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ABSTRACT

Analyzing video content includes processing information from both visual and audio aspects. Previous
works by the research team have shown the effectiveness and efficiency of using Convolutional
Variational Autoencoders (CVAE) with fully connected layers to reduce the dimension of video
frames. In this report, we further extend the modality of the model by incorporating image frames and
text captions of news videos. We propose another Convolutional-Recurrent Variational Autoencoder
(CRVAE) structure that combines CVAE and LSTM to encode integrated video contents. We evaluate
its result by clustering and analyzing the vector in lower dimensions to provide cultural affinity
insights.

1 Introduction

As one of the most efficient forms of modern multimedia, videos convey information with high temporal density to
the audience through both images and audio. In our context, in news videos, images will typically include outdoor
scenes recorded by the reporter and indoor scenes of hosts in the studio, while audio will include words of the hosts and
guest speakers, or sometimes even background music. The primary motivation of this project is to design a multimodal
Autoencoder-based framework to perform dimension reduction on both aspects of the news videos, so as to indicate a
new approach for video content extraction and abstraction.

This research is the extension of “An Improved Autoencoder Structure for Image Dimension Reduction and Clustering”
[Shi, 2023], both affiliated to the “Tagging and Browsing Videos According to the Preferences of Differing Affinity
Groups” Project, sponsored by the NFS Information and Intelligent Systems. The previous work has shown the
superiority of Dense CVAE (Convolutional Variational Autoencoders with symmetric fully connected layers before and
after the latent layer) over Pure CVAE (with only convolution layers), as proposed by Onder [2021], both theoretically
and practically.

Enlightened by the idea that ignoring the first and last convolution layers, the dense neural network layers in the center
can, by themselves, act like a vanilla Variational Autoencoder and learn the important features and characteristics,
independent of the format of input vectors, the author is initially aimed at incorporating Natural Language Processing
(NLP) techniques into the original Computer Vision-forwarded CVAE model, to enable the new framework to handle
both texts and images. In a practical sense, it is worth notifying that the audio channels in our news videos mainly
consist of clear speech of organized sentences. In such consideration, we decide to directly transform the audio data
into natural languages in text format, instead of keeping a time series of audio inputs.

In this paper, we propose the Convolutional-Recurrent Variational Autoencoder (CRVAE) model, which takes an image
and a sentence as input each time, processes them in parallel using Convolutional Neural Networks (CNN) and different
versions of Recurrent Neural Networks (RNN) respectively, and finally combines the multimodal input vectors through
fully connected layers. We also design experiments and clustering methods similar to our previous work to validate the
performance of multiple subversions of CRVAE. Insights are then provided into cultural influence on affinities of video
styles and features.
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This project’s source code is available on GitHub https://https://github.com/Anemonee1212/crvae_video_
cluster upon the submission of this report.

2 Related Works

2.1 (Variational) Autoencoder

The encoder-decoder structure of a generic Autoencoder [Rumelhart et al., 1987] model is illustrated in the image1

below. The Encoder network maps the input space into a lower dimension subspace, defined as latent space, while
the Decoder network reconstructs the data points in latent space back to their original dimension. The entire model is
trained to minimize the dissimilarity between input data and reconstructed output data, so in ideal cases, a well-trained
Autoencoder can achieve lossless data compression – all information of the input data can be fully recovered if
“unzipped” properly. In this way, the data in the latent layer (or colloquially, the bottleneck) is successfully “learnt”
from the training data without explicit supervision labels needed.

