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Abstract

In spoken dialogue systems, it is important for the system to know how likely a speech recognition hypothesis is to

be correct, so it can reject misrecognized user turns, or, in cases where many errors have occurred, change its interaction

strategy or switch the caller to a human attendant. We have identified prosodic features which predict more accurately

when a recognition hypothesis contains errors than the acoustic confidence scores traditionally used in automatic

speech recognition in spoken dialogue systems. We describe statistical comparisons of features of correctly and

incorrectly recognized turns in the TOOT train information corpus and the W99 conference registration corpus, which

reveal significant prosodic differences between the two sets of turns. We then present machine learning results showing

that the use of prosodic features, alone and in combination with other automatically available features, can predict

more accurately whether or not a user turn was correctly recognized, when compared to the use of acoustic confidence

scores alone.

� 2004 Published by Elsevier B.V.
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1. Introduction

One of the central problems involved in man-

aging the dialogue in most current spoken dia-

logue systems (SDSs) is how to recover from

system error. The automatic speech recognition
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(ASR) component of such systems is prone to
make mistakes, especially under noisy conditions,

or when there is a mismatch between the speech

recognizer’s training data and the speakers it is

called upon to recognize or if the domain vocab-

ulary is large. Users’ evaluations of spoken dia-

logue systems are highly dependent on the number

of errors the system makes (Walker et al., 2000a,b;

Swerts et al., 2000) and how easy it is for the user
and system to correct them. A further complicat-

ing factor is how users behave when con-

fronted with system error. After such errors, they

often switch to a prosodically ‘marked’ speaking
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style––hyperarticulating their speech, in an attempt

to help the systems recognize them more accu-

rately, e.g., I said BAL-TI-MORE, not Boston.

While such behavior may be effective in human–
human communicative settings, it often leads to

still further errors in human–machine interactions,

perhaps because such speech differs considerably

from the speech most recognizers are trained on.

In attempting to improve system recognition, users

may thus in fact make it even worse. Another

complication is that when system responses reveal

false beliefs in implicit verification questions––as
when a system’s attempt to verify new information

reveals that it has mistaken a previous user input

(e.g., Where do you want to go from Boston when

the user has said she wants to depart from Balti-

more). In such cases, users may become quite

confused: they are faced with the choice of

correcting the misconception or answering the

underlying question asked––or doing both at once
(Krahmer et al., 2001).

Given that it is impossible to fully prevent ASR

errors, and that error levels are likely to remain

high as applications become ever more ambitious,

it is important for a system to know how likely a

speech recognition hypothesis is to be correct.

With such information, systems can reject (decide

that the best ASR hypothesis should be ignored
and, usually, prompt for fresh input) speaker turns

that are misrecognized––but not prolong the dia-

logue by rejecting correctly recognized turns, or

they can try to recognize the input again in a

following loop using a differently trained ASR

system. Alternatively, in cases where many errors

have occurred, systems might use a correct knowl-

edge of past misrecognitions in deciding to change
their interaction strategy or to switch the caller to

a human attendant (Litman et al., 1999; Litman

and Pan, 1999; Walker et al., 2000a,b).

Traditionally, the decision to reject a recogni-

tion hypothesis is based on acoustic confidence

score thresholds (based only on acoustic like-

lihood), which provide some measure of the

reliability of the hypothesis; these thresholds
are application dependent (Zeljkovic, 1996). This

process often fails, as there is no simple one-to-

one mapping between low confidence scores and

incorrect recognitions, and the setting of a rejec-
tion threshold is generally a matter of trial and

error (Bouwman et al., 1999). This process is also

not necessarily appropriate for dialogue systems,

where some incorrect recognitions do not neces-
sarily lead to misunderstandings at a conceptual

level (e.g., Show me the trains recognized as Show

me trains). SDSs often need to recognize concep-

tual errors rather than the transcription errors

ASR systems are normally scored upon. Currently

there has been increased interest in developing new

and more sophisticated methods for determining

confidence measures which make use of features
other than purely acoustic ones, including confi-

dence measures based on the posterior probability

of phones generated by the decoder or estimated

from N-best lists (Andorno et al., 2002), the use of

word lattices (Falavigna et al., 2002) and parse-

level features (Zhang and Rudnicky, 2001), the use

of semantic or conceptual features (Guillevic et al.,

2002; Wang and Lin, 2002) and pragmatic features
to measure confidence in recognition (Ammicht

et al., 2001). There has also been increased interest

in the use of various machine learning techniques

to combine potential features sets (Zhang and

Rudnicky, 2001; Moreno et al., 2001).

In this paper we extend the set of features that

can be used to predict recognition error still fur-

ther. We examine the role of prosody as an indi-
cator of both transcription and conceptual error.

We focus on prosodic features primarily for sev-

eral reasons. First, ASR performance is known to

vary widely based upon speaking style or context

of speaking (Weintraub et al., 1996), speaker

gender and age, and native vs. non-native speaker

status. All of these observed differences have their

prosodic component, which may play a role in the
deviation of the new speech produced by women,

children, or non-native speakers, or spoken in a

casual speaking style, from the speech data on

which most ASR system have historically been

trained. Prosodic differences have been found to

characterize differences between speaking styles

(Bruce, 1995; Hirschberg, 1995), such as casual vs.

formal speech (Blaauw, 1992), and between indi-
vidual speakers (Kraayeveld, 1997). Second, as

noted above, a number of studies (Wade et al.,

1992; Oviatt et al., 1996; Swerts and Ostendorf,

1997; Levow, 1998; Bell and Gustafson, 1999)



1 Either the system or the user controls the course of the

dialogue, such as what will be talked about next, or this control

is shared.
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report that hyperarticulated speech, characterized

by careful enunciation, slowed speaking rate, and

increase in pitch and loudness, often occurs when

users in human–machine interactions try to correct
system errors. Others have demonstrated that such

speech also decreases recognition performance

(Soltau and Waibel, 1998) and that compensation

for it can improve performance (Soltau and Wai-

bel, 2000; Soltau et al., 2002). Prosodic features

have also been shown to be effective in ranking

recognition hypotheses, as a post-processing filter

to score ASR hypotheses (Hirschberg, 1991; Veil-
leux, 1994; Hirose, 1997). We hypothesize that

misrecognitions might differ in their prosody from

correctly recognized turns––perhaps due to prior

misrecognitions––and thus might be identifiable

in prosodic terms.

