.

D. K. Maslen and D. N. Rockmore. Generalized FFTs — a survey of some recent results. In Groups and

Computation II, volume 28 of DIMACS Ser. Discrete MAth. Theor. Comput. Sci., pages 183–287. AMS,
Providence, RI, 1997b.

David K. Maslen. The efficient computation of Fourier transforms on the symmetric group. Mathematics of

Computation, 67(223):1121–1147, 1998.

David K. Maslen and Daniel N. Rockmore. Double coset decompositions and computational harmonic
analysis on groups. Journal of Fourier Analysis and Applications, 6(4), 2000.

37

