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ABSTRACT

The emergence of Large Language Models (LLMs) has introduced a new approach to video content
abstraction, both visual and audio. Previous research has shown that vanilla Convolutional Variational
Autoencoders (CVAE) can effectively reduce the dimension of video frames to enable clustering
algorithms. In this work, we propose another Convolutional-Recurrent Variational Autoencoder
(CRVAE) model, which incorporates encoder-decoder-structured fully-connected and LSTM layers
to extend the modality of the previous model. Further, an end-to-end video understanding pipeline is
built, including procedures of frame-caption alignment, latent space vector clustering, and LLM-based
cluster interpretation. Experiments are designed to evaluate and compare the model performances,
and the system is validated on videos with different cultural orientations.

1 Introduction

The Big Data era has witnessed the explosive development of online multimedia as an efficient source of information,
among which videos convey information with high temporal density to the audience through both images and audio.
For example, various news videos on YouTube can oftentimes provide an excessive amount of information for one to
absorb. Thus, it is a general trend that video content extraction and abstraction are gradually gaining their significance.
For this work, we are primarily motivated to employ modern Computer Vision (CV) and Natural Language Processing
(NLP) techniques to generate video tags or short descriptions without human supervision, to briefly understand a video
without watching every second.

It is our intuition that the information density of videos comes in temporal peaks – i.e., key information may be
contained in a short series of frames and captions – so our initial aim was to extract these slices of the video of interest
by performing clustering techniques. Yet it comes to the researchers that video frames with high resolutions – typically
encoded as Height×Weight×Channel (i.e., RGB’s) – are associated with an extremely high dimension that makes
it impossible to determine distances (dissimilarities) during clustering. Upon studying, the ideas from previous work
[Onder, 2021] have inspired us that Variational Autoencoders with only Convolution layers (Pure CVAE, see Figure 1)
can reduce the dimension of images low enough for popular Machine Learning algorithms to handle.

It is worth admitting that pure CVAE is, by every means, the state-of-the-art Neural Network model for encoding
large image datasets with high resolutions, but the use of the Global Max Pooling layer on top of the bottleneck layer
seemingly undermines its result. In such consideration, we propose to substitute the potentially insensible Global Max
Pooling structure with multiple Linear layers, also following the encoder-decoder structure (Dense CVAE, see Figure
2). Experiments are then designed to show the superiority of dense CVAE over pure CVAE, along with the theoretical
reasoning to support such arguments.

Enlightened by the idea that ignoring the first and last convolution layers, the dense neural network layers in the center
can, by themselves, act like a vanilla Variational Autoencoder and learn the important features and characteristics,
independent of the format of input vectors, the researchers then propose to incorporating NLP elements into the original
Computer Vision-forwarded CVAE model and presents the CRVAE (Convolutional-Recurrent Variational Autoencoder)
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Figure 1: Pure CVAE Architecture

Figure 2: Dense CVAE Architecture (duplicated Convolution layers at the end are omitted)

model, to handle both texts and images. In a practical sense, it is worth notifying that the audio channels in our news
videos mainly consist of clear speech of organized sentences. In such consideration, we decide to directly transform the
audio data into natural languages in text format, instead of keeping a time series of audio inputs.

Besides the CRVAE model and necessary preprocessing steps, our full pipeline (see Figure 3) also consists of clustering
methods in the pre-neural network era (especially the K-means algorithm), followed by visualized and verbalized
evaluation metrics to determine the optimal set of clusters. We use the “elbow method” to select the most suitable k for
the inter- and cross-cluster distances. To understand the real-world meanings (if any) of each cluster, we further apply
the Bootstrapping Language-Image Pre-training (BLIP) model to caption each image frame and the LLaMA model to
generate tags for each cluster (including texts and images). The above pipeline is tested on COVID-19 news videos in
both China and the United States, and in a high-level overview, it takes a YouTube video link as input and returns a
certain number of clusters of {frame, caption} pairs, with 10 tags as a description of each cluster’s content.

Figure 3: System Overview
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The project’s source code is available on GitHub https://github.com/Anemonee1212/cvae_video_cluster and
https://github.com/Anemonee1212/crvae_video_cluster.

2 Related Works

2.1 Autoencoder

With the rapid increase of computation power, the emergence of modern Artificial Intelligence also brought about
the renaissance of Autoencoders [Rumelhart et al., 1987]. By taking advantage of the Gradient Descent optimization
algorithm, it has long been the state-of-the-art unsupervised representation learning model for large-scale dimension
reduction tasks.

Figure 4: General Structure of Autoencoders

Figure 41 illustrates the encoder-decoder structure of a generic Autoencoder. The Encoder network maps the input
space into a lower dimension subspace, defined as latent space, while the Decoder network reconstructs the data points
in latent space back to their original dimension. The entire model is trained to minimize the dissimilarity between input
data and reconstructed output data, so in ideal cases, a well-trained Autoencoder can achieve lossless data compression
– all information of the input data can be fully recovered if “unzipped” properly. In this way, the data in the latent
layer (or colloquially, the bottleneck) is successfully “learnt” from the training data without explicit supervision labels
needed.

In practice, the Encoder network typically consists of several Dense Neural Network layers with a monotonously
decreasing number of neurons in each layer, while the Decoder network is oftentimes symmetric to the Encoder. To
avoid confusion of information within deep, fully connected neural networks, which leads to difficulty in restoring data,
the number of hidden layers in each network of a vanilla Autoencoder is typically limited to 2 (excluding the input and
latent layers).

2.2 Variational Autoencoder

Admittedly, from its very beginning, Autoencoders marked a cutting-edge milestone for unsupervised representation
learning, especially for dimension reduction tasks; meanwhile, the desired, almost lossless encoding approach comes
with a cost – the latent space oftentimes experiences “overfitting-like” behavior due to the loss of structural information.

Intuitively, since the loss function of vanilla Autoencoders only involves optimizing the encoded data points in latent
space, the regularization of how data points are represented (or in a statistical term, distributed) in the latent space is
not taken into consideration. That says, the resulting latent space may be so unorganized that, even though a certain
data instance can be reconstructed into a meaningful output similar to its input data, its neighboring point (not directly
mapped from the training set) is very likely to be decoded into random noises. Such patterns are quite analogous
to overfitting in supervised learning in the way that the model performance is guaranteed only on the training set,
regardless of data instances outside the dataset seen.

