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Abstract

A Mobile Cloud Computing (MCC) system is a cloud-based system that is accessed by
the users through their own mobile devices. MCC systems are emerging as the product of two
technology trends: 1) the migration of personal computing from desktop to mobile devices and
2) the growing integration of large-scale computing environments into cloud systems. Design-
ers are developing a variety of new mobile cloud computing systems. Each of these systems is
developed with different goals and under the influence of different design constraints, such as
high network latency or limited energy supply.

The current MCC systems rely heavily on Computation Offloading, which however incurs
new problems such as scalability of the cloud, privacy concerns due to storing personal in-
formation on the cloud, and high energy consumption on the cloud data centers. I propose
to address these problems by answering the following research question: “How computations
should be distributed across different computing nodes in MCC systems?”

For a quantitative analysis of mobile cloud computing systems, I have developed the first
generation of an innovative design and simulation tool that offers large scalability and hetero-
geneity support. With this tool system designers and software programmers can efficiently
develop, optimize, and validate large-scale, heterogeneous MCC systems.

Leveraging this tool, I developed two new MCC systems where I applied two variations
of a new computation distributing technique, called Reverse Offloading. By more actively
leveraging the computational power on mobile devices, the MCC systems can reduce the total
execution times, the burden of concentrated computations on the cloud, and the privacy con-
cerns on storing personal information on the cloud. This approach also creates opportunities
for new services by utilizing the information on the mobile instead of accessing the cloud.

I will continue pursuing this line of research by investigating the following ideas: 1) further
improving my tool by adding support for modeling mobile GPU systems and 2) developing
new MCC applications with new variations of reverse offloading.

The ultimate goal of my research is to enable the design of better mobile applications
and cloud-computing platforms. In particular, it will become a vehicle to optimize not only
their performance but also their energy dissipation, an aspect of critical importance for any
computing system.

This proposal is organized as follows. First, I describe the research problem, the distribu-
tion of computations in MCC systems. Second, I present NETSHIP, a design and simulation
tool for MCC systems. Third, I describe a cluster of embedded devices and the reverse offload-
ing technique I developed. Fourth, I present a local training MCC application for information
extraction and another reverse offloading technique I invented. Fifth, I list related research
projects. Finally, I propose a plan to complete my research with a tentative timeline.
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1 Introduction
An increasing number of computing systems rely on a set of backend services operated on cloud
computers while providing their primary user interfaces on mobile devices [11, 31, 44]. This
new class of emerging computing systems, commonly termed Mobile Cloud Computing (MCC)
systems, has gained growing popularity in many application domains such as e-commerce [61, 15],
learning [73, 56], healthcare [57, 99], gaming [93, 90], social networks [94, 64], and so on. Behind
this popularity of MCCs across various domains is the blossoming of two technologies: the wide
use of cloud computing and the explosive growth of mobile devices. First, cloud computing has
increasingly become the standard way to operate Internet-based services, preferred by the service
providers due to its low prices, high performance, and flexibility. These have been the main driving
force that increased the instances of cloud servers built in data centers. The number of data centers
being built around the world is expected to continue to increase until 2017 when it peaks at 8.6
million [45]. The estimated total space for data centers will reach 1.94 billion square feet in 2018.
Second, more and more users access cloud services through their mobile devices which provide a
richer experience than using personal computers [30].

By combining these technologies, MCCs offer many advantages and enable new services. For
instance, an MCC speech recognition application takes a segment of the user’s voice and sends it
to the cloud. The cloud processes the segment and sends the recognition result back to the mobile
user. This approach has various advantages compared to running the algorithm on the mobile. First
of all, harnessing the powerful processing cores on the cloud allows fast execution of the speech
recognition algorithm. Additionally, the database necessary to execute the speech recognition
algorithm is stored on the cloud servers, thus freeing space from the limited storage of the mobile
device. Meanwhile, the mobile user interface provides a simple yet convenient and ubiquitous way
for the users to interact with the application. Lastly, the reduced use of the processing power on
the mobile greatly contributes to saving the limited energy budget.

This particular form of task delegation from the mobile to the cloud is called Computation
Offloading, or simply Offloading [63]. Due to its benefits, offloading is very frequently adopted
in MCC applications and frameworks [25, 79, 92]. Fig. 1(a) illustrates a mobile device offloading
two tasks (Task 1 and Task 2) to the cloud and receiving the corresponding results back from
the cloud (Result 1 and Result 2). A variety of efficient offloading techniques have been studied.
These techniques are, however, mainly focused on the efficiency of the mobile. For example, some
offloading techniques aim to achieve faster total execution time [89], less energy consumption on
mobile [18, 29], or both [21, 29]. Eventually, the large amount of offloading translates into more
frequent use of the cloud and increased amount of computations from the cloud’s perspective.

These increased needs started to overburden the cloud, subsequently creating new problems or
worsen existing cloud issues.

• The cloud computing services which operate on the data centers currently suffer from scal-
ability. It is difficult to increase the number of server computers hosted in one data center
beyond a certain level. Moreover, finding locations and funds to build new data centers is
challenging. Behind these challenges, there are some technical constraints like heat manage-
ment, network, or power supply [36, 37, 91, 17] and social issues such as concerns for the
impact on residential environments [83].

• As a growing amount of personal data is stored on the cloud, users are increasingly concerned
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Figure 1: A Comparison of Offloading and Three Distinct Reverse Offloading Techniques.
(A circle is a task and a triangle is the corresponding result.)

about privacy issues. Although it is uncertain whether it is safer to store personal data on the
cloud or on the mobile, having the cloud as a data backup, i.e. storing the data on both the
mobile and the cloud, might increase the probability that it can be illegally accessed. The
recent leaks of celebrity photos in 2014 [81, 82] is the evidence that the security issue on the
cloud system can turn into a large-scale threat for personal privacy.

• The energy consumed by data centers is enormous. Data centers are the largest and fastest
growing electricity consumer. US data centers consumed an approximately 91 billion kilowatt-
hours of electricity in 2013. This amount was twice as much as the power consumed by all
the households in New York City the same year. The energy consumption by data centers
is anticipated to reach 140 billion kilowatt-hours by 2020 [62]. The companies that operate
these large-scale data centers are under pressure to reduce their energy consumption from
governments and environmental organizations.

The fundamental research question behind these problems is how to optimally distribute
computations across different computing nodes in the systems. The question is very impor-
tant particularly for MCC systems where two very distinct types of computers must cooperate.
For instance, preprocessing the data on the mobile before transferring them to the cloud may sub-
stantially decrease the amount of data the cloud must process as well as the network use. This is
a well-known question studied by many researchers who have proposed different solutions opti-
mized to achieve different objectives. Examples include offloading for execution times based on
resource monitoring [97], migrating tasks to the cloud for saving energy [58], distributing applica-
tion binaries automatically [42], and partitioning the application dynamically [20].

However, these approaches are not suitable for the increasing number of MCC applications due
to the following limitations:

• System optimization is application specific. Different applications benefit from different
heuristics that can largely save the total amount of computations required by the applications.
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Figure 2: A Cooperative Development Process of Design Tools and Applications.

An automated analysis cannot invent a new technique to optimize the application. Instead,
a system designer with a fast and effective design tool is more likely to come up with an
efficient optimization idea through design-space exploration.

• Existing methods cannot support heterogeneity and very large scalability, the two most dis-
tinguished characteristics of MCC systems. MCC systems are heterogeneous because they
consist of cloud computers and mobile devices. Meanwhile, those mobile devices have vary-
ing computing processors and networks. In addition, recent large-scale MCC systems serve
more than a billion users with more than tens of millions of them accessing the cloud at the
same moment.

• Computation offloading is a viable model only under the circumstance where the growth of
cloud computers exceeds the growth of mobile devices. Therefore, offloading is not applica-
ble to many MCC systems where mobile devices may outgrow the available cloud resources.
Furthermore, computation offloading is increasingly used also in other types of fast-growing
computing systems such as Internet of Things [34] and Cloud Robotics [53]. Hence, the
computational burden on the cloud is expected to intensify further in near future.