In Section 2 we describe our corpora. In Section

3 we present results comparing prosodic analyses

of correctly and incorrectly recognized speaker
turns in both corpora. In Section 4 we describe

machine learning experiments based on the fea-

tures examined in Section 3 that explore the

predictive power of prosodic features alone and

in combination with other automatically avail-

able information, including information currently

available to ASR systems as a result of the rec-

ognition process but not currently used in making
rejection decisions. Our results indicate that there

are significant prosodic differences between cor-

rectly and incorrectly recognized utterances and

that these differences can in fact be used, alone and

in conjunction with other automatically available

or easily derivable information, to predict very

accurately whether an utterance has been misrec-

ognized. Our results also indicate that humanly
perceptible hyperarticulation itself cannot account

for large amounts of ASR error, although features

associated with hyperarticulation such as charac-

teristics of slow speaking rate, duration, wide F0

excursion, and loudness do appear to be signifi-

cantly correlated with recognition error. We also

find that, while prosodic characteristics are sig-

nificantly associated with ASR error, they are
more effective in predicting that error in conjunc-

tion with other features of the discourse than

alone. In Section 5 we discuss our conclusions

and our future research.
2. Corpora

Our corpora consisted of recordings from two

SDSs which employed different ASR systems, the
experimental TOOT SDS (Litman and Pan, 1999),

which provided users with train information over

the phone from an online website, and the W99

SDS (Rahim et al., 1999), which provided confer-

ence registrants with information about paper

submissions and registration for the Automatic

Speech Recognition and Understanding (ASRU-

99) workshop.
2.1. The TOOT corpus

The TOOT corpus was collected using an

experimental SDS for the purpose of comparing

differences in confirmation strategy (explicit, im-

plicit or no confirmation provided to the user),

type of initiative supported (system, user, or

mixed) 1 and whether or not these strategies could

be changed by the user during the dialogue using

voice commands; for example, if a user wished to
change the system strategy to one of system ini-

tiative during a dialogue, the user could say

Change strategy followed by System. TOOT is

implemented using a platform developed at AT&T

combining ASR, text-to-speech, a phone interface,

and modules for specifying a finite-state dialogue

manager, and application functions (Kamm et al.,

1997). The speech recognizer is a speaker-inde-
pendent hidden Markov model system with con-

text-dependent phone models for telephone speech

and constrained grammars defining the vocabulary

that is permitted for each dialogue state. Confi-

dence scores for recognition were available only at

the turn, not the word, level (Zeljkovic, 1996) and

were based on acoustic likelihoods only. Thres-

holds were set differently for different grammar
states, after some experimentation with the system.

An example TOOT dialogue is shown in Fig. 1. In

this version of the system, the user is allowed to



Fig. 1. Example dialogue excerpt from TOOT.

Fig. 2. Example dialogue excerpt with misrecognitions.
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take the initiative and the system provides no

confirmation––except before the system queries

the train database. Fig. 2 shows how this version

of the system behaves when user utterances are
both rejected and misrecognized by the system. An

excerpt using another version of TOOT, in which

the system takes the initiative and users are given

explicit confirmation of their input, is presented

in Fig. 3.

Subjects were asked to perform four tasks with

one of six versions of TOOT, three combinations

of confirmation type and locus of initiative (system
initiative with explicit system confirmation, user
Fig. 3. Dialogue excerpt from system initiative/exp
initiative with no system confirmation until the

end of the task, mixed initiative with implicit sys-

tem confirmation), with variants of these three that

were either fixed for the duration of the task or in
which the user could switch to a different confir-

mation/initiative strategy using voice commands.

The task scenario for the dialogue shown in Fig. 2,

for example, was: ‘‘Try to find a train going to

Chicago from Baltimore on Saturday at 8 o’clock

am. If you cannot find an exact match, find the one

with the closest departure time. Please write down

the exact departure time of the train you found as
well as the total travel time’’.
licit confirmation strategy version of TOOT.
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Subjects were 39 students, 20 native speakers of

standard American English and 19 non-native

speakers; 16 subjects were female and 23 male. The

exchanges were recorded and the behavior of both
system and user was logged automatically. Mean

length of subject turns was 1.92 s and 3.70 words.

The corpus of user turns was 12 h long. There were

a total of 152 tasks, with mean task length of 15.32

turns across all subjects. However there was a

large variation between tasks (standard deviation

(sdev)¼ 11.36). The shortest task was only 2 turns

long but the longest was 95.
All dialogues were manually transcribed and

system and user turns were identified by hand as

beginning and ending with the system or user

output. The orthographic transcriptions were

compared to the ASR (one-best) recognized string

to produce a word accuracy rate (WA) for each

turn. In addition the concept accuracy (CA) of

each turn was labeled by the experimenters by
listening to the dialogue recordings while examin-

ing the system log. In our definition of CA, if the

best-scoring ASR hypothesis correctly captured all

the task-related information given in the user’s

original input (e.g., date, time, departure or arrival

cities), the turn was given a CA score of 1, indi-

cating a semantically correct recognition. Other-

wise, the CA score reflected the percentage of
correctly recognized task concepts in the turn.

For example, if the user said I want to go to Balti-

more on Saturday at 10 o’clock but the system’s

best hypothesis was Go to Boston on Saturday, the

CA score for this turn would be 0.33. While WA

is the traditional method of evaluating ASR suc-

cess, CA does not penalize for word errors that

are unimportant to overall utterance interpreta-
tion.

For the study described below, we examined

2328 user turns from 152 dialogues generated dur-

ing these experiments. 202 of the 2328 turns were

rejected by the system because its best hypothesis

was below a predefined rejection threshold based

on the value of the acoustic confidence score.

(The TOOT confidence score thresholds were set
relatively low, so that the system tended to mis-

recognize rather than reject utterances.) After

rejections, the system asked users to repeat their last

utterance.
Seventy percentage of the 2328 turns we

examined were assigned a CA score of 1 by our

labelers (i.e., were conceptually accurate). The

mean CA score for all turns, where CA ranged
from 0 to 1, was 0.73. Sixty one percentage of

turns had a WA of 1 (i.e., were exact transcriptions

of the spoken turn) and mean WA score over all

turns was 0.60. Even though WA was low, the

system’s actual ability to correctly interpret user

input (i.e., the CA score) was somewhat higher.

2.2. The W99 corpus

The W99 corpus derives from a spoken dia-

logue system used to support registration and
information access for the ASRU-99 workshop

(Rahim et al., 1999). Unlike the TOOT experi-

mental system, this was a live system with real

users. The system was implemented using an IP

and computer telephony platform, and included a

speech recognizer, natural language understander,

dialogue manager, text-to-speech system, and

application database. The system used WATSON
(Sharp et al., 1997), a speaker-independent hidden

Markov model ASR system, with HMMs trained

using maximum likelihood estimation followed by

minimum classification error training. It rejected

utterances based on their ASR confidence score,

which was based on a likelihood ratio distance

compared to a predefined rejection threshold,

similar to confidence scoring in the TOOT system.
As with the TOOT platform, ASR confidence

scores were available only at the turn, not the

word, level. This system employed a mixed initia-

tive dialogue strategy: the system generally gave

the user the initiative (e.g., users responded to

open-ended system prompts such asWhat can I do

for you?), but could take the initiative back after

ASR problems (e.g., giving users directed prompts
such as Please say . . .). A sample dialogue appears

in Fig. 4.

Since the initial version of W99 was built before

any data collection occurred, it used acoustic

models from a pre-existing call-routing applica-

tion. State-dependent bigram grammars were also

obtained from the same application, as well as

from interactions collected using a text-only ver-
sion of the system. (Subsequently, another version



Fig. 4. Example dialogue excerpt from W99.

160 J. Hirschberg et al. / Speech Communication 43 (2004) 155–175
of the system was built, using 750 ‘‘live’’ utterances
from the initial deployment to adapt the HMMs

and grammars.) The data analyzed in this paper

consist of 2997 utterances collected during an in-

house trial with 50 summer students as well as the

actual registration for the ASRU-99 workshop,

with the recognition results generated during that

process. Mean duration of user turns for this

corpus (end-pointed automatically and thus less
accurately than for the TOOT corpus) was 8.24 s

and 4.92 words. The total length of all user

utterances in the corpus was 25464.84 s (70.74 h),

although, again, this included a considerable

amount of silence. It was impossible to calculate

mean length of task, since turns were not identi-

fied by user.