However, it is worth emphasizing that in our context, such “overfitting” patterns cannot be ignored or compromised. All
mainstream clustering algorithms which can potentially be applied to the compressed image data require some sort of
distance metrics, if not solely depends on them. For this reason, we demand the continuity and completeness of the

1Source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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latent space, and that it admits distance calculation as a representation of dissimilarity between data points – the closer
two images are embedded in the latent space, the more visually similar they should be. In such consideration, we adopt
the Variational Autoencoder (VAE) model [Kingma and Welling, 2013], one of the direct descendants of traditional
Autoencoders, to better address this issue.

The primary improvement of VAE over plain AE is that, instead of using the encoded data instances to reconstruct the
output data, we perform a random sampling of a certain distribution (say, Gaussian distribution) in the latent space
pre-defined around the encoded data point, and pass this random sample into the Decoder network. Or in mathematical
terms,

argmin
θ,ϕ

∥x− x′∥2,where x is the input data, x′ is defined by{
z = Eθ(x), x

′ = Dϕ(z), for AEs
z = Eθ(x), z

′ ∼ p(z|x), x′ = Dϕ(z
′), for VAEs

Eθ, Dϕ are encoder and decoder networks with parameters θ and ϕ, and
p(z|x) is the Normal distribution function with parameters µ, σ to be learnt

Even though by intentionally introducing randomness, we sacrifice some accuracy in reconstructing the original data,
this “variation” approach significantly improved the robustness and interpretability of Autoencoders by, at least in some
aspects, supporting the regularization of the latent space.

In practice, Normal (Gaussian) distribution are typically used for resampling, with both parameters (mean µ and
standard deviation σ) to be learnt.

2.3 Convolutional Variational Autoencoder

Concrete progress has been made by Onder [2021] and other researchers toward the encoding and the following
clustering algorithms of processing video frames with various cultural orientations. Specifically, the use of Convolutional
Variational Autoencoders (CVAEs) has been proposed and deployed to a historical image dataset (sampled from multiple
news videos about the competition in the ancient Chinese game “Go” between Ke Jie, the world champion, and AlphaGo,
an AI by Google DeepMind).

The idea of using fully Convolution layers in VAE is quite impressive, under the common consensus that for an object
shown in an image, once its approximate position is given, its precise, pixel-wise position is less of interest. Yet it is also
worth emphasizing that for images with high resolutions, simply using 1-strided Convolution layers, followed by Max
Pooling layers with 2× 2 pool size, is insufficient to reduce the extremely high dimensions (sometimes even in millions)
to an approachable level, while using larger strides and/or pool sizes will result in fuzziness during reconstruction using
Transposed Convolution layers (so-called de-convolution layer).

The original method to resolve this dilemma was to use a Global Max Pooling layer to the latent layer, probably inspired
by the way in which Convolutional Neural Networks (CNNs) without fully connected layers handle traditional image
classification tasks. In the meantime, multiple external researchers (including Pu et al. [2016]., Fan et al. [2020], etc.)
have shown the solid theoretical foundation, as well as the potential practical development, of using Dense Neural
Network layers between the Convolution layers and the latent layer.

Note At the point when this work started, the original AlphaGo news dataset and the code for CVAE training,
clustering, and analyses are no longer available. Though tremendous efforts have been made to replicate the original
structure, framework, training metrics, and hyperparameters, it is still worth mentioning that minor differences in model
performance may exist. The results in this report should be viewed only as a reflection of Onder’s work, and be used for
cross-comparison.

2.4 Recurrent Neural Network and its variants

RNN and its descendants had long been the state-of-the-art method for NLP tasks, because of their memory property
when dealing with sequential data. Specifically, for each cell in a sequence, a hidden state vector is kept, incorporating
all the information from the beginning of the sequence up to this cell. Such hidden state is then concatenated with the
input value and passed through a forward layer. In mathematical terms,

yt = ht = tanh(Whht−1 +Wxxt + b)

The initial task of RNN is to perform Language Modeling, i.e., to model special patterns like grammar or phrases
of the given language. The method of training is to minimize the cross-entropy error of predicting the next word
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from the existing words, e.g., given "<Start> Hello world", predict "Hello world <End>". To solve this task,
the original RNN model adopted an encoder-decoder structure, which can intuitively be taken advantage of by the
Autoencoder structure in our task. For this reason, we are inspired by the idea of combining RNN-based networks with
our existing CVAE.

Admittedly, the idea of using recurrent cells to handle sequences of natural languages (oftentimes with variable lengths)
is quite impressive. Yet it is still worth pointing out that various issues prohibited vanilla RNN models to achieve
satisfactory performance. The most outstanding one is the gradient vanishing issue in long sequences – the gradients of
the loss function with respect to parameters in early cells are raised to extremely high power, resulting in infinite or
infinitesimal values (in most cases).

Long Short-Term Memory [Hochreiter and Schmidhuber, 1997] (LSTM) model is the most commonly used variant to
address the gradient vanishing issue. By taking advantage of another “cell state”, in addition to the original hidden
state, LSTM avoids exponential products which directly causes gradient vanishing. In mathematical terms, the model of
LSTM looks like

(ft, it, ot, gt) = Whht−1 +Wxxh + b

ct = σ(ft)⊙ ct−1 + σ(it) tanh(gt)

ht = σ(ot)⊙ tanh(ct)

where ft, it, ot are forget, input, and output gates, σ is the sigmoid activation, and ⊙ is the element-wise matrix product,
i.e.,

σ(x) =
1

1 + e−x

A⊙B = [aijbij ]ij

Thanks to the forget gate and cell state features, LSTM models, in practice, achieved much higher performance in all
major NLP tasks. Empirically, LSTM shows an effective memory of previous information in a sequence of around 100
cells, while the capability of vanilla RNN is only 7 cells.

Gated Recurrent Unit (GRU) can be viewed as the intermediate form of RNN and LSTM. It is more complex than
RNN by adding another reset and update gate to control the flow of how hidden states are passed along and updated at
each cell of the sequence. On the other hand, it is simpler than LSTM because it does not have a separate cell state. In
mathematical terms,

(rt, zt) = Wghht−1 +Wgxxt + bg
gt = Wh (σ(rt)ht−1) +Wxxt + b

ht = σ(zt)⊙ tanh(gt) + (1− σ(zt))⊙ ht−1

Figure 52 is a clear illustration of these three models.

Figure 5: RNN, LSTM, and GRU cells

It is also worth emphasizing that even though vanilla RNN models have inherent directions among the sequence, we
can stack another layer of RNN cells with the opposite direction to make the model bidirectional so that it can learn the
language patterns in both directions, as illustrated in Figure 6.