I propose to study the optimal distribution of computations in the MCC systems by

1. developing effective and efficient design and simulation tools to support the design and op-
timization of large-scale heterogeneous MCC systems and

2. inventing a class of patterns for computation distribution and apply them to the new MCC
systems I develop using my tools.

The way I plan to study the distribution of computations for MCC systems is an iterative pro-
cess of developing design tools and implementing MCC systems where distinct distributions of
computations can be applied. The development of design tools and applications can benefit each
other, accelerating the completion of both. As shown in Fig. 2, these two development processes
are iteratively connected. For instance, a simulation and design tool makes the development and
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testing of a new application more efficient. To assist the developers of a new type of application
that runs a large number of distributed mobile devices, the tool should support great scalability to
simulate many nodes. When the application runs on heterogeneous cores, the tool also needs to
support these distinct types of cores. Without an appropriate design tool, application development
can be slow. On the other hand, without knowing actual applications, the tools cannot be enhanced
in a meaningful direction. Hence, the development process of the design tools and the applications
is mutually beneficial.

Throughout the development of various MCC applications, I invented a series of techniques
called Reverse Offloading. Reverse offloading distributes computations across the cloud and the
mobile devices, instead of offloading the entire tasks to the cloud. Fig. 1(b)∼ 1(d) illustrates three
different types of reverse offloading. First, Reverse Distributed Offloading distributes the entire
tasks across multiple mobile devices in the same network. This makes the mobile independent
from the cloud, as shown in Fig. 1(b). In other words, the cluster formed out of the mobile devices
works like an alternative cloud. Second, Algorithm-Division Reverse Offloading splits each task
into two portions. As shown in Fig. 1(c), the application sends a portion of the task to the cloud;
then, the intermediate result for the portion of the task returns to the mobile; finally, the mobile
device runs the rest of the task taking as input the intermediate result returned from the cloud.
Third, Query-Division Reverse Offloading selectively sends only some of the tasks to the cloud.
I discussed these 3 techniques in the context of three MCC applications in Section 3, 4, and 6.2,
respectively.

Reverse offloading can effectively address the aforementioned challenges as follows:

• It reduces the amount of computations that the cloud must run. Reverse distributed offload-
ing makes the mobile devices independent from the cloud. In other words, the computational
burden on the cloud is dissolved. MCC applications that adapt algorithm-division reverse of-
floading will only offload certain portions of the tasks to the cloud. In this case, the rest is
saved from offloading. Query-division reverse offloading sends only certain tasks to the
cloud. Likewise, the tasks handled by the mobile devices are saved from offloading. Par-
ticularly, the amount of computations reduced by reverse offloading is proportional to the
number of mobile devices, which is the most rapidly growing factor in the MCC systems.
The fast improving computational power and energy efficiency of mobile devices also con-
tribute to the effectiveness of reverse offloading.

• Reverse offloading can effectively decrease the total execution time for some applications.This
is due to the reduced use of network, particularly on the mobile side. The mobile network,
i.e. Wi-Fi or LTE, takes a large portion of the execution time and the energy consumption of
MCC applications. By reducing the network use, reverse offloading inherently decreases the
network latency and energy dissipation. Also, the growing processing power on mobile, e.g.
mobile CPUs and GPUs, contributes significantly to the feasibility of reverse offloading.

• A certain type of reverse offloading can mitigate some privacy concerns. Instead of sending
personal information to the cloud (while also leaving it on the mobile), securing it only on
the mobile provides less chance for the personal information to be leaked.

• Reverse offloading can enable new services. For instance, in Section 4 I introduce an MCC
application that uses personal information in the users’ emails by extracting the information
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from the messages stored on the mobile devices. So far this type of services has been possible
only for a small group of large companies that offer their own email services, e.g. Google,
Microsoft, and Yahoo. Instead of accessing email services on the cloud, leveraging the
personal information in the email stored on the mobile makes a variety of new services
feasible for many small independent companies.

The rest of the proposal is organized as follows. In Section 2, I present a design tool for
developing MCC applications. Particularly, this tool supports large scalability and heterogeneity
required by the MCC systems. This tool, named NETSHIP, was presented at DAC‘13 [49]. In
Section 3 I introduce the reverse distributed offloading adapted on a cluster of embedded systems.
The material in this section was published at CloudCom‘12 [48]. In Section 4, I introduce an MCC
application where algorithm-division reverse offloading is applied. Specifically, this study shows
that the execution can be faster when the mobile processing core is more actively used, mainly due
to the reduced amount of network use by reverse offloading. The material in this section will be
presented at WWW‘15 [50]. In Section 5, some related projects are reviewed. A plan to complete
my research is given in Section 6.

2 A Design Tool For Heterogeneous Large-Scale MCC Systems
From a single SoC to a network of embedded devices communicating with a backend cloud-
computing server, emerging classes of embedded systems feature an increasing number of het-
erogeneous components that operate concurrently in a distributed environment. As the scale and
complexity of these systems continues to grow, there is a critical need for scalable and efficient sim-
ulators. Together with Jihyung Park, Michele Petracca, and Luca Carloni, I developed a Networked
Virtual Platform as a scalable environment for modeling and simulation. The goal is to support
the development and optimization of embedded computing applications by handling heterogeneity
at the chip, node, and network level. To illustrate the properties of our approach, I presented two
very different case studies: the design of an Open MPI scheduler for a heterogeneous distributed
embedded system and the development of an application for crowd estimation through the analysis
of pictures uploaded from mobile phones.

2.1 Introduction
Computing systems are becoming increasingly more concurrent, heterogeneous, and intercon-
nected. This trend happens at all scales: from multi-core systems-on-chip (SoC), which host a
variety of processor core and specialized accelerators, to large-scale data-center systems, which
feature racks of blades with general purpose processors, graphics-processor units (GPUs) and even
accelerator boards based on FPGA technology. Furthermore, nowadays many embedded devices
operate while being connected to one or more networks: e.g., modern video-game consoles rely
on the Ethernet protocol [80], millions of TVs and set-top boxes are connected through DOCSIS
networks [40], and most smartphones can access a variety of networks including 3G, 4G, LTE, and
WLAN [54, 46, 88].

As a consequence, a growing number of software applications involve computations that run
concurrently on embedded devices and backend servers, which communicate through heteroge-
neous wireless and/or wired networks. For example, mobile visual search is a class of applications
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Figure 3: The two orthogonal scalabilities of NETSHIP.

which leverages both the powerful computation capabilities of smart phones as well as their access
to broadband wireless networks to connect to cloud-computing systems [33, 85].

We argue that the design and programming of these systems offer many new unique opportuni-
ties for the electronic design automation (EDA) community. For instance, system and sub-system
architects need tools to model, simulate, and optimize the interaction of many heterogeneous de-
vices; hardware designers need tools to characterize the applications, software and network stack
that they must support; and software developers need early high-level modeling environments of
the underlying hardware architecture, often much before all its components are finalized.

As a step in this direction, we present NETSHIP, a networked virtual platform to develop sim-
ulatable models of large-scale heterogeneous systems and support the programming of embedded
applications running on them. Users of NETSHIP can model their target systems by combining
multiple different virtual platforms with the help of an infrastructure that facilities their intercon-
nection, synchronization, and management across different virtual machines.

Given a target system, NETSHIP can be used to set up a simulation environment where each VP
works as single-device simulator running a real software stack, e.g. the Linux operating system,
with drivers and applications. Thus, it makes it possible to run real applications over the entire
distributed system, without actually deploying the devices. This allows users both to jump start the
functional verification process of the software and to drive the design optimization process of the
hardware and the network.