2.3. Comparing TOOT and W99

The W99 and TOOT corpora differ from each

other in several important ways. The implemen-

tation platform and all of the major system com-

ponents (ASR, TTS, dialogue management,

semantic analysis) are different, with the W99

system using newer and generally more robust

technology (e.g., stochastic language models in-

stead of hand-built grammars). The TOOT data
were obtained from structured experiments, while

the W99 data included both experimental and non-

experimental data. Finally, the W99 system used a

primarily user initiative dialogue strategy with

limited backoff to system initiative, while TOOT

employed a wide variety of initiative and confir-

mation strategies.

Our descriptive analyses of the two corpora also
differ in several ways, due to the nature of the data
and availability of annotation. For the TOOT
corpus, we did not have access to the speech files

actually sent to the recognizer during the experi-

ments, so we end-pointed (by hand) the recordings

made of both sides of the dialogue at the time, to

demarcate the user turns and system turns from

beginning of user or system speech to end. For the

W99 data, we were able to analyze the actual

speech used as input by the speech recognition
system; thus our durational information was gen-

erated automatically and we did not have all of the

timing information we manually annotated in the

TOOT corpus full dialogue recordings as noted

above. For the TOOT corpus, we had both WA

and CA scores, which were not available for the

W99 data; for the latter, we could only examine

prosodic characteristics of recognition errors de-
fined in terms of transcription error, not concep-

tual error. The W99 system however provided an

automatically generated semantic accuracy score

based on its assessment of its own performance,

which we employed in the machine learning

experiments described in Section 4. For both cor-

pora, we examined misrecognition as a binary

feature––if the recognizer made any error in its
transcription or misinterpretation of a speaker

turn, we counted that turn as ‘misrecognized’. A

final distinction between the TOOT and W99

corpora was speaker identity information. For

TOOT we could identify which speaker produced

each turn, but for the W99 data such information

was not collected.

Table 1 compares the two corpora overall in
terms of the acoustic and prosodic features we will

examine in this study. These features are defined

below in Section 3. Suffice it to note here that they



Table 1

Comparison of prosodic and acoustic features of the TOOT and W99 corpora

Feature TOOT mean TOOT sdev W99 mean W99 sdev P

F0 Max (Hz)� 227.16 44.09 232.37 93.43 0.04

F0 Mean (Hz)� 162.96 76.74 145.77 43.79 0

RMS Max (A)� 1612.47 1020.38 2002.94 1834.11 0

RMS Mean (A)� 395.75 261.26 652.14 537.89 0

Dur (s)� 1.92 2.44 8.24 5.01 0

PPau (s) 0.71 0.63 NA NA NA

Tempo (sps)� 2.48 1.37 0.98 1.09 0

% Silence� 0.44 0.17 0.80 0.18 0

�Significant at a 95% confidence level ðp6 0:05Þ.
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include a variety of features related to pitch range,

timing, and perceived loudness. The comparison in

Table 1 shows that, in every prosodic and acoustic

feature that we could calculate for each corpus,

these corpora differ significantly. 2 We hypothesize

that, if misrecognized turns differ from correctly
recognized turns in both corpora in terms of sim-

ilar features, it will thus be likely that this differ-

ence is a relative and not an absolute one.
3. Distinguishing correct from incorrect recognitions

3.1. Transcript and concept errors in the TOOT

corpus

For the TOOT corpus, we looked for distin-

guishing prosodic characteristics of misrecog-

nitions, defining misrecognitions in two ways––in

terms of word accuracy (turns with WA < 1) and

in terms of concept accuracy (turns with CA < 1).

As noted in Section 1, previous studies have
speculated that hyperarticulated speech (slower

and louder speech which contains wider pitch

excursions) may follow recognition failure and be

associated with subsequent failures. So, we exam-

ined the following prosodic features for each user

turn, which we felt might be good indicators of

hyperarticulated speech:

• maximum and mean fundamental frequency

values (F0 Max, F0 Mean),
2 In the table, P is the likelihood that the difference between

the two means for each feature is due to chance.
• maximum and mean energy values (RMS Max,

RMS Mean),

• total duration (Dur),

• length of pause preceding the turn (PPau),

• speaking rate, calculated in syllables per second

(sps) (Tempo),
• amount of silence within the turn (% Silence).

F0 and RMS values, representing measures of

pitch excursion and loudness, were calculated from

the output of Entropic Research Laboratory’s

pitch tracker, get_f0 (Talkin, 1995), 3 with no post-

correction. Timing variation was represented by

the following features: Duration of a speaker turn
(Dur) and length of pause between system and

speaker turns (PPau) were computed from the

temporal labels associated with each turn’s begin-

ning and ending (cf. Section 2.1). Tempo was

approximated in terms of syllables in the recog-

nized string per second, while % Silence was de-

fined as the percentage of zero-valued F0 frames in

the turn, taken from the output of the pitch-
tracker, and representing roughly the percentage

of time within the turn that the speaker was silent.

To ensure that our results were speaker inde-

pendent, we performed within-speaker compari-

sons and analyzed these across speakers in the

following way: We first calculated mean values for

each prosodic feature for the set of recognized

turns and their misrecognized turns for each indi-
vidual speaker. So, for speaker A, we divided all

turns produced in the four tasks into two classes,
3 get_f0 and other Entropic software is currently available

free of charge at http://www.speech.kth.se/esps/esps.zip

http://www.speech.kth.se/esps/esps.zip


Table 3

Comparison of misrecognized (CA<41) vs. recognized turns by

prosodic feature across speakers

Feature T -stat Mean mis-

recognized–

recognized

P

F0 Max� 5.39 27.84 Hz 0

F0 Mean 1.76 2.01 Hz 0.09

RMS Max� 2.68 167.17 0.01

RMS Mean )1.58 )24.18 0.12

Dur� 9.21 2.10 s 0

PPau� 5.79 0.35 s 0

Tempo� )4.36 )0.54 sps 0

% Silence )1.30 )0.02% 0.20

df¼ 37 in each analysis

�Significant at a 95% confidence level ðp6 0:05Þ.
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based on whether the ASR system had correctly

recognized that turn or not. For each class, we

then calculated mean F0 Max, mean F0 Mean, and

so on. After this step had been repeated for each
speaker and for each feature, we then created two

vectors of speaker means for each individual pro-

sodic feature––e.g., a vector containing the mean

F0 Max for each speaker’s recognized turns and a

corresponding vector containing the mean F0 Max

for each speaker’s misrecognized turns. We then

performed paired t-tests on the two vectors for

each feature, to see if there were similar significant
differences in individual speaker’s prosodic fea-

tures for the two classes of turn, across all speak-

ers. Table 2 shows results of these analyses for

WA-defined recognition errors. From Table 2 we

see that speaker turns containing transcription

errors exhibit, on average, larger pitch excursions

(F0 Max) and greater amplitude excursions (RMS

Max) than those that are correctly recognized.
They are also longer in duration (Dur), are pre-

ceded by longer pauses (PPau), and are spoken at

a slower rate (Tempo). That is, they are higher in

pitch, louder, longer, follow longer pauses, and are

slower than turns that contain no transcription

errors.