2https://towardsdatascience.com/a-brief-introduction-to-recurrent-neural-networks-638f64a61ff4
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Figure 6: Bidirectional RNN (LSTM) Cells

2.5 Bootstrapping Language-Image Pre-training (BLIP)

BLIP [Li et al., 2022] is a pre-trained language-vision model which bridges the visual concepts of images and natural
languages. In the paper, Li et al. [2022] proposed a multimodal framework that combines Vision Transformers (ViT)
image encoder and self-attention text encoder and decoders. (See Figure 7.) BLIP achieved state-of-the-art performance
on multiple tasks, including Image-Text Retrieval, Image Captioning, Visual Question Answering (VQA), and NLVR2.

Figure 7: BLIP Framework

Specifically, for Image Captioning tasks, the text encoder block allows conditional image captioning, in which case
BLIP additionally takes a text segment as a prompt and generates subsequent text that describes the image. This
additional prompt serves as a hint to the model. For example, a common image prompt may be “A photo of ...”. In
contrary, unconditional image captioning does not have such inputs.

2.6 Llama 2

Llama 2 [Touvron et al., 2023] is a significant contribution to the field of language models, building upon the original
LLaMA model and introducing several innovations that enhance the model’s performance. The authors proposed an
open foundation for chat models, which enables fine-tuning on a wide range of tasks, including text classification,
sentiment analysis, question answering, and more. This approach allows for greater adaptability and customization of
the model to specific domains and applications.

Llama 2 also introduces several new techniques for improving the performance of the model, including:

• A novel attention mechanism that allows the model to focus on different parts of the input sequence, improving
its ability to capture long-range dependencies and contextual information,

• A fine-tuning framework that enables quick adaptation of the model to new tasks without requiring significant
changes to the underlying architecture, and

• A safety analysis mechanism that evaluates the model’s performance under various adversarial attacks (e.g.,
toxicity, discrimination, etc.), providing insights into its resistance to these threats.
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Llama 2 is made open source by Meta with 3 different sizes – 7B, 13B, and 70B – each representing how many billions
of parameters. In practice, the template for prompting LLaMA is as follows:

Prompt Template: <s>[INST] <<SYS>> { system_prompt } <</SYS>>
{ user_prompt } [/INST]

where the system_prompt is the general instructions on how LLaMA should respond, and the user_prompt is specific
conversations that user interacts with LLaMA. Multiple user prompts (and corresponding responses) can be provided
subsequently.

3 Dataset

To deploy and evaluate our pipeline on a topic with popular and impactful insights, we chose to focus on the news
videos related to COVID-19. This topic was selected due to its global attention and awareness, as well as the potential
cultural difference reflected by how official news agencies report and propagate. During the exploration phase of
our research, we believed that compared with the outdated AlphaGo-beats-human debate used in previous work, the
worldwide impact of COVID-19 could indeed arouse more public interest.

In our context, in news videos, images will typically include outdoor scenes recorded by the reporter and indoor scenes
of hosts in the studio, while audio will include words of the hosts and guest speakers, or sometimes even background
music. The raw image dataset is sampled at the rate of 1 frame every 2 seconds (i.e., 30 frames per minute). Since we
introduced multimodality to our model, the preprocessing step is now more effort-taking, in order to align segments of
text data with each image frame.

3.1 US New Variant Video

This video3 is published by CBS Mornings on YouTube. The main content of this video was about the resurgence of
COVID-19, BA.5 (Omicron) variant, and its spread across the US. Dr. Agus also discussed the corresponding reactions
and restriction policies in large cities like New York and Los Angeles. The video length is 3 minutes and 40 seconds in
total, which generates 109 image frames, excluding irrelevant scenes at the beginning and end. Some manually labeled
typical frames include the host and/or the medical expert talking to the camera, and a presentation slide.

The text data of US videos are collected from the YouTube auto-generated closed caption (transcript/subtitles/etc.)
in English, enabled by the Python youtube-transcript-api package. We manually inspect the text to ensure its
correctness. Since the autogenerated caption does not include punctuations, we can simply use the Basic English
Tokenizer in the PyTorch torchtext package. We use a pre-trained GloVe (Global Vector) Embedding with a
dimension of 300 to embed every word (token).

The Transcript API segments the whole script paragraph into 96 segments of text, which gives approximately 10 to 20
words in each segment. In addition, it also provides an accurate timestamp at which time it appears and disappears,
which shows that the period between 2 neighboring segments are roughly 2 seconds (which corresponds to the rate at
which we sample the frames). Given such detailed information, we aligned the images to the text segments by selecting
the frame closest to their starting time.

Sample text and images are given as follows:

"health officials here in new york city",
"and in los angeles are sounding the"...

3.2 Chinese Vaccine Video

This video4 is published by China Central Television (CCTV) on YouTube. The primary purpose of this video was
to encourage (or demand) senior Chinese citizens to take vaccines for COVID-19, while also reporting the current
situation of the pandemic and the progress of disease control. This video is relatively longer than the previous US New
Variant Video, with 15 minutes and 8 seconds, so it generates 378 image frames in total. Typical frames involve the
host and/or the medical expert talking to the camera, and a presentation slide.

Since YouTube does not provide transcripts for Chinese videos, we have to resort to external audio-to-text converters.
However, the source videos involve some conversations in Chinese dialects (which are pretty different from Mandarin),

3Video link: https://www.youtube.com/watch?v=doP5UacBlt0
4Video link: https://www.youtube.com/watch?v=xcWeBCOMoiU
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(a) US host and official talking (b) US presentation slide

Figure 8: US Sample Frames

(a) Chinese officials talking about COVID-19 (b) Chinese elderly taking a vaccine

Figure 9: China Sample Frames

so the accuracy of the AI converter is not ideal. We apply careful manual inspection to correct its mistakes and
add timestamps with a segment every 10 seconds. This 10-second period is chosen with the consideration that the
information density of Chinese is relatively larger than that of English. If we stick to the 2-second period, the segments
will be too short for the model to capture any valuable information.

The manual process of text data gives us 90 text segments, which need to be aligned to the 378 image frames. The
average sample rate is 4.2 frames/segment, so we uniformly sample 5 images out of a series of 21 image frames,
under the assumption that within a short period of time, the speech of Chinese words (or characters) is also uniformly
distributed. We further use Jieba Chinese word tokenizer as well as Chinese Word Vectors embedding [Li et al., 2018],
which also embeds Chinese words and characters into vectors of dimension 300. However, Jieba does not necessarily
remove the punctuations during tokenization, so we need to explicitly filter out Chinese-style punctuations like “,”, “.”,
and “?”, in order to avoid these meaningless embeddings affecting the model training.