While in certain areas the terms virtual platform (VP) and virtual machine (VM) are often used
without a clear distinction, in our research it is particularly important to distinguish them. A VP is a
simulatable model of a system that includes processors and peripherals and uses binary translation
to simulate the target binary code on top of a host instruction-set architecture (ISA). VPs enable
system-level co-simulation of the hardware and the software parts of a given system before the
actual hardware implementation is finalized. Instead, a VM is the management and provisioning of
physical resources in order to create a virtualized environment. The resources are mostly provided
by one or more server computers and the management is performed by a hypervisor. Examples of
VPs include OVP, VSP, and QEMU, while KVM, VMware, and the instances enabled by the Xen
hypervisor are examples of VMs. 1

Thanks to its novel VP-on-VM model, the NETSHIP infrastructure simplifies the difficult pro-
cess of modeling a system with multiple different VPs. In fact, the ability to support multiple
VPs interconnected through a network makes NETSHIP free from the limitation of one specific
VP while providing access to the superset of their features. For example, users who are interested
in modeling an application running in part on certain ARM-based mobile phones and in part on
MIPS-based servers can use NETSHIP to build a network of Android emulators [2] and OVP nodes.

1Recent efforts to run VMs on embedded cores [22, 59] remain within the VM definition as they do not adopt binary translation.
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The VP-on-VM model makes NETSHIP scalable both horizontally and vertically, as illustrated
in Fig. 3. The users can scale the system out by adding more VM instances to the network (hori-
zontal scalability) and scale the system up by assigning to each VM instance more CPU cores on
which more VP instances can run (vertical scalability).

Another pivotal advantage the VP-on-VM model adds to NETSHIP is access to the features of
VMs, i.e. pausing, resuming the VM instances, duplicating instanced preconfigured for specific
VP types, or migrating them across physical machines.

Contributions. The main goal of this research work is to understand how to build and use a
Networked Virtual Platform for the analysis of distributed heterogeneous embedded systems. To
do so, we built NETSHIP as a prototype based on the VP-over-VM model with the main objectives
of supporting heterogeneity and scalability. To the best of our knowledge, this is the first work that
presents this type of CAD tool. To evaluate NETSHIP we have completed a series of experiments
including two complete case studies. The first case study shows how a networked virtual platform
can be used to better utilize the computational resources that are available in the target system while
guaranteeing certain performance metrics. The second case study shows how a networked virtual
platform can be used to develop a software application running on a heterogeneous distributed
system that consists of many personal mobile devices and multiple computer servers while, at the
same time, obtaining an estimation of the resource utilization of the entire system.

2.2 Networked Virtual Platforms
A heterogeneous distributed embedded system can consists of a network connecting a variety of
different components. In our approach, we consider three main types of heterogeneity: first, we
are interested in modeling systems that combine computing nodes based on different types of
processor cores supporting different ISAs (core-level heterogeneity); second, nodes that are based
on the same processor core may differ for the configuration of hardware accelerators, specialized
coprocessors like GPUs, and other peripherals (node-level heterogeneity); third, the network itself
can be heterogeneous, e.g. some nodes may communicate via a particular wireless standard, like
GSM or Wi-Fi, while others may communicate through Ethernet (network-level heterogeneity.)

NETSHIP provides the infrastructure to connect multiple VPs in order to create a networked VP
that can be used to model one particular system architecture having one or more of these hetero-
geneity levels. For example, Fig. 4 shows one particular instance of NETSHIP which is obtained
by connecting multiple instances of the QEMU machine emulator [14], the Android mobile-device
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emulator [2], and the Open Virtual Platform (OVP) [9].
Each VP instance runs an operating system, e.g. Linux, with all the required device drivers

for the available peripherals and accelerators. The application software is executed on top of the
operating system. Each VP typically supports the modeling of a different subset of peripherals:
e.g., OVP supports various methods to model the hardware accelerators of an SoC: users can write
models in SystemC TLM 2.0 or take advantage of the BHM (Behavioral Hardware Modeling)
and PPM (Peripheral Programming Model), which are C-compatible Application Programming
Interfaces (APIs) that can be compiled using the OVP-supplied PSE tool-chain2.

In addition to the features supported by each particular VP, we equipped NETSHIP with all the
necessary instrumentation to: (1) enable multiple instance executions; (2) configure port forward-
ing; and (3) measure the internal simulation time. Furthermore, any node in the network of VPs
could potentially be a real platform, instead of being a virtual one: e.g. in Fig. 4, each of the x86
processors runs native binary code and still behaves as a node of the network.

One of the main novelty aspects of NETSHIP is the VP-on-VM model which is critical for the
scalability of modeling and simulations. We designed NETSHIP so that multiple VP instances (e.g.,
2 to 8) can be hosted by the same VM. By adding more VMs, the number of VPs in the system can
be increased with a small performance penalty, as discussed in Section 2.3. Notice that the simple
action of cloning a VM image that includes several VPs often represents a convenient way to scale
out the model of the target system.

Next, we describe the main building blocks of NETSHIP.
Synchronizer. VPs vary in the degree of accuracy of the timing models for the CPU perfor-

mance that they support. Some VPs do not have any timing model and simply execute the binary
code as fast as possible. This is often desirable, particularly when a VP runs in isolation. In NET-
SHIP, however, we are running multiple VPs on the same VM and, therefore, we must prevent a
VP from taking too much CPU resources and starving other VPs. QEMU provides a crude way to
keep simulation time within a few seconds of realtime. OVP, instead, controls the execution speed
so that the simulated time never surpasses the wall clock time. Multiple OVP instances, however,
still show different time developments which require a synchronization method across the VPs in
the network.

We equipped NETSHIP with a synchronizer module to support synchronization across the het-
erogeneous set of VPs in the networked platform, as shown in Fig. 4. The synchronizer is a single
process that runs on just one particular VM and is designed in a way similar to the fixed-time
step synchronization method presented in [23]: at each iteration, a central node increases the base
timestamp and the client nodes stop after reaching the given timestamp. However, we considered
two aspects in our synchronizer:
• we must synchronize VPs that might be scattered over several physically-separated ma-

chines;
• we must preserve the scalability provided by the VP-on-VM model.

NETSHIP targets large-scale systems which involve deployments across physically- separated
machines where millisecond-level network packet travelling is actually required to synchronize.
Hence, NETSHIP supports the modeling of applications that have running times ranging from a
few seconds to multiple hours or days, rather than simulations at nanosecond-level.

2PSE is Imperas Peripheral Simulation Engine [9].
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To support synchronization over the VP-on-VM model, we designed a Process Controller (PC)
that allows us to manage the VPs in a hierarchical manner. Each VM hosts one PC, which controls
all the VPs on that VM. In particular, all messages sent by a VP to the synchronizer pass through
the PC. The PC supports also running programs on a host machine: e.g. in the case of Fig. 4, the
PCs manage the synchronization of the processes running on a x86 through the two POSIX signals
SIGSTOP and SIGCONT, in the same way as the UNIX command cpulimit limits the CPU usage
of a process.

Fig. 5 illustrates an example of the synchronization process with two VMs, each hosting two
VP instances. The following steps happen at each given iteration i:

1. the synchronizer issues a future simulation time ti = ti−1 + ∆T to the VPs and wakes them
up;

2. the VPs run until they reach the appointed time ti and report to their PC;
3. As soon as a PC receives reports from all the connected VPs, it reports to the synchronizer;
4. After the synchronizer has received the reports from all the PCs, it loops back to Step 1.

The users can configure the time step ∆T to adjust the trade-off between the accuracy and the
simulation speed.