Comparing these findings with those for CA-

defined misrecognition in Table 3, we see a similar
picture. These misrecognitions also differ signifi-

cantly from correctly recognized turns in terms of

the same prosodic features as those in Table 2 (F0
Table 2

Comparison of misrecognized (WA<1) vs. recognized turns by

prosodic feature across speakers

Feature T -stat Mean mis-

recognized–

recognized

P

F0 Max� 5.78 25.84 Hz 0

F0 Mean 1.52 1.56 Hz 0.14

RMS Max� 2.51 150.56 0.02

RMS Mean )1.82 )25.05 0.08

Dur� 9.94 2.13 s 0

PPau� 5.86 0.29 s 0

Tempo� )4.71 )0.54 sps 0

% Silence )1.48 )0.02% 0.15

df¼ 38 in each analysis

�Significant at a 95% confidence level ðp6 0:05Þ.
Max, RMS Max, Dur, PPau, and Tempo). So,

whether defined by WA or CA, misrecognized

turns exhibit significantly higher F0 and RMS

maxima, longer durations, longer preceding

pauses, and slower rates than correctly recognized

speaker turns. The common features which dis-
tinguish both types of misrecognition are consis-

tent with the hypothesis that there is a strong

association between misrecognition and hyper-

articulation.

While the comparisons in Tables 2 and 3 were

made on the means of raw values for all prosodic

features (Raw), little difference is found when val-

ues are normalized by dividing by the value of (the
same speaker’s) first or preceding turn in the dia-

logue. 4 For these analyses it appears to be the case

that relative differences in speakers’ prosodic val-

ues, not deviation from some ‘acceptable’ range,

distinguishes recognition failures from successful

recognitions. A given speaker’s turns that are

higher in pitch or loudness, or that are longer, or

that follow longer pauses, are less likely to be
4 The only differences in the comparison of normalized

features to raw features occur for WA-defined misrecognition,

where Tempo is not significantly different when features are

normalized by preceding turn and in CA-defined misrecogni-

tion, where preceding pause is not significantly different when

normalizing by the first turn in the task and Tempo is not

different when normalizing by preceding turn.



5 For WA-defined misrecognition, RMS Mean is also

significantly different, but exactly the same features distinguish

CA-defined misrecognitions from correct recognitions when

hyperarticulated turns are removed, as when they are included.
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recognized correctly than that same speaker’s

turns that are lower in pitch or loudness, shorter,

and follow shorter pauses––however correct rec-

ognition is defined.
We further explored the hypothesis that hyper-

articulation leads to misrecognition, since the

features we found to be significant indicators of

failed recognitions (F0 excursion, loudness, long

preceding pause, longer duration, and tempo)

are all features previously associated with hyper-

articulated speech. Recall that earlier work has

suggested that speakers may respond to failed
recognition attempts by hyperarticulating, which

itself may lead to more recognition failures. Had

our analyses simply identified a means of charac-

terizing and identifying hyperarticulated speech

in terms of its distinguishing prosodic features?

What we found suggested a more complicated

picture of the role of hyperarticulated speech in

recognition errors.
Before performing our acoustic analyses, we

had independently labeled all speaker turns for

evidence of hyperarticulation. Two of the authors

labeled each turn as ‘‘not hyperarticulated’’,

‘‘some hyperarticulation in the turn’’, and ‘‘hy-

perarticulated’’, using the criteria and methods of

(Wade et al., 1992), without reference to infor-

mation about recognition error or prosodic fea-
tures. 24.1% of the turns in our corpus exhibit

some indication of hyperarticulation (i.e., were

labeled by at least one labeler as showing some

hyperarticulation). Indeed, our data show that

hyperarticulated turns are misrecognized more

often than non-hyperarticulated turns (59.5% vs.

32.8%, for WA-defined misrecognition and 50.7%

vs. 24.1% for CA-defined misrecognition). How-
ever, this does not in itself explain our overall re-

sults distinguishing misrecognitions from correctly

recognized turns.

We replicated the preceding analyses, excluding

any turn either labeler had labeled as partially or

fully hyperarticulated, again performing paired t-
tests on mean values of misrecognized vs. recog-

nized turns for each speaker. We discovered that,
in fact, for both WA-defined and CA-defined

misrecognitions, when hyperarticulated turns are

excluded from the analysis, essentially the same

significant differences are found between correctly
and incorrectly recognized speaker turns. 5 Our

findings for the prosodic characteristics of recog-

nized and of misrecognized turns thus hold even

when perceptibly hyperarticulated turns are ex-
cluded from the corpus. We hypothesize that

hyperarticulatory trends not identifiable as such by

human labelers may in fact be important for

machine recognition here, and that human thre-

sholds for perceived hyperarticulation differ from

machine thresholds when test data exceeds the

bounds of the training set in terms of pitch

excursion, loudness, duration or tempo.
3.2. Transcript errors in the W99 corpus

As with the TOOT corpus, we examined the
W99 corpus to see whether prosodic features dis-

tinguished misrecognitions from correctly recog-

nized utterances. While for the TOOT corpus we

were able to define recognition error in terms of

both transcription and concept accuracy, for the

W99 corpus we had only WA scores. We thus

present results below only for WA-defined mis-

recognitions and compare these only to the WA-
defined case for our TOOT data. We also did not

have speaker identification for W99 turns. We thus

could not identify the set of all turns for a par-

ticular speaker, and are not able to follow the

procedure described in Section 3.1 to ensure the

speaker-independence of our analysis. Instead we

had to collapse data from all speakers into a single

pool. Normalization of features by first turn in
task could not be performed, and normalization

by preceding turn introduces some noise into the

data, since the preceding turn may in fact be that

of a different speaker. However, for the W99 cor-

pus we did have access to the speech files actually

segmented by the system. Again, our unit of

analysis was the speaker turn, but this time the

speech included in the turn was defined by what
the recognizer recorded and transcribed. So, for



Table 4

Differences between prosodic features of misrecognized (WA<

1) vs. recognized turns for W99 corpus

Feature T -stat Mean mis-

recognized–

recognized

P

F0 Max� 7.07 23.81 Hz 0

F0 Mean 0.06 )0.10 Hz 0.95

RMS Max� 4.90 335.48 0

RMS Mean 0.34 6.70 0.7352

Dur� 10.55 1.88 s 0

PPau NA NA NA

Tempo� 7.23 0.28 sps 0

% Silence� 9.58 )0.06% 0

df¼ 3087 in each analysis

�Difference significant at a 95% confidence level ðp6 0:05Þ.
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the W99 data, we were able to use exactly what the

ASR engine used for recognition in our analysis.

For each speaker turn we examined the same

prosodic features we had examined for the TOOT

corpus, except for PPau: 6 maximum and mean

fundamental frequency values (F0 Max, F0 Mean);
maximum and mean energy values (RMS Max,

RMS Mean); total turn duration (Dur); speaking

rate (Tempo); and amount of silence within the

turn (% Silence). The definition of and method for

calculating each of these features was that de-

scribed in Section 3.1.