Sample text (translated to English) and images are given as follows:

"Should the elderly people take COVID vaccines? Yes, elderly people must take vaccines.
It can prevent severe illness and deaths with roughly 90%..."

Note Due to the character-based nature of Chinese language, and the shortcoming that Jieba and Chinese Word
Vectors (CWV) do not cooperate, there exist some Chinese words (approximately 6%), as defined by Jieba, that are not
recognized by CWV. An outstanding example is the Chinese abbreviation of the word “coronavirus”. In such cases, we
have to either handle the word as unknown tokens ("<UNK>" embedded as a vector of zeros) or use a more fragmentary
tokenizer to further split the word into single characters (e.g., the word “coronavirus” can be split into “new” and
“crown” in Chinese).

4 Methods

4.1 Pure CVAE vs. Dense CVAE

In the previous work [Onder, 2021], where only images from AlphaGo-beats-human news are considered, the author
stated that applying a Global Max Pooling layer on top of the 128-channel latent layer (see Figure 1) would help reduce
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the dimension of the images to 128. This hypothesis might sound acceptable at first glance, as a mimic of the Global
Average Pooling layer used in traditional CNN for classifications. However, this almost brute-force method is neither
theoretically sensible nor practically reasonable.

• The obvious and most outstanding drawback of this method is that, by forcing a full, 2D feature map to
compress to 1 single value, we are indeed losing all spatial information about objects, structures, etc. within this
convoluted image, which is opposed to our initial goal of clustering images based on their relative similarities.
In other words, keeping track of an extremely “bright spot” (the pixel that is most activated by the Convolution
layers) in a feature map does not necessarily provide information on the content of the image according to
human intuition.

• On the other hand, it should not be neglected that during the actual training process, the “latent vector” of
length 128 after Global Max Pooling is, in fact, not involved. It is neither the direct output for which the
Encoder network is optimizing, nor can it be used to reconstruct the output image – the Decoder network needs
to take the whole feature map of 30× 50× 128 into consideration, so merely 128 elements cannot necessarily
represent the original image in the lower-dimension subspace.

For these reasons, we conclude that pure CVAE is insufficient to encode images, because the step where the harshest
compression of 1

150 happens, i.e., the Global Max Pooling layer, does not belong to the encoder-decoder architecture
through the Gradient Descent optimization algorithm. To address the problem of reducing the dimension into an
approachable level without extra pooling, we propose the dense CVAE model: CVAE with Dense neural network layers
in the middle. (See Figure 2.)

Specifically, we use 3 2D-convolution layers (with kernel size 3× 3, a stride of 1, and a Max Pooling layer of 2× 2)
followed by 3 fully connected layers for the encoder network, and symmetrically for the decoder network, only that we
use Transposed Convolution layers (with stride 2) followed by another Convolution layer of same dimension to restore
the original dimension (or so-called “de-convolution”). The model setup and training details of both pure and dense
CVAE are provided in Appendix 7.1 through 7.4.

4.2 Convolutional-Recurrent Variational Autoencoder

Based on the dense CVAE framework and new data with multimodal aspects of text and images, we propose our new
CRVAE model architecture as shown in Figure 10, which takes an image and a sentence as input each time, processes
them in parallel using CNN and LSTM respectively, and finally combines the multimodal input vectors through fully
connected layers. It generally follows the encoder-decoder structure, determined by a latent layer in the center. The final
output of this model is the vectors in the latent space, with lower dimensions compared to the input images and text.

Figure 10: CRVAE Architecture

4.2.1 Encoder

Similar to the dense CVAE model, we set the dimension of input images as 200× 120× 3, with a batch size of 16, and
3 represents the RGB channels. The framework of Convolution and Max Pooling layers remains the same, only that the
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numbers of filters (channels) are set to be uniformly 32. The motivation to use fewer channels in the last convolution
layer (decreased from 64 to 32) is that after flattening, we will have 32× 25× 15 = 12000 neurons, instead of 24000,
which significantly reduces the model size.

The text encoder network is an RNN-based model, with the input of a sequence of embedded text (in dimension 200).
Note that the pre-trained embedding weights (Chinese or English) are fixed and are not optimized during Gradient
Descent. The model is selected from either vanilla RNN or LSTM, both of which have a hidden size of 512 (i.e., the
length of the hidden state vector) and 2 stacked layers of bidirectional recurrent cells. The results show that the LSTM
model has higher performance than vanilla RNN on all tasks. GRU is not implemented or evaluated in our model,
because we know that it is an intermediate form between RNN and LSTM, so we tend to assume that LSTM will always
have better performance than GRU.

It is also worth emphasizing that since 2017, the Transformer [Vaswani et al., 2017] model (and its variants), thanks to
the self-attention mechanism with an absolute advantage in long-range inter-sentence dependencies, have exceeded
the state-of-the-art performance of LSTM in all major NLP tasks. Indeed, the initial thought of the authors was to
incorporate the Transformer’s encoder and decoder into the CRVAE model, but the following shortcomings, after taking
into consideration, make Transformers less ideal than LSTM in our context:

• Transformer cells, which include Multi-Head Attention, Feed Forward Neural Network, and Residual Con-
nection layers, are more computationally complex than LSTM. The reasons why Transformer-based models
typically train faster are that they are more suitable for pre-training, and that parallelize better by avoiding
the sequential operations of RNN-based models. But in our case when pre-training is less significant, and
when the sequences are relatively shorter (segments of sentences), such advantage in parallelization does not
outweigh its disadvantage in model size.

• Again, since we are dealing with segments of sentences, the strict grammar and lexical structure of a language
are oftentimes weakened or even broken. That says, the self-attention cells in Transformers are harder to learn
the important language patterns of our text data, while the cross-segment attentions are impractical to train
through neural networks.

CRVAE uses 2 fully connected neural layers in the middle. The outputs of the Convolution layers and LSTM layers are
flattened and normalized (using the Batch Normalization layer) to ensure that they are approximately on the same scale.
The resulting vector, after concatenation, has the dimension of 32 × 25 × 15 + 2 × 2 × 512 = 14048, where 2 × 2
represents 2 layers of LSTM, both in 2 directions. It is then narrowed down to 1 layer with 4000 neurons, and the final
latent layer with 2000 neurons (with which 1000 for the latent mean and the other 1000 for the latent standard deviation
in logarithm scale).