Figure 1: General Structure of Autoencoders

Variational Autoencoder (VAE) [Kingma and Welling, 2013] is proposed mainly to relieve the overfitting-like behavior
of vanilla Autoencoders – only the data points in latent space are involved in the training process and can be reconstructed
into a meaningful output similar to its input data, while the regularity of neighboring point (not directly mapped from
the training set) is not guaranteed. In VAE, on the other hand, instead of directly using the encoded data instances to
reconstruct the output data, we perform a random sampling of a certain distribution (say, Gaussian distribution) in the
latent space pre-defined around the encoded data point, and pass this random sample into the Decoder network. Or in
mathematical terms,

argmin
θ,ϕ

∥x− x′∥2,where x is the input data, x′ is defined by{
z = Eθ(x), x

′ = Dϕ(z), for AEs
z = Eθ(x), z

′ ∼ p(z|x), x′ = Dϕ(z
′), for VAEs

Eθ, Dϕ are encoder and decoder networks with parameters θ and ϕ, and
p(z|x) is the Normal distribution function with parameters µ, σ to be learnt

Even though by intentionally introducing randomness, we sacrifice some accuracy in reconstructing the original data,
this “variation” approach significantly improved the robustness and interpretability of Autoencoders by, at least in some
aspects, creating a more organized latent space.

1Source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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2.2 Convolutional Variational Autoencoder

The author Shi [2023] originally used 3 2D-convolution layers (with kernel size 3× 3, a stride of 1, and a Max Pooling
layer of 2 × 2) followed by 3 fully connected layers for the encoder network, and symmetrically for the decoder
network, only that we use Transposed Convolution layers (with stride 2) followed by another Convolution layer of
same dimension to restore the original dimension (or so-called “de-convolution”). A rough sketch of the framework is
illustrated in the image below. The use of convolution layers is under the common consensus that for an object shown
in an image, once its approximate position is given, its precise, pixel-wise position is less of interest.

Figure 2: Dense CVAE Architecture

Note For simplicity, the duplicated Convolution layers at the end of the Decoder network are omitted.

The input images are of dimension 16 × 200 × 120 × 3, where 16 is the batch size, 200 and 120 are width and
height, and 3 is the number of channels (RGB). At each step of the encoder, the width and height are all reduced by
halves, while the number of channels increases (in a sequence of 3, 32, 32, 64). This gives an output vector of length
25× 15× 64 = 24000 after flattening. Then in 2 Dense layers with decreasing number of neurons, the latent dimension
is finally reduced to 1,000 (means and variances).

Similarly, the omitted Convolution layers in the Decoder network add back the feature map dimensions gradually. In
the meantime, the number of channels (filters) reduces from 64, 32, 32, to 3, which represents RGB.

2.3 Recurrent Neural Network and its variants

Witnessing the emergence of modern Artificial Intelligence, the RNN model and its descendants had long been the
state-of-the-art method for NLP tasks, because of their memory property when dealing with sequential data. Specifically,
for each cell in a sequence, a hidden state vector is kept, incorporating all the information from the beginning of the
sequence up to this cell. Such hidden state is then concatenated with the input value and passed through a forward layer.
In mathematical terms,

yt = ht = tanh(Whht−1 +Wxxt + b)

The initial task of RNN is to perform Language Modeling, i.e., to model special patterns like grammar or phrases of the
given language. The method of training is to minimize the cross-entropy error of predicting the next word from the
existing words, e.g., given "<Start> Hello world", predict "Hello world <End>". To solve this task, the initial
RNN model adopted an encoder-decoder structure, which can intuitively be taken advantage of by the Autoencoder
structure in our task. For this reason, the author is inspired by the idea of combining RNN-based networks with our
existing CVAE.

Admittedly, the idea of using recurrent cells to handle sequences of natural languages (oftentimes with variable lengths)
is quite impressive. Yet it is still worth pointing out that various issues prohibited vanilla RNN models to achieve
satisfactory performance. The most outstanding one is the gradient vanishing issue in long sequences – the gradients of
the loss function with respect to parameters in early cells are raised to extremely high power, resulting in infinite or
infinitesimal values (in most cases).