Since the W99 data did not contain explicit

speaker identification for a given session, we col-
lapsed all data from all sessions into a single pool,

divided that pool into correct and incorrect rec-

ognitions, and performed t-tests on the means for

each prosodic feature. Results were very similar to

our analysis of the TOOT data, where we were

able to calculate means for each feature on a per

speaker basis. Table 4 presents prosodic differences

between correct and incorrect recognitions for the
W99 corpus. Comparing these results with those

for the TOOT corpus in Table 2, we find few dif-

ferences between the two––despite the consider-

able differences in the way data points were

calculated, and the major differences between the

two systems from which the data were obtained.
6 As noted earlier, we did not have access to full recordings

of the dialogue, only to the user’s machine-endpointed speech.
The amount of turn-internal silence (% Silence)

distinguishes misrecognized turns in the W99 data,

though not in the TOOT corpus. While misrec-

ognized turns are slower than correctly recognized
turns in the TOOT corpus––consistent with hyper-

articulation––the opposite is true in the W99 cor-

pus. Even if we calculate tempo for the TOOT

data in the same way as for the W99 data (merging

Dur and PPau), misrecognized turns are still sig-

nificantly slower than correctly recognized turns

(T -stat¼ 3.21, p6 0:003), although the difference

between the means is halved ()0.26 sps). Table 1
showed that there are significant differences in the

two corpora in tempo, as in all other prosodic and

acoustic features compared. We hypothesize some

significant difference in the mismatch between the

training data of the recognizers for the two cor-

pora and the actual data of the corpora them-

selves; that is, that the recognizer used for TOOT

recognized faster speech better than slower, but
the opposite was true for the recognizer used for

W99. In all other respects that we can measure, the

two corpora lead us to the same conclusions about

the relationships among prosodic features and

misrecognized speaker turns: that pitch excursions

are more extreme (higher F0 maximum) for mis-

recognized turns than for correctly recognized

turns, misrecognized turns contain louder portions
(higher RMS maximum), and misrecognized turns

are longer.

The results presented in Table 4 are based on

means for raw values of prosodic features in each

turn. Recall from Section 3.1 that, for the TOOT

corpus, we found little difference between using

raw scores and scores normalized by value of first

or of preceding turn. For the W99 corpus this
picture is somewhat different. While means calcu-

lated on the absolute values for Dur, RMS Max,

F0 Max, Tempo, and % Silence distinguish mis-

recognitions from recognitions, when these values

are normalized by preceding turn, only Dur, F0

Max and Tempo significantly distinguish the two

groups of turns. Since there was some noise in the

data due to lack of identifiable boundaries for each
speaker’s interaction, this difference may not be

too reliable. For the W99 data, we are also pooling

data from all speakers rather than identifying

within-speaker differences and generalizing over



Fig. 5. Feature set for predicting misrecognitions.
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these. On the whole, we suspect that the TOOT

results may be more reliable.
7 Not all of the features we term ‘‘automatically comput-

able’’ were in fact automatically computed in our data, due to

the necessity of manually end-pointing the TOOT user turns, as

discussed in Section 3.
4. Predicting misrecognitions

Given the prosodic differences between misrec-

ognized and correctly recognized utterances in our

corpora, is it possible to predict accurately when a
particular utterance will be misrecognized or not?

This section describes experiments using the ma-

chine learning program RIPPERRIPPER (Cohen, 1996) to

automatically induce prediction models, using

prosodic as well as additional features. Like many

learning programs, RIPPERRIPPER takes as input the

classes to be learned, a set of feature names and

possible values (symbolic, continuous, or text),
and training data specifying the class and feature

values for each training example. RIPPERRIPPER outputs

a classification model for predicting the class of

future examples. The model is learned using a

greedy search procedure, guided by an informa-

tion gain metric, and is expressed as an ordered set

of if-then rules.

4.1. Predicting transcript and concept errors in the

TOOT corpus

For our machine learning experiments, the

predicted classes correspond to correct recognition

(T) or not (F). As in Section 3, we examine both
WA-defined and CA-defined notions of correct
recognition for the TOOT corpus. We also repre-

sent each user turn as a set of features. We first

describe the set of features for the TOOT machine

learning experiments, followed by our results for
predicting transcript (WA-defined) and concept

(CA-defined) errors, respectively.

4.1.1. Features

The entire feature set used in our learning

experiments is presented in Fig. 5. The feature set

includes the automatically computable raw and
normalized versions of the prosodic features in

Tables 2 and 3 (which we will refer to as PROS),

and a manually computed feature representing the

sum of the two scores from the hyperarticulation

labeling discussed in Section 3 (the feature hyper-

articulation). 7 The feature set also includes several

other types of non-prosodic potential predictors of

misrecognition. The feature turn represents the
distance of the current turn from the beginning of

the dialogue, while a number of ASR features are

derived from standard inputs and outputs of the

speech recognition process. They include grammar,

the identity of the finite-state grammar used as

the ASR language model for the dialogue state the

system expected the user to be in (e.g., after the



9 The standard error of the mean is the standard deviation of

the sampling distribution (the different sample estimates) of the

mean. It can be estimated from a single sample of observations

as the standard deviation of the observations divided by the

square root of the sample size.
10 In 25-fold cross-validation, the total set of examples in our

corpus is randomly divided into 25 disjoint test sets, and 25 runs

of the learning program are performed. Thus, each run uses the

examples not in the test set for training and the remaining
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system produced a yes–no question, the user’s next

turn would be recognized with the yes–no gram-

mar), the string the recognizer proposed as its best

hypothesis (string), and the associated turn-level
acoustic confidence score produced by the recog-

nizer (confidence). We included these features as a

baseline against which to test new methods of

predicting misrecognitions, although, currently,

we know of no ASR system that includes the

identity of the recognized string in its rejection

calculations. 8 As subcases of the string feature, we

derive features representing whether or not the
recognized string includes variants of yes or no

(yn), any variant of no such as nope (no), and the

special dialogue management commands cancel

(cancel) and help (help). We also derive features to

approximate the length of the user turn in words

(words) and in syllables (syls) from the string fea-

ture. Both are positively correlated with turn

duration (words: t ¼ 35:33, df ¼ 2253, p ¼ 0,
r ¼ 0:60; and syls: t ¼ 36:44, df ¼ 2253, p ¼ 0,

r ¼ 0:61). Finally, we include a set of features

representing the system’s dialogue manager set-

tings when each turn was collected (SYS). These

features include the system’s current initiative and

confirmation strategies (initiative, confirmation),

whether users could adapt the system’s dialogue

strategies, as described in Section 2.1 (adaptabil-
ity), and the combined initiative/confirmation

strategy in effect at the time of the utterance

(strategies). A set of experimental features that

would not be automatically available in a non-

experimental setting are also considered, namely

the task the user was performing (task) and some

user-specific characteristics, including the subject’s

identity and gender (subject, gender), and whether
or not the subject was a native speaker of Ameri-

can English (native). We included these features to

determine the extent to which particulars of task,

subject, or interaction style influenced ASR suc-

cess rates or our ability to predict them; previous

work showed that some of these factors affected
8 While the entire recognized string is provided to the

learning algorithm, RIPPERRIPPER rules test for the presence of

particular words in the string.
TOOT’s performance (Litman and Pan, 1999;

Hirschberg et al., 1999).
4.1.2. Predicting transcript errors

Table 5 shows the relative performance of a

number of the feature sets we examined, and for

comparison also presents two relevant baselines;

results here are for misrecognition defined in terms
of WA. The table shows a mean error rate and the

associated standard error of the mean (SE) 9 for

the classification model that was learned from each

feature set; these figures are based on 25-fold

cross-validation. 10

The simplest baseline classifier for misrecogni-

tion, predicting that the recognizer is always cor-

rect (the majority class of T), has a classification
error of 39.22%. Since TOOT itself used the fea-

tures grammar and confidence to predict misrec-

ognitions, TOOT’s actual performance during the

experiment provides a more realistic baseline.