The latent mean µ and latent standard deviation lnσ are then used to resample (in Normal distribution) across the latent
space, and the resulting vector is passed to the decoder network for the reconstruction of images and text. After the
training session, the latent mean µ is finally calculated as output.

4.2.2 Decoder

The decoder network is roughly symmetric to the encoder network, as the 1000-dimension input is gradually rebuilt to
4000 and 14048-dimension. It is then spitted into 2 parts and trained to reconstruct the images and text separately.

In contrast to the encoder where images are downsampled by the Max Pooling layer, the image decoder uses Transposed
2D Convolution layers with 3× 3 kernel and a stride of 2 to “upsample” an image channel, resulting in doubled width
and height. Each of these Transposed Convolution layers is followed by a Convolution layer with the same kernel size
(3× 3) and number of channels (32). After 3 (Transposed Convolution, Convolution) blocks, the tensor is reconstructed
into the original resolution with 3 channels, representing the Red, Green, and Blue pixels of an image. We use the
pixel-wise Mean Squared Error (MSE) between the input image and the reconstructed images as the loss function.

The text decoder in CRVAE is different from the traditional LSTM decoder for NLP tasks because we would require
the model to handle multilingual inputs. Generally, we would map the neurons to a layer with the same length as the
vocabulary size and assign a SoftMax activation, which corresponds to the Cross-Entropy loss. However, due to the
different natures of Chinese and English, this approach will not work. Instead, we now require the decoder to predict
the embedded text as tensors and optimize the MSE loss between the original and reconstructed embedded text. This
explains why we “freeze” the embedding layer during the encoder network – the word embeddings are not involved in
the training session. In response to this change, some additional features of the text decoder that are worth mentioning
are as follows.
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• We explore the effect of the Teacher Forcing algorithm on our text decoder network. By using Teacher
Forcing during decoding, at each LSTM cell, we predict the next word by the input of ground-truth previous
word embeddings, while without Teacher Forcing, the input is the predicted previous embedding. The name
“Teacher Forcing” of this algorithm is an analogy of a teacher instructing the student step by step to solve
problems.
We experienced a significant performance increase with this algorithm, and such use is also theoretically
reasonable. This is because the task of our network is not training a Language Model to generate texts.
Instead, our purpose in building the text decoder is to train the Autoencoder to learn important features and
characteristics of the given text, and these types of information (encoded in the latent layer) are passed on to
the decoder through hidden and cell states. That says, the input of each cell should indeed be correct words to
avoid “misunderstanding”.

• Upon using the MSE loss, our final reconstructed text segments are actually tensors of numeric values, instead
of words (in Chinese or English). Yet we, humans, cannot necessarily interpret these vectors, so we still need
some methods to “visualize” (or more exactly, “verbalize”) the vectors. In a practical term, we search for the
nearest neighbor of an embedded word in the vocabulary, and further “decode” this vector as the word which
has the closest embeddings. Note that this nearest neighbor verbalization is not part of the training process
either.

4.3 CRVAE Model Configurations

By constructing our model based on the above architecture [10], we can formulate 2 types of MSE loss – image loss
and text loss. The final loss function is L = ImageLoss+ λ TextLoss, where λ is a ratio hyperparameter to balance
the reduction of losses during the training session. In practice, we set λ = 3.

All intermediate layers in the model are activated by ReLU (Rectified Linear Unit) function, and an Adam (Adaptive
Momentum) optimizer with a learning rate of α = 10−4 is used. The model is trained for 500 epochs on local devices5,
and a typical training session lasts for around 60 minutes, which is similar to the training time of a 300-epoch dense
CVAE model.

4.4 Clustering and Cluster Interpretation

After encoding each {frame, caption} pair into a latent space of dimension 1000, we perform K-means clustering on
all 1000D vectors generated from a certain video. We first traverse through a series of numbers of clusters k to determine
an approximate range of optimal hyperparameters. The metrics used include average inter-cluster distances, average
cross-cluster distances, and cluster robustness tests. Specifically, an ideal k will have comparably small inter-cluster
distances (we want data points to be close to their centroids), large cross-cluster distances (we want centroids to be far
away from each other), and robust clusters that do not change significantly as new centroids are introduced.

Besides these quantifiable metrics, we also propose a quality evaluation in an intuitive manner. Traditional opinions
are that clustering algorithms – in contrast to classification – group the elements only based on their similarities, with
no consideration of their real-world meanings. However, by taking advantage of the deep contextual understanding
capability of LLMs, we present a way to interpret the meanings of each cluster. Specifically, we choose to prompt
the LLM to generate short, English tags for the cluster of {frame, caption} pairs, considering the conciseness and
popularity of tags as description of videos.

We first use the BLIP-base model on HuggingFace (blip-image-captioning-base) in full, float32 precision to
“caption” each image frame. We experiment both conditional and unconditional image captioning, and the image
prompt provided for conditional one is given below.

Image Prompt: A news photo of ... (BLIP will generate subsequent text.)

Note To avoid the misunderstanding between “video caption” in news videos and “image caption” generated by BLIP,
we refer to the latter one as “image description” or “frame description” from now on.

We then use the Llama 2 model with 7B parameters on HuggingFace (Llama-2-7b-chat-hf) to perform generative
language modeling. Because text elements can be easily concatenated, we combine all information of frames and
captions in a cluster into the user prompt, in addition to the following system prompt.

5The hardware that the researcher uses is NVIDIA GeForce RTX 3080 with 10 GB GPU Memory. If more GPU Mem is available,
you may wish to try input images with higher resolutions and/or more complex neural networks.
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System Prompt: Please generate 10 short tags for a series of frames sampled from a YouTube news video based on the
images and captions provided. Please avoid generic words that describes the whole video, but to emphasize
the unique characteristics of these frames. You may need to implicitly infer the meanings of the objects in the
image description according to the video context.

The purpose of the second sentence is to avoid common keywords that appear in all clusters (e.g., “coronavirus” or
“COVID-19”), and the purpose of the last sentence is to emphasize the contextual understanding between image frames
and text captions. In a practical term, in our context, a sample image description can be “a man in a mask and protection
suit”, and we want LLaMA to infer that this man is likely a medical staff performing examinations for COVID-19. The
final prompt looks like the following.