Let’s compare the complexity of this hierarchical method to the existing method. In the syn-
chronization algorithm in [23], if the number of VP is |V P | the synchronization process should
receive and count |V P | reports to make sure that all the VPs have reached to the appointed simula-
tion time. This results in a Θ(|V P |) algorithm complexity in Synchronizer, whereas in NETSHIP it
is Θ(

√
|V P |) because Synchronizer manages

√
|V P | PCs, each of which controls

√
|V P | VPs.3

3It may be enough for Synchronizer only to count the number of reports from PC to know that every VP instance is ready and advance the
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Command Database. NETSHIP was designed to support the modeling of systems with a large
scale of target networked VPs. In these cases, to manually manage many VP instances becomes a
demanding effort involving many tasks, including: add/remove new VP instances to/from a system,
start the execution of applications in every instance, and modify configuration files in the local
storage of each instance. In order to simplify the management of the networked VP as a whole, we
developed the Command Database that stores the script programs used by the different NETSHIP

modules. For example, the network simulation module and IP/Port forwarding module load the
corresponding scripts from the database and execute them. Table 1 contains a detailed list of the
commands in the database.

Name Behavior
vp ctrl pwr turns the VP on/off
net set bw sets the VP’s network bandwidth to simulate
net set delay sets the VP’s network delay to simulate
net set error sets the VP’s network error rate to simulate
net load rt loads the address/port settings to use
cmd execute executes a command in all the VPs
acc gen loads driver modules and creates a device

node for the specified accelerator
report local reports the local time in the VP
report cpu reports the cpu time in the VP

Table 1: List of commands in the command database.

VM and VP Management. Whereas the commands in the Command Database are dedicated
to VP configuration, we developed specialized modules to manage the VPs and the VMs (for the
latter we integrated tools provided by the VM vendor). These modules manage the disk images of
the VMs and VPs, for creating, copying, and deleting their instances. Since many VPs are still in
the early stages of development and are frequently updated by the vendors, the VP management
module checks the availability of new updates for all the installed VPs.

Network Simulation. The VP models of NETSHIP are provided with their own models of the
network interface card (NIC). These models, however, are purely behavioral and do not capture
any network performance property, such as bandwidth or latency [23]. Consequently, we devel-
oped a Network Simulation module that enables the specification of bandwidth, latency, and error
rates, thus supporting the modeling of network-level heterogeneity in any system modeled with
NETSHIP. As shown in Fig. 4, a Network Simulation module resides in each particular VP and
uses the traffic-shaping features based on the tc command, which manipulates the traffic control
settings of the Linux kernel.

Address Translation Table. In NETSHIP there are two points where packet forwarding plays
a critical role:

1. To allow incoming connections to the VPs through their emulated NIC model, most VPs
provide a way to redirect a port of the host to a port of the VP, so that packets that arrive
to that VM port are redirected to the corresponding VP port. We leverage this redirection

simulation time. However, this method is unreliable in the sense that there is no way for Synchronizer to tolerate a PC malfunctioning. If a hash
table, for example, is used to map a PC’s IP to the data structure for checking that the PC is reporting more than once in a cycle, the average
complexity of the algorithm in [23] is O(|V P |+ |V P |2/k) and for our algorithm it is O(

√
|V P |+ |V P |

k
), where k is the number of buckets in

the hash table and searching n times in a hash table takes n ∗O(1 + n/k).
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Library Option Default Value
SSH (fixed) Port 22
Hadoop dfs.http.address 50070
(fixed) dfs.datanode.http.address 50075

mapred.job.tracker.http.address 50030
mapred.task.tracker.http.addres 50060

Open MPI oob tcp port min v4 0
(random) oob tcp port range v4 65535

btl tcp port min v4 1025
btl tcp port range v4 65525

Table 2: Example of library port uses.

mechanism so that the applications running on the VPs can open ports to receive packets
from other VPs, even if those are located on a physically separated VM. 4

Port forwarding is the technique of redirecting the traffic incoming on one network port of
the OS running on the host VM towards a specific port of the OS running on the hosted VP.
For example, when a packet arrives to Port 10020 of the VM’s OS, the VP to which Port
10020 is assigned intercepts the packet and forwards it to Port 22 of the VP’s OS. Hence,
when users connects through SSH to the host’s IP and Port 10020 they are forwarded to Port
22 of the VP. This is configured in the behavioral model of the VP and performed through
the NIC model.

Unlike SSH, some libraries require a random port to be accessed by clients; for instance
Open MPI communicates through random ports ranging from 1025 to 65535 [35]. However,
most libraries also provide a way to change or reduce the required port range as shown in
Table 2. We reduced the range and mapped it to the same port range on the virtual addresses,
200.0.0.x. One of these addresses is allocated to each of VP instances using iptables through
the Port Management module in Fig. 4.

2. Since certain applications required that each VP must be accessible through a unique IP
address and generally there is only one physical IP address per VM, we must map each VP
to a virtual IP address. Each VP must know such mapping for all other VPs in the system.
Hence, we used the UNIX command iptables to create a table of assignments within the
kernel of each VP. NETSHIP stores the translation information in the Address Translation
Table, which is loaded through the network commands stored in the Command Database.

2.3 Scalability Evaluation
In this section, we experiment NETSHIP from the synchronization, scalability, performance, and
network-fairness perspectives.

Simulated Time and Synchronization. Eight OVP instances and eight QEMU instances are
running in this simulation setup. The three figures in Fig. 6 show the simulated time in each. The
red solid line represents the time graph of an ideal VP, with y = x, where y is the wall-clock time
and x is the simulated time. While there were multiple instances running together, in the figure we

4While certain VPs provides a network bridge feature that allows more generic network functionalities, we use port redirection because it is
commonly supported by every VP family.

11



VP Type Core Model CPU use Preferred #VPs
OVP Accelerator ∼ 24% 4
OVP MIPS ∼ 6% 16
QEMU PowerPC ∼ 12% 8
VMWare x86 ∼ 5% 20

Table 3: Host CPU use of each VP.

show only the fastest and slowest instances for each VP family, in order to summarize the range of
variations within each VP family and to better compare the VP families.

Fig. 6(a) measures the simulated time of unloaded VPs. Each VP advances its simulated time
linearly, but differently from each other. In particular, the range of simulated time among QEMU
instances is wide: from 4% slower up to 25% faster than the wall-clock time. Instead, the OVP
instances show almost the same simulation speed (0.3% variation), which is 8% slower than the
slowest QEMU instance. This reflects the fact that OVP has a better method to control the simula-
tion speed.

Fig. 6(b) shows the case when a VP is subject to a heavy workload. In particular, at simulated
time x = 120s one OVP instance starts using a high-performance accelerator. From that point
on, the OVP instance gets slower than every other instances, as shown by the deviation among the
OVP lines in the figure. This is natural when the peripherals are modeled at a very high level of
abstraction. In a fair host VM, all VPs are granted the same amount of CPU time to be executed.
Simulating the use of a hardware accelerator on a VP typically requires the VP process on the
VM to executes a non-negligible computation. In the other words, running the functional model
of the accelerator uses the VM’s CPU resources and requires a certain amount of wall-clock time.
From the viewpoint of simulated time, however, this computation happens in a short period of time
(due to the accelerator’s timing model); therefore the given VP instance becomes slower than the
others. The misalignment of the simulated time among VP instances is a concern when simulating
distributed systems, because it might cause the simulated behaviors to be not representative of
reality.

To address this problem, we implemented the synchronization mechanism explained in Sec-
tion 2.2. Fig. 6(c) shows the behavior of all VP instances under the same conditions but with the
synchronization mechanism turned on (with a synchronization cycle of 300ms). The simulated
time of all VPs becomes the same as the slowest instance. The synchronization cycle can be de-
cided by the users. Our experiments show that it should not be too small (≥ 1ms) because: i) a
synchronization that is much more frequent than the OS scheduling time slice5 may disturb the
timely execution of the VPs, and ii) the synchronization is an overhead and slows down the overall
simulation.

Vertical Scalability. By vertical scalability we mean the behavior of the networked VP as
more VPs are added to a single VM. As discussed above, although the synchronizer preserves
the simultaneity of the simulation among VPs, it makes them all run at the speed of the slowest
instance , i.e. even one slow VP instance is enough to degrade the simulation performance of the
whole system. Therefore, an excessive number of VP instances on the same VM will likely cause
a simulation slowdown.