Long Short-Term Memory [Hochreiter and Schmidhuber, 1997] (LSTM) model is the most commonly used variant to
address the gradient vanishing issue. By taking advantage of another “cell state”, in addition to the original hidden
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state, LSTM avoids exponential products which directly causes gradient vanishing. In mathematical terms, the model of
LSTM looks like

(ft, it, ot, gt) = Whht−1 +Wxxh + b

ct = σ(ft)⊙ ct−1 + σ(it) tanh(gt)

ht = σ(ot)⊙ tanh(ct)

where ft, it, ot are forget, input, and output gates, σ is the sigmoid activation, and ⊙ is the element-wise matrix product,
i.e.,

σ(x) =
1

1 + e−x

A⊙B = [aijbij ]ij

Thanks to the forget gate and cell state features, LSTM models, in practice, achieved much higher performance in all
major NLP tasks. Empirically, LSTM shows an effective memory of previous information in a sequence of around 100
cells, while the capability of vanilla RNN is only 7 cells.

Gated Recurrent Unit (GRU) can be viewed as the intermediate form of RNN and LSTM. It is more complex than
RNN by adding another reset and update gate to control the flow of how hidden states are passed along and updated at
each cell of the sequence. On the other hand, it is simpler than LSTM because it does not have a separate cell state. In
mathematical terms,

(rt, zt) = Wghht−1 +Wgxxt + bg
gt = Wh (σ(rt)ht−1) +Wxxt + b

ht = σ(zt)⊙ tanh(gt) + (1− σ(zt))⊙ ht−1

Below is a clear illustration2 of these three models.

Figure 3: RNN, LSTM, and GRU cells

Note It is also worth emphasizing that even though vanilla RNN models have inherent directions among the sequence,
we can stack another layer of RNN cells with the opposite direction to make the model bidirectional so that it can learn
the language patterns in both directions, as illustrated in Figure 3.

3 Dataset

Considering the coherence between the current and previous research for cross-comparison, we decide to use the same
news videos related to COVID-19. Specifically, the Chinese Vaccine video3 by China Central Television (CCTV)
focused on encouraging (or demanding) senior Chinese citizens to take COVID vaccines, while the US New Variant
video4 by CBS Mornings focused on the resurgence of COVID-19 BA.5 (Omicron) variant. The raw image dataset is
sampled at the rate of 1 frame every 2 seconds (i.e., 30 frames per minute). Since we introduced multimodality to our
model, the preprocessing step is now more effort-taking, in order to align segments of text data with each image frame.

2Source: https://towardsdatascience.com/a-brief-introduction-to-recurrent-neural-networks-638f64a61ff4
3https://www.youtube.com/watch?v=xcWeBCOMoiU
4https://www.youtube.com/watch?v=doP5UacBlt0
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Figure 4: Bidirectional RNN (LSTM) Cells

3.1 US New Variant Video Alignment

The text data of US videos are collected from the YouTube auto-generated closed caption (transcript/subtitles/etc.)
in English, enabled by the Python youtube-transcript-api package. We manually inspect the text to ensure its
correctness. Since the autogenerated caption does not include punctuations, we can simply use the Basic English
Tokenizer in the PyTorch torchtext package. We use a pre-trained GloVe (Global Vector) Embedding with a
dimension of 300 to embed every word (token).

The Transcript API segments the whole script paragraph into 96 segments of text, which gives approximately 10 to 20
words in each segment. In addition, it also provides an accurate timestamp at which time it appears and disappears,
which shows that the period between 2 neighboring segments are roughly 2 seconds (which corresponds to the rate at
which we sample the frames). Given such detailed information, we aligned the images to the text segments by selecting
the frame closest to their starting time.

Sample text and images are given as follows:

"health officials here in new york city",
"and in los angeles are sounding the"...

Figure 5: US host and official talking

Figure 6: US presentation slide

5
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3.2 Chinese Vaccine Video Alignment

Since YouTube does not provide transcripts for Chinese videos, we have to resort to external audio-to-text converters.
However, the source videos involve some conversations in Chinese dialects (which are pretty different from Mandarin),
so the accuracy of the AI converter is not ideal. We apply careful manual inspection to correct its mistakes and
add timestamps with a segment every 10 seconds. This 10-second period is chosen with the consideration that the
information density of Chinese is relatively larger than that of English. If we stick to the 2-second period, the segments
will be too short for the model to capture any valuable information.