Prompt Template: <s>[INST] <<SYS>>
Please generate 10 short tags for a series of frames sampled from a YouTube news video based on the images
and captions provided. Please avoid generic words that describes the whole video, but to emphasize the unique
characteristics of these frames. You may need to implicitly infer the meanings of the objects in the image
description according to the video context.
<</SYS>>
Text caption: ... (some text captions in English or Chinese)
Image description: ... (some image descriptions in English)
[/INST]

The sampling process during LLaMA text generation is controlled by several hyperparameters, including temperature,
top_k, top_p, etc. We experimented on different values of temperature = t ∈ [0, 1]. A general rule of thumb is that
with small t, LLMs tend to respond in a conservative way, predicting text that most likely to follow, while with large t,
LLMs tend to be creative. In practice, we set a large value of t = 0.9 for a diversified generation.

5 Results

5.1 Autoencoder Model Experiments

The performance of the CVAE and CRVAE models on image encoding task is listed below.6 We conclude that dense
CVAE is superior to pure CVAE.7 We successfully prove the theoretical soundness of adding linear layers in the middle,
and thus setting up a solid foundation of CRVAE.

Table 1: CVAE and CRVAE Model Performance
Dataset

Model Loss Type China United States

Pure CVAE Image 0.585 1.458
Dense CVAE Image 0.382 0.662

CRVAE Image 0.068 0.133

Table 2 is the comparison of performance across all subvariants of our CRVAE model. We conclude that the LSTM
subvariant of CRVAE model with Teacher Forcing algorithm is superior to either RNN subvariant or without applying
Teacher Forcing in all datasets, and we decide to go on with this. Further, we can see that our best model performs
better in image reconstruction for Chinese data, and text reconstruction for US data. Such differences in behavior are
somewhat intuitive, as the common consensus is that Language Modeling is much harder for Chinese than English.

The loss curves of the CRVAE (LSTM + TF subvariant) on the 2 datasets are shown in Figure 11. We can see that for
the Chinese dataset, the loss from text is always larger than that from images, while in both datasets, the Image Loss
decreases rapidly at first, and then converges slowly, together with the Text Loss.

The sample reconstructed images of our model are also shown below (see Figure 12 and 26). The output images are
generally fuzzier than those generated by CVAE (see Appendix 23), yet considering the fact that mixing information

6It is worth admitting that the number of epochs for which the 3 models are trained does not match. Pure CVAE is trained for
100 epochs and starts to converge at around Epoch 70; dense CVAE is trained for 300 epochs and converges at around Epoch 200;
CRVAE is trained for 500 epochs. Yet the difference in training time will not affect the performance because of the convergence.

7The MSE losses of CVAEs are scaled in the same coefficient to account for the difference of image resolutions between CVAE
and CRVAE, but the relativity remains unchanged.
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Table 2: CRVAE Subvariants Model Performance
Dataset

Subvariant Loss Type China United States

RNN + TF Total 1.002 1.064
LSTM + No TF Total 0.539 0.520

LSTM + TF Image 0.068 0.133
LSTM + TF Text 0.085 0.050
LSTM + TF Total 0.323 0.284

(a) China vaccine dataset (b) US new variant dataset

Figure 11: MSE Losses of CRVAE during training

from text into the neural network for dimension reduction will add confusion to the model, demanding it to learn and
distinguish between information from both sources, such minor flaws are just a fair trade-off.

In addition, we manually examined some reconstructed images in detail, (see Appendix 24), and notice an outstanding
pattern that, if the original image has a white or relatively lighter background, the reconstructed image will likely have
minor bright noises of pure colors (e.g., red, green, or blue) in those areas. This common pattern is also shared in CVAE
results. (See Appendix 7.4.) We tend to attribute this phenomenon to the fact that Neural Networks are mostly activated
around 0, which makes them harder to predict large values (e.g., R = 255, G = 255, B = 255). If we are decoding
white colors, it is likely that some pixels will lack (at least) one channel of colors, which will show us a “bright spot” in
the image.

Despite all these shortcomings, we conclude that CRVAE is satisfactory in image reconstruction, as it almost successfully
recovered all major parts or objects in the image. In addition, we verbalize the reconstructed text and clean up the
padded tokens. We can see that the results are very accurate.

5.2 t-SNE Visualization

Even though the models encode high-resolution image frames and long text captions into an array in its lower-dimension
subspace, the length of 1,000 still prohibits researchers to understand the distribution of data point embeddings in
the latent space. Considering this, we utilize the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm to
further reduce its dimension to 2D. It needs to be reiterated that all clustering processes below are still performed on the
original, 1000D vector space; the 2D space is only used for visualization and illustration.

The most influential hyperparameter of t-SNE is perplexity, which controls how extreme or how “sharp” the t-
distribution is. Typically, the smaller perplexity is, the more isolated the resulting data points will be. In practice,
considering the data size, we set the perplexity at 8 for both datasets. We can see that most data points are sparsely
distributed in the 2D space, with only a few loose clusters. We also notice several small but compact clusters for Chinese
dataset, as well as a very extreme outlier for US dataset in Figure 14.
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Figure 12: Sample output on China vaccine dataset

Figure 13: Sample text on China and US dataset

5.3 K-means Clustering

5.3.1 US Data

We can see that the inter-cluster distance shows a sharp “elbow” point at 3, and the cross-cluster distance reaches its
maximum at 3 in Figure 15. These patterns are sufficient for us to choose k = 3 as the best number of clusters for
the US new variant data, and the corresponding distribution of clusters seems reasonable in the 2D plane [14b]. (To
maintain the conciseness, the visualizations for distribution of different k’s are not listed, but they can be found in the
GitHub output/xx/cluster/ directory.)
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(a) China data (5 clusters) (b) US data (3 clusters)

Figure 14: Distributions of latent vectors in 2D space

(a) Inter-Cluster Distance (b) Cross-Cluster Distance

Figure 15: Cluster evaluation metrics for US data

5.3.2 China Data

Choosing the optimal value of k on Chinese vaccine data requires more detailed analysis. The inter-cluster distance
curve decreases smoothly, with a weak indication of “elbow”-like pattern at k = 4. However, the cross-cluster distance
curve tells the other story, which shows that the distance between centroids are still on the increase at 4 clusters. (See
Figure 16.) In this case, we resort to the cluster population plot in Figure 17b to see if any robust clusters turned out. We
can see that as k increases from 3 to 5, the largest two clusters are pretty robust, while the smaller clusters are subject to
flexible changes. That provides some evidence for us to select k ≈ 5. The distribution of 5 clusters are shown in Figure
14a.