Table 3 shows the amount of CPU of the host VM that is used by a VP instance. For example,
5Linux O(1) scheduler dynamically determines the time slice, ranging from milliseconds to a few hundreds milliseconds.
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Figure 7: Synchronization overheads.

when an OVP instance fully utilizes one accelerator, it takes up to 24% of the host CPU resource
in the hosting VM. This means that 4 is the optimal number of OVP instances, equipped with
that accelerator, which can co-exist on the same VM without performance penalty. Likewise, the
CPU of a QEMU PowerPC that is fully busy, i.e. a simulated 100% utilization, uses up to 12%
of the host VM’s CPU resources: hosting up to 8 QEMU PowerPC instances in the same VM is
performance optimal.

Note that even if the number of VP instances goes over the optimal value, the synchronizer
still preserves the simultaneous simulation of all nodes. However, balancing out the number of VP
instances hosted across the VPs, or alternatively increasing the computational resources available
to the VM, helps to increase the overall simulation performance.6

Synchronization Overheads and Horizontal Scalability. Horizontal scalability describes
the behavior of the simulated VP as we scale the number of VMs. The synchronizer is the entity
in the networked VP that communicates with all VMs in order to keep all VPs aligned. Fig. 7
shows the overhead increase as the number of VMs grows. We measured the overhead as the time
elapsed from when the slowest VP instance reports to have terminated the execution step to the
time the same instance starts the new one. We experimented with ten VP instances insisting on
each PC. In the figure we compare a naı̈ve implementation with an optimized implementation of
the synchronizer. For both version the principle of the synchronization is the same; however, in the
optimized version we used more advanced techniques to reduce the communication latency and
overhead, using the following methods:

Multicasting-based Wakeup. In order to reduce the serial latency of the wakeup packets
delivered from the synchronizer to the PCs, we used multicast UDP.

Atomic Operations in Shared Memory for In-Machine Reporting. The PC must check
that VPs correctly report the end of the current simulation cycle. This is done by having each VP
increase a shared counter through an atomic operation. This is possible because all VPs are on the
same machine.

Disabling Nagle’s Algorithm. Unlike the waking-up message of the synchronizer to the PCs
(1-to-N), multicast UDP cannot be used to carry reports from the PCs to the synchronizer (N-to-
1). In the Linux kernel, TCP sockets typically use by default an optimization technique, Nagle’s
algorithm, which combines a number of small outgoing packets and sends them all in one single
message [66]. This method, however, increases the latencies of these small packets (up to 30ms
in our experiments), which is a critical issue in our synchronization design, since latency is way

6The CPU resources of the VM might not be the only bottleneck. For a more generic approach, an analysis of disks, network congestion,
memory bandwidth, bus capacity, and cache interference are required. In our experiments, however, the constraint due to the VM’s processing
power was the most dominating factor that decides Vertical Scalability.
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more important than throughput. We then disabled the Nagle’s algorithm by turning on the socket
option TCP NODELAY for each TCP socket.

Using POSIX Signals to Sleep and Wake up. In order to stop and wake-up a VP instance our
PC uses two signals: SIGSTOP and SIGCONT. The use of standard Linux signals provides several
advantages. First, the PC can be easily implemented in a separate user space program, without the
knowledge of the internals of the VPs. Second, once implemented, the PC is portable across the
VPs, requiring no modifications. Third, the PC can stop all threads in the process, while sleeping
works only for the thread of the current context. Most importantly, this also enables a synchronized
execution with processes that run natively on a host VM, e.g. x86 server, outside of any VP.7

The overhead for 128 PCs is approximately 250ms, which slows down the networked VP by
about 25% if the simulation step is set to 1s.

Although the optimized implementation significantly reduces the overhead, both slopes in-
crease linearly with respect to the number of PCs in the network (notice that the x-axis is loga-
rithmic). This is because synchronization involves all PCs, each of which is located in separate
machine, and all reports require a packet transmission across the network and linear-time compu-
tation to parse the reports.

In summary, the synchronization across VMs limits the horizontal scalability, in the sense that
the simulation step after which all VPs are synchronized, must be (much) bigger than the time it
takes to actually perform the synchronization, which strongly depends on the characteristics of the
hosting VMs and how they are connected.

2.4 Summary
We have designed and implemented NETSHIP, a framework for building networked VPs that model
heterogeneous distributed embedded systems. Networked VPs can be utilized for various purposes,
including: i) simulation of distributed applications, ii) systems, power, and performance analysis,
and iii) costs modeling and analysis of embedded networks’ characteristics.

We also designed hardware accelerators for specific algorithms. We analyzed that accelerators
might require more resources of the CPUs that host the simulation. We quantified how this phe-
nomenon partially limits the scalability of the entire networked VP, and provided guidelines on
how to distribute the VPs in order to counter balance this loss of simulation performance.

Finally, we used NETSHIP to develop two networked VPs. We used one VP to design a sched-
uler based on MPI and to verify through simulation how the scheduler is able to optimize the
execution of many MPI jobs over a network of heterogeneous machines, by simply distributing the
jobs among the available machines on the basis of their performance-per-application profile. We
used the other VP to design and validate an application distributed among portable devices and a
cloud of servers, and also to derive potential insight about the number of servers and the image
size that guarantee the entire application to run in real-time.

7In NETSHIP x86 binaries are executed on a VM, not a VP. Through the stop and continue signals PC synchronizes
the process without modifying the binary executables.
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3 Reverse Distributed Offloading: A Cluster Of Embedded Sys-
tems

An expanding wealth of ubiquitous, heterogeneous, and interconnected embedded devices is be-
hind most of the exponential growth of the “Big Data” phenomenon. Meanwhile, the same em-
bedded devices continue to improve in terms of computational capabilities, thus closing the gap
with more traditional computers. Motivated by these trends, together with Richard Neill and Luca
Carloni, I developed a heterogeneous computing system for MapReduce applications that couples
cloud computing with distributed embedded computing. Specifically, our system combines a cen-
tral cluster of Linux servers with a broadband network of embedded set-top box (STB) devices.
The MapReduce platform is based on the Hadoop software framework, which we modified and
optimized for execution on the STBs. Experimental results confirm that this type of heteroge-
neous computing system can offer a scalable and energy-efficient platform for the processing of
large-scale data-intensive applications.

3.1 Introduction
The growth in the amount of data created, distributed and consumed continues to expand at ex-
ponential rates: according to a recent research report from the International Data Corporation, the
amount of digital information created and replicated has exceeded the zettabyte barrier in 2010 and
this trend is expected to continue to grow “as more and more embedded systems pump their bits
into the digital cosmos” [43]. In recent years the MapReduce framework has emerged as one of
the most widely used parallel computing platforms for processing data on very large scales [52].
While MapReduce was originally developed at Google [24], open-source implementations such as
Hadoop [3] are now gaining widespread acceptance.

The ability to manage and process data-intensive applications using MapReduce systems such
as Hadoop has spurred research in server technologies and new forms of Cloud services such as
those available from Yahoo, Google, and Amazon.

Meanwhile, the Information Technology industry is experiencing two major trends. On one
hand, computation is moving away from traditional desktop and department-level computer cen-
ters towards an infrastructural core that consists of many large and distributed data centers with
high-performance computer servers and data storage devices, virtualized and available as Cloud
services. These large-scale centers provide all sorts of computational services to a multiplicity of
peripheral clients, through various interconnection networks. On the other hand, the increasing
majority of these clients consist of a growing variety of embedded devices, such as smart phones,
tablet computers and television set-top boxes (STB), whose capabilities continue to improve while
also providing data locality associated to data-intensive application processing of interest [67, 68].
Indeed, the massive scale of today’s data creation explosion is closely aligned to the distributed
computational resources of the expanding universe of distributed embedded systems and devices.
Multiple Service Operators (MSOs), such as cable providers, are an example of companies that
drive both the rapid growth and evolution of large-scale computational systems, consumer and
business data, as well as the deployment of an increasing number of increasingly-powerful embed-
ded processors.