The manual process of text data gives us 90 text segments, which need to be aligned to 378 image frames. The average
sample rate is 4.2 frames/segment, so we uniformly sample 5 images out of a series of 21 image frames, under the
assumption that within a short period of time, the speech of Chinese words (or characters) is also uniformly distributed.
We further use Jieba Chinese word tokenizer as well as Chinese Word Vectors embedding [Li et al., 2018], which also
embeds Chinese words and characters into vectors of dimension 300. However, Jieba does not necessarily remove the
punctuations during tokenization, so we need to explicitly filter out Chinese-style punctuations like “,”, “.”, and “?”, in
order to avoid these meaningless embeddings affecting the model training.

Sample text (translated to English) and images are given as follows:

"Should the elderly people take COVID vaccines? Yes, elderly people must take vaccines.
It can prevent severe illness and deaths with roughly 90%..."

Figure 7: Chinese officials talking about COVID-19

Figure 8: Chinese elderly taking a vaccine

Note Due to the character-based nature of Chinese language, and the shortcoming that Jieba and Chinese Word
Vectors (CWV) do not cooperate, there exist some Chinese words (approximately 6%), as defined by Jieba, that are not
recognized by CWV. An outstanding example is the Chinese abbreviation of the word “coronavirus”. In such cases, we
have to handle the word as unknown tokens ("<UNK>" embedded as a vector of zeros).

4 Methods

Based on the previous CVAE framework and new data with multimodal aspects of text and images, we propose our
new Convolutional-Recurrent Variational Autoencoder (CRVAE) model architecture as shown in Figure 9. It generally
follows the encoder-decoder structure, determined by a latent layer in the center. The final output of this model is the
vectors in the latent space, with lower dimensions compared to the input images and text.
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Figure 9: CRVAE Architecture

4.1 Encoder

Similar to the previous CVAE model, we set the dimension of input images as 200× 120× 3, with a batch size of 16,
and 3 represents the RGB channels. The framework of Convolution and Max Pooling layers remains the same, only that
the numbers of filters (channels) are set to be uniformly 32. The motivation to use fewer channels in the last convolution
layer (decreased from 64 to 32) is that after flattening, we will have 32× 25× 15 = 12000 neurons, instead of 24000,
which significantly reduces the model size.

The text encoder network is an RNN-based model, with the input of a sequence of embedded text (in dimension 200).
Note that the pre-trained embedding weights (Chinese or English) are fixed and are not optimized during Gradient
Descent. The model is selected from either vanilla RNN or LSTM, both of which have a hidden size of 512 (i.e., the
length of the hidden state vector) and 2 stacked layers of bidirectional recurrent cells. The results show that the LSTM
model has higher performance than vanilla RNN on all tasks. GRU is not implemented or evaluated in our model,
because we know that it is an intermediate form between RNN and LSTM, so we tend to assume that LSTM will always
have better performance than GRU.

It is also worth emphasizing that since 2017, the Transformer [Vaswani et al., 2017] model (and its variants), thanks to
the self-attention mechanism with an absolute advantage in long-range inter-sentence dependencies, have exceeded the
state-of-the-art performance of LSTM in all major NLP tasks. Indeed, the initial thought of the author was to incorporate
the Transformer encoder and decoder (see Figure 10) into the CRVAE model, but the following shortcomings, after
taking into consideration, make Transformers less ideal than LSTM in our context.

• Transformer cells, which include Multi-Head Attention, Feed Forward Neural Network, and Residual Con-
nection layers, are more computationally complex than LSTM. The reasons why Transformer-based models
typically train faster are that they are more suitable for pre-training, and that parallelize better by avoiding
the sequential operations of RNN-based models. But in our case when pre-training is less significant, and
when the sequences are relatively shorter (segments of sentences), such advantage in parallelization does not
outweigh its disadvantage in model size.

• Again, since we are dealing with segments of sentences, the strict grammar and lexical structure of a language
are oftentimes weakened or even broken. That says, the self-attention cells in Transformers are harder to learn
the important language patterns of our text data, while the cross-segment attentions are impractical to train
through neural networks.

Thus, we decide to use LSTM model in our text encoder network.