5.4 Cluster Interpretation

After encountering the uncertainty in selecting the optimal number of clusters for China data (only based on quantifiable
metrics), we are further motivated to see the actual meanings of each cluster, hopefully without traversing through all
images and texts in the dataset. Thus, we take advantage of the cutting-edge Large Language/Vision-Language Models,
and their results are shown below.
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(a) Inter-Cluster Distance (b) Cross-Cluster Distance

Figure 16: Cluster evaluation metrics for China data

(a) Population of each cluster of US data (b) Population of each cluster of China data

Figure 17: Cluster evaluation metrics for US data

5.4.1 BLIP-Generated Image Descriptions

Overall, the results of image descriptions generated by BLIP are satisfying. It can successfully detect persons, objects,
scenes, etc. in a frame, and make inferences to some extent. For example, in Figure 18, BLIP can detect the “lab”
settings in China data, and infer the occasion of the TV show in US data. However, BLIP shows disability in Optical
Character Recognition tasks. Once obvious texts exist in the image, the model starts to perform weirdly. For example,
in Figure 19, it hallucinates Chinese words “priority pass for people aged 60+” into “no to the government”, which
is never mentioned or even indicated in the image. Similar to the US data, it cannot understand the way statistics are
presented, but instead returns a meaningless repetitive sequence of “corona” and “covids”.

5.4.2 LLaMA-Generated Tags

We experiment with the tag generation process using Llama 2 for 3 and 4 clusters for the US video, and 4 and 5 clusters
for the Chinese video (10 tags for each cluster). After manual inspections, we conclude that the results with 3 clusters
are most sensible for US video, as shown in Table 4, while those with 5 clusters are most sensible for Chinese video, as
shown in Table 3. In the meantime, it is also worth notifying that overall, the LLaMA model performs better on US
video than Chinese video. We expect that such better performance is due to the Chinese captions, considering the fact
that the training corpus of Llama 2 is mainly in English.
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(a) “A person an a lab holding a bottle” (b) “A woman in a colorful dress is on the set of the today show”

Figure 18: BLIP is good at detecting (and inferring) figures/objects

(a) “A sign that reads ‘no to the government’” – it actually
means “priority pass for people aged 60+”

(b) “corona corona covids, covids, ...” – it is a slide of COVID
statistics
presented in the TV show

Figure 19: BLIP is bad at detecting texts, especially Chinese characters

We manually label the output tags by whether they correspond to the information in image frames or text captions.8
During this labeling process, common tags throughout the whole video (which are typically shared across all clusters)
are ignored. In either video, most tags are meaningful, i.e., reflect the information from images or texts. Yet there are
still less than 20% of tags that contain generic, mistaken, or made-up information. Comparing with the human labor
cost to going through all clusters and searching for the corresponding frames and captions, the cluster interpretation
pipeline significantly increases the efficiency by only requiring to verify the 10 tags generated.

Table 3: Tags of China Vaccine Video (5 Clusters)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

TV host∗ Monitoring COVID-19 COVID-19 Older Adults†

Masked individual∗ Medical Staff∗ Pandemic Immune System† Safety
Hospital scene∗ Patient∗ Vaccine† Elderly† Influenza
Remote work Treatment† Protection† Healthcare Healthcare Workers∗

Health concerns† Medicine∗ Elderly Medical Professional∗ Medical Examinations∗

Dental care Diagnosis† Health Vaccination Government†
Fitness Testing∗ Prevention Public Health Information

Age-related health issues† Quarantine Risk† Infection Control Technology
Global pandemic† Global Response† Immunity† Virus† Collaboration

Community protection Infection Control† Medical Pandemic Social Responsibility†

5.5 Insights

During the manual inspection of CRVAE clusters, we notice an time-sequential pattern upon we validate with the
results from CVAE clusters. Different from CVAE which only takes images into consideration, the new CRVAE model

8Tags marked by ∗ reflect information in image frames. Tags marked by † reflect information in text captions.
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Table 4: Tags of US New Variant Video (3 Clusters)
Cluster 1 Cluster 2 Cluster 3

COVID-19 news update Ba5 Variant group of people sitting at a table∗

New York City health department alert Medical Contributor† covid-19 on the rise†

Coronavirus transmission rates surge† Latest Wave of Infections† city of Vancouver
Indoor mask mandate possible† Health Risks† sun setting over horizon

Hospitalizations due to COVID-19† Repeated Illnesses† green and white circle with words∗

Booster shots and treatments crucial† New Normal† graphic∗

New COVID-19 variant identified† Suit∗ symptoms of micro fage
Ba.2.75: the latest COVID-19 wave Women∗ percentage of coronavirus in the US∗

Living with the virus† Dress∗ corona corona seen in graphic
Health officials sound the alarm† Set of the Today Show∗ corona

shows a more significant pattern – neighboring image frames and text segments in the videos are mapped to closer data
points in the latent space, while in CVAE, the formation of clusters heavily relies on objects and color styles of images.
We expect that such difference is because the high correlation between neighboring text captions is encoded into the
CRVAE model, but ignored by the CVAE model.

It is also worth emphasizing that some interesting correlations between words in text and objects in images are also
discovered. For example, in the China vaccine video, images with a certain guest speaker frequently co-occur with
a Chinese word that means “the elderly”. In the US new variant video, on the other hand, the word “Omicron” is
oftentimes associated with medical expert Dr. Agus. This unexpected finding may imply the effectiveness of our model
in processing and extracting information from multiple sources.

Disadvantages Even though not intentionally designed, the LSTM layers in our model inevitably learn Language
Modeling information, which is absolutely different for Chinese and English. For this reason, cross-cultural element
comparison seems to provide less real-life insights than traditional CVAE.

6 Conclusions

In this work, we constructed a full pipeline of CV, NLP, and LLM Prompt Engineering tasks on videos, integrating
and processing data in different formats, including videos, audio, images, and plain texts. We designed a brand new
Convolutional-Recurrent Variational Autoencoder architecture, which was established upon the combination of CVAE
and LSTM while maintaining the encoder-decoder structure of both models. Fundamental theories of Neural Networks
and Artificial Intelligence were applied to argue for the correctness and superiority of the model, compared with vanilla
CVAE in previous work.

Advanced pre-trained Large Language Models and Large Vision-Language Models (i.e., Llama 2 and BLIP) have also
been adopted to add explainability to the clustering process with no ground-truth supervision labels. High-quality,
human-interpretable tags for video clusters provide concrete evidences to support the effectiveness of our system in the
abstraction and extraction of key information in multimodal data. We are excited to see the potential of this framework
to be applied to other cultural affinity studies in videos.

Future Works During our research phase, new multimodal LLMs emerged and indicated the potential integration of
BLIP and LLaMA. For example, LLaVA-1.5 and GPT-4 can receive one single image (together with text) as inputs.
Although these models did not satisfy our requirement of multiple image inputs, the development of LLMs may, one
day, allow to bypass the image-to-text translation.