Whenever the confidence score fell below a gram-

mar-specific threshold (manually specified by the

system designer), TOOT asked the user to repeat

the utterance. Analyzing these rejected utterances
shows that TOOT incorrectly rejected 17 correct

recognitions, and did not reject 736 misrecog-

nitions––a total error rate in classifying misrec-

ognitions of 32.35%. We term this the TOOT

baseline.

The best performing feature set includes only

the raw prosodic and ASR features and reduces

the TOOT baseline error to an impressive 8.64%.
examples for testing. An estimated error rate is obtained by

averaging the error rate on the testing portion of the data from

each of the 25 runs. Ninety five percentage confidence intervals

are then approximated for each mean, using the mean plus or

minus twice the standard error of the mean. When two errors

plus or minus twice the standard error do not overlap, they are

statistically significantly different.



Table 5

Estimated error for predicting misrecognized turns (WA<1)

Features used Error (%) SE

Raw+ASR 8.64 0.53

ALL-(Dur, syls, words) 9.67 0.62

ALL 9.88 0.66

Raw+ string+

StrDerived

11.98 0.55

Raw+ grammar+

confidence

12.33 0.68

Raw+ confidence 12.76 0.71

ASR 14.83 0.81

String+StrDerived 18.00 0.86

Grammar+ confidence 18.70 1.03

Confidence 18.91 1.00

Raw 19.20 0.80

PROS 19.98 0.86

Dur 20.92 0.85

Tempo 26.93 0.80

Norm2 28.57 1.08

Norm1 32.17 0.81

Native 39.22 1.07

TOOT baseline 32.35

Majority baseline 39.22
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The use of this learned rule-set could have yielded
an extremely dramatic improvement in TOOT’s

performance. The performance of this feature set

is not improved by identifying individual subjects

or their characteristics, such as gender or native/

non-native status (native), or by adding other

manually labeled features such as hyperarticula-

tion, or by distinguishing among system dialogue

strategies: the feature set corresponding to all
features (ALL) yielded the statistically equivalent

9.88%. The estimated error for the raw prosodic

and ASR features is significantly lower than the

estimated error for all of the remaining feature

sets (below ALL in the table).

Examining some of these remaining feature sets,

Table 5 shows that using raw prosodic features in

conjunction with ASR features (error of 8.64%)
significantly outperforms the set of raw prosodic

features alone (error of 19.2%), which in turn

outperforms (although not significantly) any single

prosodic feature. Dur is the best such feature, with

an error of 20.92%, and significantly outperforms

the second most useful single feature, Tempo,

which has an estimated error of 26.93%. The

importance of duration as a signal of ASR error is,
of course, not surprising in itself, since it correlates

with turn length in words, and longer utterances

have a greater chance of being misrecognized in

terms of WA. Even when Dur itself and all corre-
lated features, such as length in words and sy-

llables, are removed from the feature set,

performance degrades only marginally, to 9.67%

estimated error; this performance is second only to

the best feature set, combining all raw prosodic

and ASR features. The rest of the single prosodic

features, as well as the hyperarticulation feature,

yield errors below the actual TOOT baseline, and
thus are not included in the table. (In these ma-

chine learning experiments we are unable to com-

pare prosodic features’ effect on ASR performance

on a per speaker basis, which is where our

descriptive statistical analyses found significant

differences in prosodic features other than dura-

tion.) The native/non-native distinction (native),

which often affects recognition performance, is
also not useful as a predictor of recognition error

here, performing about as well as the majority

baseline classifier.

The unnormalized raw prosodic features sig-

nificantly outperform the normalized versions by

9–13%. Recall that prosodic features normalized

by first utterance in task and by previous utterance

showed little performance difference in the analy-
ses described in Section 3. This difference may

indicate that, for a given recognizer, there are in-

deed limits on the ranges in features such as F0

Max and RMS Max, Dur and PPau within which

recognition performance is optimal, defined by the

recognizer’s training data. It seems reasonable

that extreme deviation from characteristics of the

acoustic training material should in fact impact
ASR performance, and our experiments may have

uncovered, if not the critical variants, at least

important acoustic correlates of them. Finally,

using the raw prosodic features is almost identical

to simultaneously using all three forms of the

prosodic features (PROS).

A comparison of other rows in our table can

help us to understand what prosodic features are
contributing to misrecognition identification, rel-

ative to the more traditional ASR techniques.

Do our prosodic features simply correlate with

information already in use by ASR systems



Fig. 6. Rule-set for predicting misrecognized turns (WA<1) from raw prosodic and ASR features.
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(e.g., confidence score, grammar), or at least

available to them (e.g., recognized string)? First,

the error using ASR confidence score alone

(18.91%) is significantly worse than the error when
prosodic features are combined with ASR confi-

dence scores (12.76%)––and is also comparable to

the use of prosodic features alone (19.2%). Simi-

larly, using ASR confidence scores and grammar

(18.70%) is comparable to using prosodic features

alone (19.2%), but significantly worse than using

confidence, grammar, and prosody (12.33%). 11

Thus, prosodic features in conjunction with tra-
ditional ASR features significantly outperform

these traditional features alone for predicting WA-

based misrecognitions. When used alone, the

prosodic features perform comparably to the tra-

ditional features.

Another interesting finding from our table is the

predictive power of information available to cur-

rent ASR systems but not made use of in calcu-
lating rejection likelihoods––the identity of the

recognized string. It seems that, at least in our task

and for our ASR system, the appearance of certain

particular recognized strings is an extremely useful

cue to recognition accuracy. Using our string-

based features in conjunction with the traditional

ASR features (error of 14.83%) significantly out-

performs using only the traditional ASR features
(error of 18.70%). Even using only the string and

its derived features (error of 18%) outperforms
11 Recall that TOOT predicted misrecognitions using only

confidence and grammar. The fact that TOOT’s baseline error

rate was 32.35% suggests that the manual specification of

grammar-dependent confidence thresholds could have been

greatly improved using machine learning (18.70%).
using grammar and confidence (error of 18.70%)

(although not with statistical significance). So,

even by making use of information currently

available from the traditional ASR process, ASR
systems could improve their performance on

identifying rejections by a considerable margin. A

caveat here is that the string-based features, like

grammar state, are unlikely to generalize from task

to task or recognizer to recognizer, but these

findings suggest that such features should be con-

sidered as a means of improving rejection per-

formance in stable systems.
The classification model learned from the best

performing feature set in Table 5 is shown in Fig.

6. 12 The first rule RIPPERRIPPER finds with this feature

set is that if the acoustic confidence score is less

than or equal to )2.85, and if the user turn is at

least 1.27 s, then predict that the turn will be

misrecognized. 13 As another example, the seventh

rule says that if the string contains the word nope
(and possibly other words as well), also predict

misrecognition. While three prosodic features ap-

pear in at least one rule (Dur, Tempo, and PPau),

the features shown to be significant in our statis-

tical analyses (Section 3) are not the same features

as in the rules. As noted above, it is difficult to

compare our machine learning results with the

statistical analyses, since (a) the statistical analyses
looked at only a single prosodic variable at a time,

and (b) data points for that analysis were means
12 Rules are presented in order of importance in classifying

data. When multiple rules are applicable, RIPPERRIPPER uses the first

rule.
13 The confidence scores observed in our data ranged from a

high of )0.09 to a low of )9.88.