Different from the 3-dense-layer dimension reduction in the previous model, CRVAE only uses 2 fully connected
neural layers. The outputs of the Convolution layers and LSTM layers are flattened and normalized (using the Batch
Normalization layer) to ensure that they are approximately on the same scale. The resulting vector, after concatenation,
has the dimension of 32 × 25 × 15 + 2 × 2 × 512 = 14048, where 2 × 2 represents 2 layers of LSTM, both in 2
directions. It is then narrowed down to 1 layer with 4000 neurons, and the final latent layer with 2000 neurons (with
which 1000 for the latent mean and the other 1000 for the latent standard deviation in logarithm scale).
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Figure 10: Transformer Architecture

The latent mean µ and latent standard deviation lnσ are then used to resample (in Normal distribution) across the latent
space, and the resulting vector is passed to the decoder network for the reconstruction of images and text. After the
training session, the latent mean µ is finally calculated as output.

4.2 Decoder

The decoder network is roughly symmetric to the encoder network, as the 1000-dimension input is gradually rebuilt to
4000 and 14048-dimension. It is then spitted into 2 parts and trained to reconstruct the images and text separately.

In contrast to the encoder where images are downsampled by the Max Pooling layer, the image decoder uses Transposed
2D Convolution layers with 3× 3 kernel and a stride of 2 to “upsample” an image channel, resulting in doubled width
and height. Each of these Transposed Convolution layers is followed by a Convolution layer with the same kernel size
(3× 3) and number of channels (32). After 3 (Transposed Convolution, Convolution) blocks, the tensor is reconstructed
into the original resolution with 3 channels, representing the Red, Green, and Blue pixels of an image. We use the
pixel-wise Mean Squared Error (MSE) between the input image and the reconstructed images as the loss function.

The text decoder in CRVAE is different from the traditional LSTM decoder for NLP tasks because we would require
the model to handle multilingual inputs. Generally, we would map the neurons to a layer with the same length as the
vocabulary size and assign a SoftMax activation, which corresponds to the Cross-Entropy loss. However, due to the
different natures of Chinese and English, this approach will not work. Instead, we now require the decoder to predict
the embedded text as tensors and optimize the MSE loss between the original and reconstructed embedded text. This
explains why we “freeze” the embedding layer during the encoder network – the word embeddings are not involved in
the training session. In response to this change, some additional features of the text decoder that are worth mentioning
are as follows.

• We explore the effect of the Teacher Forcing algorithm on our text decoder network. By using Teacher
Forcing during decoding, at each LSTM cell, we predict the next word by the input of ground-truth previous
word embeddings, while without Teacher Forcing, the input is the predicted previous embedding. The name
“Teacher Forcing” of this algorithm is an analogy of a teacher instructing the student step by step to solve
problems.

8
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We experienced a significant performance increase with this algorithm, and such use is also theoretically
reasonable. This is because the task of our network is not training a Language Model to generate texts.
Instead, our purpose in building the text decoder is to train the Autoencoder to learn important features and
characteristics of the given text, and these types of information (encoded in the latent layer) are passed on to
the decoder through hidden and cell states. That says, the input of each cell should indeed be correct words to
avoid “misunderstanding”.

• Upon using the MSE loss, our final reconstructed text segments are actually tensors of numeric values, instead
of words (in Chinese or English). Yet we, humans, cannot necessarily interpret these vectors, so we still need
some methods to “visualize” (or more exactly, “verbalize”) the vectors. In a practical term, we search for the
nearest neighbor of an embedded word in the vocabulary, and further “decode” this vector as the word which
has the closest embeddings. Note that this nearest neighbor verbalization is not part of the training process
either.

4.3 Model Configurations

By constructing our model based on the above architecture [9], we can formulate 2 types of MSE loss – image loss and
text loss. The final loss function is L = ImageLoss+ λ TextLoss, where λ is a ratio hyperparameter to balance the
reduction of losses during the training session.