Our work also indicates a future research area to substitute the LSTM model with more prevalent Transformer-based
models like BERT or GPT. In addition, the authors expect that besides CVAE which follows a strict encoder-decoder
structure, other models with similar 2-network architecture, e.g., CGAN (Convolutional Generative Adversarial
Network) might also be combined with LSTM or Transformers.

Acknowledgments I would like to express my gratitude toward fellow researcher Alan Luo, Zheng Hui, and Hui’s
former teammate Zihang Xu at Columbia University. Luo has contributed to the web-scraping of image data, and Hui
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(a) US data (b) China data

Figure 20: MSE Losses of Pure CVAE during training

7 Appendix

7.1 Pure CVAE Model Architecture

The architecture of pure Convolutional Variational Autoencoder is intentionally designed to emulate the model in the
work of Onder [2021].

The Encoder network has an input shape with a height of 240 pixels, a width of 400 pixels, and 3 channels representing
RGB. All 3 Convolution layers have the same kernel size of 3× 3 and a stride of 1, and they have 32, 64, and 128 filters
(channels) respectively. ReLU activation is applied to Convolution layers. Each Convolution layer is followed by a Max
Pooling layer of pool size 2× 2. That says, the size of each filter reduces by 1

2 in both height and width after passing
through a Convolution-Max Pooling combination.

The latent dimension is set to be 128, so the number of channels in the latent layer is 128× 2 = 256: 128 of which are
trained to be the mean, while the 128 channels remaining are the variance, as per the parameters of Normal (Gaussian)
distribution. After that, random samples are made accordingly, which forms the resample layer.

The Decoder network can be viewed as the opposite of the Encoder, where the Convolution layers are constructed
in exactly the same manner. The Max Pooling layer used for downsampling, on the other hand, is reconstructed by
Transposed Convolution layers with the same shape, stride of 2, and kernel size of 3× 3. Such 2-strided layers can
upsample the channels and thus double the height and width. All layers in the Decoder are activated by ReLU.

7.2 Pure CVAE Training

The pure CVAE model is fitted on China vaccine data, US new variant data, as well as their mix (multi-source) data, in
a batch size of 32. Pixel-wise Mean Squared Error (MSE) is set as the loss function. We use an Adaptive Momentum
(Adam) optimizer with a learning rate of 1×10−4. A 100-epoch training session on our local device takes approximately
10 minutes.

From Figure 20, we can clearly see that the model converges quickly within 100 epochs. The MSE loss at epoch 100
is 2.338, and sample reconstructed images are shown below. The output of CVAE (Figure 21a) is impressive, as it
almost successfully recovered all major parts or objects in the image, except for a few minor bright noises in a white or
relatively lighter background. Similar procedures are performed on US new variant dataset and multi-source dataset.

7.3 Dense CVAE Model Architecture

Learning the prior experience of the pure CVAE model, we design the new structure to let the dimension reduce
smoothly. First, the input shape is limited to 16 × 120 × 200 × 3, where 16 is the batch size. The framework of
Convolution and Max Pooling layers remains the same, only that the numbers of filters (channels) are set to be 32, 32,
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(a) China data (b) US data

Figure 21: Sample outputs of Pure CVAE

(a) US data (b) China data

Figure 22: MSE Losses of Dense CVAE during training

and 64 respectively. That gives a vector of length 15× 25× 64 = 24000 after flattening. Then in 2 Dense layers with
decreasing number of neurons, the latent dimension is finally reduced to 1,000 (means and variances).

Similarly, the omitted Convolution layers in the Decoder network add back the feature map dimensions gradually. In
the meantime, the number of channels reduces from 64, 32, 32, to 3, which represents RGB.

7.4 Dense CVAE Training

For reference, the dense CVAE model is also fitted on the same 3 datasets. Even though the input and output shape
changed to 1

4 of the pure CVAE model, the nature of pixel-wise Mean Squared Error (MSE) as a loss function still
supports the cross-model comparison. The same hyperparameters are adopted, and the network starts to converge at
around 300 epochs. That says, a typical training session on China vaccine data requires almost 1 hour on local device,
which includes both fitting the model and transforming the training images into reconstructed images.

Different from the pure CVAE, dense CVAE with multiple fully connected layers typically takes more epochs to
converge. This is somewhat understandable, considering that complex matrix multiplications between flattened Dense
layers indeed contribute to the majority of parameters in Neural Networks. Besides a tripled number of training epochs,
the time complexity of each epoch also increases. Despite the increased cost in computation power, we still believe that
it is a fair trade-off, given the absolute advantage of how dense CVAE helps achieve our initial goal.
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(a) China data (b) US data

Figure 23: Sample outputs of Dense CVAE

Figure 24: Sample reconstructed images of CRVAE

The MSE loss at epoch 300 is 1.528. It is worth notifying that with this relatively lower MSE, dense CVAE significantly
outperforms pure CVAE in most cases, but there still exists some extreme outliers, where dense CVAE generates totally
wrong, highly contrasting color patterns, e.g., image 16 (lower right corner) in Figure 23a. This abnormal outcome is
even more obvious in the US new variant dataset, where white or other light-colored backgrounds are more frequently
observed in presentation slides. (See Figure 23b.) We suppose that when encountering white colors (i.e., R = 0, G = 0,
B = 0), due to the global “average” nature of the MSE loss function, the model tends to tolerate some errors in one of
the colors of Red, Green, and Blue, as long as other two remains almost 0. This phenomenon, if correct, also explains
why the loss function curves of dense CVAE are relatively more fluctuating as the training session goes on.

Despite such flaws in outliers, we tend to conclude that the performance of dense CVAE is promising. We would
especially like to further address that questions may be raised about the effectiveness of fully connected layers,
specifically about whether the complex, neuron-to-neuron connection will introduce fuzziness to the relative spatial
(positional) information of pixels, edges, patterns, or objects in an image. In our opinion, even though the mechanisms
of black-box Neural Networks cannot be clearly understood, it is for us, humans, to believe that Neural Networks
can learn to reveal (and then retain) the important patterns hidden within the images, just like regular CNNs, and that
whether the positional information is fully retained, or encoded into some uninterpretable vectors, or even ignored
during dimension reduction, is just a trade-off that our model has to make through its training.

7.5 Supplementary Figures
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(a) China data (b) US data

Figure 25: Distribution in 1000D vector space

Figure 26: Sample output of CRVAE on US new variant dataset
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