Our work is motivated precisely by the idea that the ubiquitous adoption of embedded devices
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Figure 8: Architecture of the broadband embedded computing system for MapReduce utilizing
Hadoop.

by consumers and the combination of the technology trends in embedded systems, data centers,
and broadband networks open the way to a new class of heterogeneous Cloud computing for pro-
cessing data-intensive applications. In particular, we propose a broadband embedded computing
system for MapReduce utilizing Hadoop as an example of such systems. Its potential application
domains include: ubiquitous social networking computing, large-scale data mining and analytics,
and even some types of high-performance computing for scientific data analysis. We present a
heterogeneous distributed system architecture which combines a traditional cluster of Linux blade
servers with a cluster of embedded processors interconnected through a broadband network to
offer massive MapReduce data-intensive processing potential (and, potentially, energy and cost
efficiency).

3.2 The System Architecture
Fig. 8 provides an overview of the architecture of the system that we developed and built: this
is a heterogeneous system that leverages a broadband network of embedded devices to execute
MapReduce applications by utilizing Hadoop. It is composed of four main subsystems.

Linux Blade Cluster. The Linux Cluster consists of a traditional network of nine blade servers
and a Network Attached Storage (NAS). Each blade has two quad-core 2GHz Xeon processors run-
ning Debian Linux with 32GB of memory and a 1Gb/s Ethernet interface. One of the nine blades
is the Hadoop master host acting both as NameNode and JobTracker for the MapReduce runtime
management [3]. Each of the other eight blades is a Hadoop slave node, acting both as DataNode
and TaskTracker [3] while leveraging the combined computational power of the eight processing
cores integrated on the blade. The blades use the Network File System (NFS) to mount the 2TB
Sun storage array which provides a remote common file-system partition to store applications for
each of the executing Hadoop MapReduce applications. For storing the Hadoop Distributed File
System (HDFS) data, the blades use their own local hard-disk drive (HDD).

Embedded STB Cluster. The Embedded Cluster consists of 64 Samsung SMT-C5320 set-top
boxes (STB) that are connected with a radiofrequency (RF) network for data delivery using MPEG
and DOCSIS transport mechanisms. The Samsung SMT-C5320 is an advanced (2010-generation)
STB featuring an SoC with a Broadcom MIPS 4000 class processor, a floating-point unit, ded-
icated video and 2D/3D-graphics processors with OpenGL support, 256MB of system memory,
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Figure 9: Two software stacks to support Hadoop: STB vs. Linux Blade.

64MB internal Flash memory, 32GB of external Flash memory accessible through USB, and many
network transport interfaces (DOCSIS 2.0, MPEG-2/4 and Ethernet). Indeed, an important archi-
tectural feature of modern STBs is the heterogeneous multi-core architecture design which allows
the 400MHz MIPS processor, graphics/video processors, and network processors to operate in
parallel over independent buses. Hence, user-interface applications (such as the electronic pro-
gramming guides) can execute in parallel with any real-time video processing. From the viewpoint
of running Hadoop applications as a slave node, however, each STB can leverage only the MIPS
processor while acting both as DataNode and TaskTracker. 8 This is an important difference be-
tween the Embedded Cluster and the Linux Cluster. Finally, in each STB, a 32GB USB memory
stick is used for HDFS data storage, while NFS is used for Java class storage.

Network. The system network is a managed dedicated broadband network which is divided
into three IP subnets to isolate the traffic between the DOCSIS-based broadband Embedded Clus-
ter network, the Linux Cluster network, and the digital cable head-end. Its implementation is based
on two Cisco 3560 1Gb/s Ethernet switches and one Cisco 7246 DOCSIS broadband router. The
upper switch in Fig. 8 interconnects the eight blades along with the NAS and master host. The
lower switch aggregates all the components on the head-end subnetwork. The DOCSIS subnet-
work is utilized by the Embedded Cluster whose traffic exists on both the Linux Cluster and the
digital head-end network. The broadband router has 1Gb/s interfaces for interconnection to the
Linux Cluster and head-end networks as well as a broadband interface for converting between the
DOCSIS network and the Ethernet backbone. Each broadband router can support over 16,000
STBs, thus providing large-scale fan-out from the Linux Cluster to the Embedded Cluster.

Embedded Middleware Stack. The embedded middleware stack is based on Tru2way, a
standard platform deployed by major cable operators in U.S. as part of the Open Cable Applica-
tion Platform (OCAP) developed in conjunction with Cablelabs [5]. Various services are deliv-
ered through the Tru2way platform including: chat, e-mails, electronic games, video on-demand
(VOD), home shopping, interactive program guides, stock tickers, and, most importantly, web
browsing [10]. To enable cable operators and other third-party developers to provide portable ser-
vices, Tru2way includes middleware based on Java technology that is integrated into digital video
recorders, STBs, TVs, and other media-related devices.

Tru2way is based on Java ME (Java Micro Edition) with CDC (Connected Device Config-
uration) designed for mobile and other embedded devices. The Tru2way standard follows FP

8In the Embedded Cluster, there is also a Linux blade which is the Hadoop master node, acting both as NameNode
and JobTracker.
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Figure 10: WordCount execution time as function of problem size (bytes), node count: (a) Embed-
ded Cluster and (b) Linux Cluster; (c) relative comparison.

(Foundation Profile) and PBP (Personal Basis Profile) including: io, lang, net, security, text, and
util packages as well as awt, beans, and rmi packages, respectively. Additional packages include
JavaTV for Xlet applications, JMF (Java Media Framework), which adds audio, video, and other
time-based media functionalities, and MHP (Multimedia Home Platform), which comprises classes
for interactive digital television applications. On top of these profiles, the OCAP API provides ap-
plications with Tru2way-specific classes related to hardware, media, and user-interface packages
unique to cable-based broadband content-delivery systems.

Remark. While this rich set of Java profiles offer additional features to the embedded Java
applications, there exists a significant gap between the Java stack provided by Tru2way and the
Java Platform Standard Edition (Java SE), which is common to enterprise-class application devel-
opment. Hence, since the standard Hadoop execution depends on the Java SE environment, we had
to develop a new implementation of Hadoop specialized for the embedded software environment
that characterizes devices such as STBs. We describe our effort in the next section.

3.3 Experiments
In order to evaluate our embedded Hadoop system for its scalability characteristics and execution
performance, we executed a number of MapReduce experimental tests across the Linux Cluster and
Embedded Cluster. All the experiments were performed while varying the degree of parallelism,
i.e. by iteratively doubling the number of Hadoop nodes, of each cluster: specifically, from 1
to 8 Linux blades for the Linux Cluster (where each blade contains eight 2GHz processor cores)
and from 8 through 64 STBs for the Embedded Cluster (where each STB contains one 400MHz
processor core). The results can be organized in four groups which are presented in the following
subsection. We report the average results after executing all tests multiple times.
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The WordCount Application. WordCount is a typical MapReduce application that counts the
occurrences of each word in a large collection of documents. The results reported in Fig. 10(a)
and 10(b) show that this application scales consistently for both the Embedded Cluster and Linux
Cluster. As the size of the input data increases, the Embedded Cluster clearly benefits from the
availability of a larger number of STB nodes to process larger data sets. The Linux Cluster exe-
cution time remains approximately constant for data sizes growing from 128MB to 512MB since
these are relatively small, but then it begins to double as the data sizes grow from 1GB to 32GB.
In fact, above the 1GB threshold the amount of data that needs to be shuffled in the Reduce task
begins to exceed the space available within the heap memory of each node. A similar transition
from in-memory shuffling to in-disk shuffling occurs in the Embedded Cluster for smaller data
sets due to the smaller memory available in the STB nodes: specifically, it occurs somewhere be-
tween 64MB and 512MB, depending on the particular number of nodes of each Embedded Cluster
configuration.