All intermediate layers in the model are activated by ReLU (Rectified Linear Unit) function, and an Adam (Adaptive
Momentum) optimizer with a learning rate of α = 10−4 is used. The model is trained for 500 epochs on local devices5,
and a typical training session lasts for around 60 minutes, which is similar to the training time of a 300-epoch CVAE
model.

5 Results

5.1 Model Experiments

Here we compare the performance across all subvariants of our CRVAE model. We conclude that the LSTM subvariant
of CRVAE model with Teacher Forcing algorithm is superior to either RNN subvariant or without applying Teacher
Forcing in all datasets, and we decide to go on with this. Further, we can see that our best model performs better in
image reconstruction for Chinese data, and text reconstruction for US data. Such differences in behavior are somewhat
intuitive, as the common consensus is that Language Modeling is much harder for Chinese than English.

Table 1: CRVAE Model Performance

Dataset

Subvariant Loss Type China United States

RNN + TF Total 1.002 1.064
LSTM + No TF Total 0.539 0.520

LSTM + TF Image 0.068 0.133
LSTM + TF Text 0.085 0.050
LSTM + TF Total 0.323 0.284

The loss curves of the LSTM + TF subvariant on the 2 datasets are shown below (see Figure 11 and 12). We can see
that for the Chinese dataset, the loss from text is always larger than that from images, while in both datasets, the Image
Loss decreases rapidly at first, and then converges slowly, together with the Text Loss.

The sample reconstructed images of our model are also shown below (see Figure 13 and 19). The output images are
generally fuzzier than those generated by CVAE in previous work, yet considering the fact that mixing information
from text into the neural network for dimension reduction will add confusion to the model, demanding it to learn and
distinguish between information from both sources, such minor flaws are just a fair trade-off.

In addition, we manually examined some reconstructed images in detail, (see Appendix 20 and 21), and notice an
outstanding pattern that, if the original image has a white or relatively lighter background, the reconstructed image will
likely have minor bright noises of pure colors (e.g., red, green, or blue) in those areas. This common pattern is also

5The author uses the same hardware as in previous work, with an NVIDIA RTX 3080 with 10 GB GPU Memory.
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Figure 11: MSE Loss on China vaccine dataset

Figure 12: MSE Loss on US new variant dataset

shared in our previous work. We tend to attribute this phenomenon to the fact that Neural Networks are mostly activated
around 0, which makes them harder to predict large values (e.g., R = 255, G = 255, B = 255). If we are decoding
white colors, it is likely that some pixels will lack (at least) one channel of colors, which will show us a “bright spot” in
the image.

Despite all these shortcomings, we tend to conclude that CRVAE is satisfactory in image reconstruction, as it almost
successfully recovered all major parts or objects in the image. In addition, we verbalize the reconstructed text and
manually cleaned them up. (The clean-up procedure is necessary because otherwise the nearest neighbor algorithm
will decode an "<UNK>" token into some meaningless words in the vocabulary.) We can see that the results are very
accurate.

5.2 t-SNE Visualization

Similar to the evaluation process of CVAE, we also utilize the t-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm to further reduce the dimension of 1000D latent vectors to 2D. It needs to be reiterated that all clustering
processes below are still performed on the original, 1000D vector space; the 2D space is only used for visualization and
illustration.

The most influential hyperparameter of t-SNE is perplexity, which controls how extreme or how “sharp” the t-
distribution is. Typically, the smaller perplexity is, the more isolated the resulting data points will be. In practice,
considering the data size, we set the perplexity at 8 for both datasets. We can see that most data points are sparsely

10
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Figure 13: Sample output on China vaccine dataset

Figure 14: Sample text on China and US dataset

distributed in the 2D space, with only a few loose clusters. We also notice a very extreme outlier (see Appendix 23) in
US dataset.

5.3 K-means Clustering

We also repeat the evaluation using the most popular K-means clustering algorithm. We first traverse through a series
of numbers of clusters k to determine the best set of hyperparameters. The metrics used include average inter-cluster
distances, average cross-cluster distances, and cluster robustness tests. Specifically, an ideal k will have comparably
small inter-cluster distances (we want data points to be close to their centroids), large cross-cluster distances (we want

11
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centroids to be far away from each other), and robust clusters that do not change significantly as new centroids are
introduced.