Table 6

Estimated error for predicting misrecognized turns (CA<1)

Features used Error (%) SE

Raw+ASR 10.48 0.57

ALL-(Dur, syls, words) 10.70 0.72

ALL 10.95 0.63

Raw+ grammar+

confidence

11.26 0.69

Raw+ confidence 11.86 0.69

ASR 12.88 0.65

Grammar+ confidence 14.90 0.78

Confidence 15.12 0.85

Raw+ string+

StrDerived

15.33 0.73

String+StrDerived 15.98 0.65

PROS 18.99 0.83

Raw 18.99 0.84

Dur 20.74 0.90
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calculated per speaker, while the learning algo-

rithm operated on all utterances, allowing for un-

equal contributions by speaker. Besides the three

prosodic features, the rule-set also contains two of
the ASR features (confidence and string). While the

rules are not specific to the particular conditions

of, and the participants in, the corpus collection,

the fifth and seventh rules use the feature string,

which as discussed above might make them less

likely to generalize.

The classification model learned from the fea-

ture set Raw in Table 5 is shown in Fig. 7. When
only the prosodic features are used for misrecog-

nition prediction, the same three prosodic features

noted above occur in the rules (Dur, Tempo,

PPau), as does % Silence.

Tempo 25.47 0.67

Norm2 25.69 1.02

Norm1 28.09 0.90

Native 30.49 0.99

TOOT baseline 24.66

Majority baseline 30.50
4.1.3. Predicting concept errors

Results of our learning experiments with mis-

recognition defined in terms of CA rather than

WA show the overall role of the features which

predict WA-defined misrecognition to be some-

what less successful in predicting CA-defined

error. Table 6 shows the relative performance of
the same feature sets discussed above, with mis-

recognition now denned in terms of CA<1. Here,

the TOOT baseline was 24.66%: TOOT incorrectly

rejected 29 correct recognitions, and did not reject

545 misrecognitions. As with the WA experiments,

the best performing feature set makes use of pro-

sodic and ASR-derived features. However, the

predictive power of prosodic features combined
with standard ASR features decreases when mis-

recognition is denned in terms of CA, to 10.48%

estimated error for raw prosodic features plus

ASR features. The error rate using ASR confi-

dence alone (15.12%) is now significantly better

than the error obtained using prosody alone
Fig. 7. Rule-set for predicting misrecognized tu
(18.99%), while before they were comparable. This
is particularly interesting since ASR confidence

scores are intended to predict WA rather than CA.

The string-based features also appear to be of less

utility in this context. On the other hand, adding

the prosodic features to the traditional methods

still significantly improves performance (adding

prosody to ASR confidence reduces the error from

15.12% to 11.86%, while adding prosody to confi-
dence and grammar reduces the error from 14.9%

to 11.26%). When we remove all features corre-

lated with turn length (All-(Dur,syls,words)), we

obtain the second highest performance of any of

our feature sets, showing again that durational

information, while useful, is not the only useful

prosodic contribution to predicting CA. Finally,
rns (WA<1) from raw prosodic features.



Table 7

Estimated error for predicting misrecognized turns (WA<1)

Features used Error (%) SE

ASRW99+ prompt 22.77 0.59

Raw+ASRW99+ prompt 23.66 0.80

Raw+ string 23.70 0.63

Grammar+ confidence+ string 23.77 0.87

ALL 23.91 0.85

Raw+ grammar+ confidence 24.07 0.83

Raw+ grammar+ confidence+ string 24.19 0.94

Raw+ confidence 24.35 0.87

Grammar+ confidence 25.68 0.78

Confidence 26.14 0.80

Raw 26.17 0.73

% Silence 31.30 0.93

Tempo 31.58 0.92

String 32.94 0.91

Norm2 36.31 0.79

Dur 38.51 0.80

Majority baseline 39.67

14 The errors and standard errors (SE) result from 25-fold

cross-validation.
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the error rate of all of the ASR features combined

(12.88%) is reduced to the lowest error rate in our

table when prosodic features are added (10.48%),

although this is (just) not significantly different.
Thus, for CA-defined misrecognitions, our exper-

iments have uncovered only minor improvements

over non-prosodic ASR rejection calculation

procedures.

4.1.4. Summing up

Our results from a set of machine learning

experiments illustrate the utility of considering
prosodic features when predicting two types of

misrecognition errors in the TOOT corpus. When

predicting CA-defined misrecognitions (concept

errors), the use of prosody in conjunction with

other features yields minor improvements in pre-

diction accuracy. When predicting WA-defined

misrecognitions (transcript errors), prosodic fea-

tures alone can predict misrecognitions with an
accuracy rate comparable to more traditional

features. When combined with information cur-

rently available from ASR systems, performance is

greatly improved via the use of prosodic features.

In our TOOT data, the standard use of ASR

confidence scores predicted WA-defined misrec-

ognitions with an error rate of 18.91%. Adding

new ASR features reduced the error to 14.83%,
while adding prosodic features further reduced the

error to 8.64%.

4.2. Predicting transcript errors in the W99 corpus

We now replicate the machine learning experi-

ments described above, in the context of the W99

corpus. Here we are interested in examining how
the W99 rules compare to the rules learned for

TOOT. As in the TOOT experiments, our pre-

dicted classes correspond to correct recognition

(T) or not (F), and each user turn is represented as

a set of features. For W99, however, misrecogni-

tion is only defined in terms of WA, and the

feature set differs somewhat. The feature set for

W99 consists of the following features:

• the raw (Raw) prosodic features and those nor-

malized by preceding turn (Norm2) (cf. Section

3.2)
• the three original ASR features from TOOT

(grammar, string, confidence) plus a new feature

representing the normalized likelihood score

from the decoder (likelihood) (ASRW99)

• a single system feature representing the W99

prompt that resulted in the user’s turn (prompt)

• whether the speaker was male or female, which

was manually labeled during the corpus tran-
scription process (gender)

W99 varied its 43 prompts and 10 grammars

according to a mixed initiative dialogue strategy;

previous work has shown that system initiative can

sometimes reduce a system’s misrecognition rate,

as it can help keep user utterances within a sys-

tem’s vocabulary and grammar (Walker et al.,
1998).

Table 7 shows the relative performance of a

number of the feature sets we examined, and also

compares these results with a baseline classifier

that predicts that ASR is always wrong (the

majority class of F). 14 The first interesting result

from our experiment is that our best performing

feature set (ASRW99+ prompt, error of 22.77%)



15 The confidence scores observed in our data ranged from a

high of 990 to a low of 280.
16 The conditions of the first rule are redundant with those of

the third rule. An auxiliary software package is available for

RIPPERRIPPER, which includes a post-processing program to eliminate

redundant conditions in a ruleset, if desired.
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significantly outperforms the use of grammar-

dependent ASR confidence scores to determine

misrecognitions (grammar+ confidence, error of

25.68%). The best performing feature set includes
the system prompt that generated the user’s

utterance as well as other features representing the

ASR processing, and yields an error that is sta-

tistically equivalent to the error of the next 7

feature sets (i.e., through Raw+ confidence).