Fig. 10(c) reports the ratios between the execution times of two Embedded Cluster configura-
tions over two corresponding equivalent Linux Cluster configurations, for large input data sets. 9

The first column reports the ratio of the configuration with eight STBs over one single blade with
eight processor cores; the second column reports the ratio of the Embedded Cluster configuration
(with 64 STBs) over the Linux Cluster configuration (with eight blades for a total of 64 cores.)
Across the different data sizes, the performance gap of the Embedded Cluster relative to the cor-
responding Linux Cluster with the same number of Hadoop nodes remain approximately constant:
it is about 60 times slower for the configuration with 8 nodes and about 40 times slower for the
one with 64 nodes. Notice that these values are the actual measured execution times; they are not
modified to account for the important differences among the two systems such as the 5X gap in the
processor’s clock frequency between the Linux blades and the STBs.

HDFS & MapReduce Benchmarks. The second group of experiments involve the execution
of a suite of standard Hadoop benchmarks. The goal is to compare how the performance of the
Embedded Cluster and Linux Cluster scales for different MapReduce applications. The execution
times of these applications expressed in seconds and measured for different configurations of the
two clusters are reported in Table 4. The numbers next to the application names in the first col-
umn denote input parameters, which are specific to each application: e.g. “RandomTextWriter 8”
denotes that the RandomTextWriter application is running eight mappers, while the “Pi-Estimator
1k” means that Pi-estimator runs with a 1k sample size.

Sleep is a program that simply keeps the processor in an idle state for one second, whenever
a Map or a Reduce task should be executed. Hence, this allows us to estimate the performance
overhead of running the Hadoop framework. For the representative case of running Sleep with 128
mappers and 16 reducers, the Embedded Cluster and the Linux Cluster performance is basically
the same.

RandomTextWriter is an application that writes random text data to HDFS and, for instance, it
can be configured to generate a total of 8GB of data uniformly distributed across all the Hadoop
nodes. When it is running, eight mappers are launched on each Linux blade, i.e. one per proces-
sor core, while only one mapper is launched on each STB node. Since the I/O write operations
dominate the execution time of this application, scaling up the number of processor cores while
maintaining the size of the random text data constant does not really improve the overall execution

9The values in parenthesis are computed by extrapolating the execution times on the Embedded Cluster.
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8 STBs 64 STBs 1 Blades 8 Blades
Benchmarks (8 cores) (64 cores) (8 cores) (64 cores)
Sleep 1285.1 119.6 1223.6 114.5
RandomTextWriter 8 799.6 743.9 177.6 172.0
PiEstimator 1k 461.1 163.5 212.1 52.5
PiEstimator 16k 463.4 474.0 213.7 52.5
PiEstimator 256k 603.6 783.2 214.6 52.4
PiEstimator 4M 1240.9 2048.2 213.9 52.5
PiEstimator 64M 7373.0 10482.5 314.8 58.4
K-Means 1G 3679.2 1149.3 794.7 245.0
Classification 1G 3009.0 784.9 864.7 254.5

Table 4: Execution times (in seconds) for various Hadoop benchmarks.

time.
Pi-Estimator is a MapReduce program that estimates the value of the π constant using the

Monte-Carlo method [12]. For the Linux Cluster, the growth of the input size does not really
impact the execution time for a given system configuration, while moving from a configuration
with one blade to one with eight blades yields a 4x speedup. For the Embedded Cluster, in most
cases scaling up the number of nodes causes higher execution times because this program requires
that during the initialization phase the STBs receive a set of large class files which are not originally
present in the Embedded Java Stack.

3.4 Summary
We developed, implemented, and tested a heterogeneous system to execute MapReduce applica-
tions by leveraging a broadband network of embedded STB devices. In doing so, we addressed
various general challenges to successfully port the Hadoop framework to the embedded JVM en-
vironment. We completed a comprehensive set of experiments to evaluate our work by comparing
various configurations of the prototype Embedded Cluster with a more traditional Linux Cluster.
First, the results validate the feasibility of our idea as the Embedded Cluster successfully executes
a variety of Hadoop applications. From a performance viewpoint, the Embedded Cluster typi-
cally trails the Linux Cluster, which can leverage more powerful resources in terms of processor,
memory, I/O, and networking. On the other hand, for many applications both clusters demonstrate
good performance scalability as we grow the number of Hadoop nodes. But a number of prob-
lems remain to be solved to raise the performance of executing MapReduce applications in the
Embedded Cluster: in particular, critical areas of improvement include the STB I/O performance
and the communication overhead among pairs of STBs in the DOCSIS broadband network. Still,
the gap between embedded processors and blade processors in terms of speed, memory, and stor-
age continues to decrease, while higher performance broadband networks are expected to integrate
embedded devices into the Cloud. These technology trends hold the promise that future versions of
our MapReduce computing system can help to leverage embedded devices for Internet-scale data
mining and analysis.
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4 Algorithm-Division Reverse Offloading: Locally-Customized
Training

Personal mobile devices offer a growing variety of personalized services that enrich considerably
the user experience. This is made possible by increased access to personal information, which
to a large extent is extracted from user email messages and archives. There are, however, two
main issues. First, currently these services can be offered only by large web-service companies
that can also deploy email services. Second, keeping a large amount of structured personal in-
formation on the cloud raises privacy concerns. To address these problems, together with Karl
Stratos and Luca Carloni, I developed LN-Annote, a new method to extract personal information
from the email that is locally available on mobile devices (without remote access to the cloud).
LN-Annote enables third-party service providers to build a question-answering system on top of
the local personal information without having to own the user data. In addition, LN-Annote miti-
gates the privacy concerns by keeping the structured personal information directly on the personal
device. Our method is based on a named-entity recognizer trained in two separate steps: first
using a common dataset on the cloud and then using a personal dataset in the mobile device at
hand. Our contributions include also the optimization of the implementation of LN-Annote: in
particular, we implemented an OpenCL version of the custom-training algorithm to leverage the
Graphic Processing Unit (GPU) available on the mobile device. We present an extensive set of
experiment results: besides proving the feasibility of our approach, they demonstrate its efficiency
in terms of the named-entity extraction performance as well as the execution speed and the energy
consumption spent in mobile devices.

4.1 Introduction
Recent advancements in personalized web-based services have enriched our daily lives. Intelli-
gent personal assistant services such as Google Now [8] or Apple’s Siri [4] can give “directions to
home” or alert that “it’s time to leave for your next meeting”. Meanwhile, personal search services
can answer queries based on the user’s personal information. Googling “my flights”, for instance,
produces the upcoming flight reservations that the user has made. Personalized advertisement is
another important (and most profitable) instance of personalized web services. The advertisement
systems of Amazon, Facebook and Google [1, 6, 7] are known to utilize viewers’ personal infor-
mation such as previous purchase history.

What makes all these personalized services possible? The personal information collected by
the service providers. Since its quality determines the quality of the personalized services, web
service providers put in significant efforts to improve and extend its collection. One vast source
of personal information is found in users’ emails. Large web-service companies that provide also
email services (like Google, Microsoft, and Yahoo) have the means to offer rich personalized
services precisely thanks to the personal information they extract from the users’ emails. The
example of Fig. 11 illustrates this process. A notification email of a message posted on a Social
Network Service (SNS) account by one of the user’s friend is parsed through a sequence of steps
to build structured data, including: 1) a knowledge graph indicating the subject, the object, a type
of the action, and the contents of the comment; 2) the parsing tree of the comment; 3) various
grammatical tags such as part-of-speech (e.g. Verbal Phrase and Noun Phrase) and Named-Entity
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Figure 11: Parsing email to collect personal information.