Figure 15: Inter-Cluster Distance of US data

Figure 16: Cross-Cluster Distance of US data

US Data For example, we can see that the inter-cluster distance (see Figure 15) shows a sharp “elbow” point at 3,
and the cross-cluster distance (see Figure 16) reaches its maximum at 3. These patterns are sufficient for us to choose
k = 3 as the best number of clusters for the US new variant data, and the corresponding distribution of clusters seems
reasonable in the 2D plane [17]. (To maintain the conciseness of this report, the visualizations for distribution of
different k’s are not listed, but they can be found in the GitHub output/xx/cluster/ directory.)

China Data Choosing the optimal value of k on Chinese vaccine data requires more detailed analysis. The inter-
cluster distance curve (see Appendix 25) decreases smoothly, with a weak indication of “elbow”-like pattern at k = 4.
However, the cross-cluster distance curve (see Appendix 26) tells the other story, which shows that the distance between
centroids are still on the increase at 4 clusters. In this case, we resort to the cluster population plot (see Figure 18) to see
if any robust clusters turned out. We can see that as k increases from 3 to 5, the largest two clusters are pretty robust,
while the smaller clusters are subject to flexible changes. That provides some evidence for us to select k = 5. The
distribution of 5 clusters are shown in Appendix 27.

Insights We manually inspect the elements of large clusters of both datasets and validate the results with those from
previous work. Different from CVAE which only takes images into consideration, the new CRVAE model shows a more
significant time-sequential pattern – neighboring image frames and text segments in the videos are mapped to closer
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Figure 17: Distribution of 3 clusters in US data

Figure 18: Population of each cluster of China data

data points in the latent space, while in CVAE, the formation of clusters heavily relies on objects and color styles of
images.

It is also worth emphasizing that some interesting correlations between words in text and objects in images are also
discovered. For example, in the China vaccine video, images with a certain guest speaker frequently co-occur with
a Chinese word that means “the elderly”. In the US new variant video, on the other hand, the word “Omicron” is
oftentimes associated with medical expert Dr. Agus. This unexpected finding may imply the effectiveness of our model
in processing and extracting information from multiple sources.

Disadvantages Even though not intentionally designed, the LSTM layers in our model inevitably learn Language
Modeling information, which is absolutely different for Chinese and English. For this reason, cross-cultural element
comparison seems to provide less real-life insights than traditional CVAE.

13
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6 Conclusions

In this project, we extended our previous research in Computer Vision into the field of Natural Language Processing,
during which data in different formats were integrated and preprocessed, including videos, audio, images, and plain
texts. We designed a brand new Convolutional-Recurrent Variational Autoencoder, which was established upon the
combination of CVAE and LSTM while maintaining the encoder-decoder structure of both models.

Concrete evidence has been found to support the effectiveness of our model in the abstraction and subtraction of key
information in multimodal data, which is then analyzed with pre-neural-network Machine Learning algorithms like
t-SNE and K-means to compare and contrast cultural orientations and affinities in news videos, specifically on the topic
of COVID-19. We sincerely believe and look forward to the potential generalization and adaptation of this architecture
to bring about changes to other real-life problems.

Future Works This project indicates a future research area to substitute the LSTM model with more prevalent
Transformer-based models like BERT or GPT. In addition, the author expects that besides CVAE which follows a strict
encoder-decoder structure, other models with similar 2-network architecture, e.g., CGAN (Convolutional Generative
Adversarial Network) might also be combined with LSTM or Transformers.
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Figure 19: Sample output on US new variant dataset

Figure 20: Sample reconstructed image
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Figure 21: Sample reconstructed image

Figure 22: Distribution of China vaccine data in 1000D vector space

Figure 23: Distribution of US new variant data in 1000D vector space
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Figure 24: Population of each cluster of US data

Figure 25: Inter-Cluster Distance of China data

Figure 26: Cross-Cluster Distance of China data
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Figure 27: Distribution of 5 clusters in China data
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