With respect to the performance of our pro-

sodic features, Table 7 shows that using multiple

prosodic features (Raw, error of 26.17%) signifi-
cantly outperforms using any single prosodic fea-

ture. % Silence (error of 31.30%) is the best single

prosodic feature, followed by Tempo (error of

31.58%). In isolation, the rest of the prosodic

features perform no better than the majority class

baseline. It is significant that Dur, which, for this

corpus, was calculated by automatic endpointing,

performs barely above the baseline, while the more
accurate hand segmentation performed for the

TOOT corpus did provide useful prosodic infor-

mation for distinguishing recognition errors. This

suggests that when accurate timing information

is not available, other automatically calculated

prosodic features can provide the necessary dis-

criminatory information.

While using prosodic features in conjunction
with non-prosodic features (e.g., Raw+ string,

error of 23.7%) seems to outperform the use of

prosodic features alone (error of 26.17%), none of

these improvements is statistically significant. Fi-

nally, the unnormalized prosodic features (Raw)

significantly outperform the normalized versions

(Norm2) by 10%.

We also are concerned with analyzing our re-
sults to provide answers to several questions

examined with respect to our TOOT analysis.

Does prosody provide an alternative source of

information to that already used by ASR systems?

Can prosodic and ASR features be combined to

improve performance? First, the error using ASR

confidence score alone (26.14%) and the error

using prosody alone (26.17%) are comparable.
Furthermore, both errors are reduced when pro-

sodic features are combined with ASR confidence

scores (24.35%). Similarly, the error using ASR

confidence scores and grammar (25.68%) and the
error using prosody (26.17%) are reduced when the

two feature sets are combined (24.07%). Thus, as

with TOOT, prosodic features perform compara-

bly to traditional ASR features, and using both
types of features seems to be better than using

either type in isolation (although these latter re-

sults are not quite significant at the 95% confidence

level).

Another TOOT finding replicated here is the

predictive power of prosody in conjunction with

information available to current ASR systems but

not typically made use of when determining
rejections. While ASR string alone has an error of

32.94%, using prosody in conjunction with string

significantly reduces the error to 23.70%. This is

statistically equivalent to the best performing fea-

ture set, in contrast to the 25.68% error using the

traditional ASR confidence scores and grammars.

A caveat noted earlier is that the string feature, like

grammar, is less likely to generalize from task to
task, but even the ASR confidence score and

rejection threshold will not generalize from rec-

ognizer to recognizer.

The RIPPERRIPPER rules learned from the best per-

forming feature set in Table 7 are shown in Fig. 8.

The first rule says that if the turn is recognized by

ASR as including the string yes with an acoustic

confidence score P 910, 15 then predict a correct
recognition. 16 Of the traditional ASR features,

confidence appears in all rules while grammar only

appears in one rule. With respect to the new non-

prosodic features that we proposed, string appears

in all but one rule, while prompt appears in one

rule.

The classifier learned from the feature set Raw

in Table 7 is shown in Fig. 9. The rules contain all
of the prosodic features considered in our experi-

ment, except for RMS Mean (and PPau, which is

not applicable for the W99 corpus). % Silence and

Tempo, which were the best performing prosodic

features in isolation, appear in seven and three



Fig. 8. Best performing rule-set for predicting correctly recognized turns.

Fig. 9. Prosodic rule-set for predicting correctly recognized turns.
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rules, respectively. Duration, which was no better

than the baseline in isolation, appears in eight

rules. Dur thus appears to be a useful predictive

feature in conjunction with other prosodic fea-

tures. All of the features shown to be significant in

our statistical analysis (Section 3) occur in the
rules. The feature F0 Mean also occurs in one rule,

even though it was not significant in Section 3.

It is also interesting to compare the W99 results

with our previous results on TOOT, which used

older ASR technology and poorer off-the-shelf

acoustic and language models. Several of our

results generalize across the TOOT and W99

experiments: the use of prosody and ASR confi-
dence is better for predicting misrecognitions than

using confidence alone, and the use of multiple

prosodic features outperforms any single prosodic

feature. In TOOT, however, the most predictive

single prosodic feature was Dur (rather than %

Silence as in W99), and the best performing feature

set overall included prosodic features. This sup-
ports a hypothesis that the utility of the prosodic

features is inversely related to the quality of the

ASR models. Finally, while the specific rules we

have derived for TOOT and W99 may be domain-

specific in their particulars, we have demonstrated

that very similar feature sets can be used to derive
rules that greatly improve recognition accuracy

in both domains.
5. Discussion

A statistical comparison of recognized vs. mis-

recognized utterances indicates that F0 excursion,

loudness and longer duration are significant pro-

sodic characteristics of both WA- and CA-defined

failed recognition attempts. Results from a set of

machine learning experiments further show that

prosodic differences can in fact be used to improve

the prediction of misrecognitions with a high de-
gree of accuracy for WA-based misrecognitions––
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and an even higher degree when combined with

information currently available from ASR sys-

tems. For example, the use of ASR confidence

scores in TOOT predicted WA-defined misrecog-
nitions with an error rate of 18.91%, while adding

prosodic and other ASR features reduced the error

to 8.64%. The additional power provided by pro-

sodic information is more than simply a correla-

tion of longer turns with higher recognition error,

as our results show when we remove this infor-

mation without significant degradation in predic-

tive power; in particular, automatically calculated
timing information performs much more poorly as

a predictor for our W99 corpus than other pro-

sodic features. For WA-defined misrecognitions,

the differences between using simple acoustic-

based confidence scores and our richer feature sets

are quite considerable. For CA-defined misrecog-

nitions in TOOT and WA-defined misrecognitions

in W99, the improvement provided by prosodic
features is significant but less dramatic. One of our

future research directions will be to understand

this difference.

Another future direction will be to address the

issue of just why prosodic features provide such

useful indicators of recognition failure. Does the

occurrence of these features themselves make rec-

ognition difficult, or are they instead indirect cor-
relates of other phenomena not captured in our

study? While the negative influence of speaking

rate variation on ASR has been reported before

(e.g., Ostendorf et al., 1997), it is traditionally as-

sumed that ASR is impervious to differences in F0

and RMS; yet, it is known that F0 and RMS

variations co-vary to some extent with spectral

characteristics (e.g., Swerts and Veldhuis, 1997;
Fant et al., 1995), so that it is not unlikely that

utterances with extreme values for these may differ

critically from the training data. Other prosodic

features may be more indirect indicators of errors.

Longer utterances may simply provide more

chance for error than shorter ones, while speakers

who pause longer before utterances and take more

time making them may also produce more disflu-
encies than others.

We have also extended our TOOT corpus

analysis to include prosodic analyses of turns in

which users become aware of misrecognitions
(Litman et al., 2001) and correct them (Hirschberg

et al., 2001). In addition, we are exploring whether

prosodic differences can help explain the ‘‘goat’’

phenomenon––the fact that some voices are rec-
ognized much more poorly than others (Dodd-

ington et al., 1998; Hirschberg et al., 1999). Our

ultimate goal is to provide prosodically based

mechanisms for identifying and reacting to ASR

failures in spoken dialogue systems.
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