Recognition (NER) labels (e.g. Person, Location, and Time). This kind of structured personal
information is stored and used later in various ways: e.g. to improve personal search services by
retrieving results that are relevant to the named-entities related to the user.

Thanks to the growing amount of personal data that are available to be collected, it is easy to
predict that personalized services will continue to evolve and expand. There are, however, lim-
itations and concerns. First, the current methods of information extraction are not feasible for
any small company that doesn’t have its own email service because they are based on access-
ing large data sets collected with proprietary email services. Second, keeping large amount of
structured personal information on centralized remote cloud servers raises privacy and security
concerns [16, 77].

To address these problems, we present LN-Annote (Locally-customized NER-based Annota-
tion), a novel information-extraction subsystem that is designed and optimized to process the email
data available locally on each personal mobile device. Our contributions include:

• a distributed learning model based on two phases: universal training to generate a common
parameter set on the cloud and custom training to refine and optimize the shared common
parameter set by using the email data locally available on each mobile device;

• a discussion on how to extend the architecture of a personal search system to integrate the
LN-Annote subsystem;

• an implementation of LN-Annote using locally available information and optimization meth-
ods leveraging the GPU on the mobile device; and

• an extensive set of experimental results to prove the feasibility, effectiveness, and efficiency
of our approach.

4.2 LN-Annote System Design
In this section we present the design of LN-Annote, its main components, and how these interact
with other modules as part of a bigger system. LN-Annote is an NER-based system optimized
to extract information from email messages, in particular those sent via SNSs. The focus on
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Figure 12: The flowchart of LN-Annote.

email is motivated by two observations: 1) email messages convey scads of personal information
and 2) many web services send notification emails with very useful data such as reservations or
recommendations.

Information Extraction and NER. Nowadays many companies send emails to their customers
for various purposes such as discount offers, purchase history, appointment reminders, or activity
updates on SNSs. As more companies integrate their services with email systems, these email
messages contain a growing amount of personal information. Meanwhile, more and more people
use their email to manage personal information [95]. Hence, the ability to extract personal infor-
mation from emails becomes increasingly important. Nonetheless, existing extraction techniques
have various limitations. One approach is to write vendor-specific parsing scripts; this, however,
requires a large amount of manual labor to update the scripts whenever the vendor changes the
email format. Another approach is to use Microdata embedded in the emails containing struc-
tured information [39]; this, however, is currently not very effective because the number of email
messages that contain Microdata is very limited.

To overcome these problems, Natural Language Processing (NLP) techniques have been pro-
posed to assist service providers in extracting useful information [71, 86]. Named-Entity Recog-
nition (NER) is a popular NLP technique to classify given vocabularies into predefined cate-
gories [13, 70]. A wide variety of systems use NER for different text types such as queries, SNS
posts, or résumés [38, 60, 72].

The performance of a NER system can be evaluated using various metrics. One of the most
widely used metric is the F1 score which is defined as the harmonic mean of Precision and Recall:

F1 = 2 · Precision ·Recall
Precision+Recall

(1)

Precision, or Positive Predictive Value, is the correctness of the predicted classification and Recall,
or True Positive Rate, is the coverage of the positive cases.

The LN-Annote System Workflow. To achieve more accurate prediction, we conceived a
novel method that performs training for NER in two separate main steps, as illustrated in Fig. 12
(in this flowchart, a solid arrow represents a flow of data and a dashed arrow represents a sampling
activity.) The first step, shown in the blue box (left), is universal training: this is essentially
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identical to traditional learning and returns learning parameters that will be shared among all
users. The second step, shown in the red boxes (right), is custom training: it runs on each personal
device, takes the learning parameters from the universal training, and enhances them by further
training with the locally accessible dataset which is specific to each user. The main goal of our
method is to produce locally-customized learning parameters that work well for the particular local
environment. However, the parameters need to perform well also on the global texts, by preserving
the knowledge from universal training.

As shown later, LN-Annote achieves extraction performance comparable to training for a com-
bination of the global dataset and the personal dataset, while requiring a significantly smaller
amount of computation. Next, we provide more details on the two main steps.

1. Universal Training in the Cloud. This step consists of two substeps:
1-a. Data sampling and NER labeling is a preparation activity that takes samples from a univer-

sal text database and creates labels for the sampled data to feed the supervised training of Substep
1-b. Choosing a representative dataset with an appropriate amount is an important task for the
quality of the training [69]. The sampled data can be labeled using different methods: a) manual
labeling, b) manual labeling and running semi-supervised learning, and c) running unsupervised
learning [28, 87]. For the experiments of this research, we used the CoNLL03 dataset provided
with manually labeled NER tags [84], while semi-supervised learning is commonly used for large
datasets.

1-b. NER universal training uses supervised learning to process the labeled data produced
by Substep 1-a. In traditional machine learning, the learning parameters created by this kind of
algorithm are directly used to test the prediction of NER labels for the actual dataset. In our
approach, instead, these learning parameters are shared to the multiple mobile devices for custom
training.

2. Custom Training & Testing on the Mobile Device. This step consists of three substeps:
2-a. Data sampling & semi-supervised NER labeling works similarly to Substep 1-a to produce

labeled data for Substep 2-b. Here, the inputs are text samples selected from the local email
database used by the email app running on the mobile device. Also, in this case the manual labeling
cannot be applied because it is infeasible to ask the user of the personal device to do it. Instead,
we obtained local gazetteers, a list of named-entities from a reliable source [65]. This substep is
performed automatically by using a semi-supervised learning algorithm based on the labels from
the gazetteers.

2-b. NER Custom Training updates the NER parameters by learning from the labeled dataset
generated by the emails on the mobile device. The use of updated parameters is expected to keep
the same performance as the use of universally trained parameters on the global dataset, while
delivering better performance on the local emails.

2-c. NLP Parser & Annotator using NER, the final substep of LN-Annote processes the emails
on the mobile device. This is done using NER based on the parameters created in the Substep 2-b.
The outcome is stored in the Structured Personal Information Database where it can be used by
any personal services running on the mobile device, as long as this is allowed by the user.

Notice that each substep of LN-Annote occurs with a different frequency: universal training
(Substeps 1-a and 1-b) is done only once on the cloud servers; custom training (Substeps 2-a and
2-b), i.e. obtaining gazetteers, takes place periodically, e.g. once a week or a month; and finally,
the actual information extraction (Substep 2-c) runs rather frequently, e.g. everyday.
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Figure 13: Execution time comparison (H=64).

4.3 Acceleration with Mobile GPUs
The execution of custom training on the personal mobile device poses some challenges in terms of
increased energy consumption and the possible slowdown of the overall device. To address these
challenges we performed two major optimizations.

4.4 Experiments
In the following experiments, we used the CoNLL03 shared task [84] in the universal training
while we leveraged emails dataset in the custom training. CoNLL03 provides an English training
dataset (CoNLL03 train) and two English test datasets (CoNLL03 testa and CoNLL03 testb). The
actual email datasets used in the experiments were created with SNS notification emails, such as the
example presented in Fig. 11(a), chosen from personally donated emails for research purposes. We
created a training dataset and a testing dataset for each user and used these in Substeps 2-b and 2-c
of Fig. 12, respectively. Let email traina denote the training dataset from usera and email testa
denote the testing dataset from the same user. While a semi-supervised learning and gazetteers
were used with the email datasets for training as explained in Section 4.2, the email datasets for
testing were labeled following the CoNLL03 guidelines [84] for the experiments in this section.
Each email dataset for custom training consists of 128,000 words out of which approximately 8,000
to 21,000 words are unique within that dataset. The used email dataset for testing contains around
64,000 words. Each measured value that has a possibility of variation, such as execution time and
power consumption, was executed 10 times and averaged excluding the largest observation and the
smallest observation.

OpenCL Performance Speedup. In this section, we evaluate our efforts on executing the
NER training algorithm to relieve the increased CPU occupation and power consumption caused
from having more computations on the mobile devices.

Fig. 13—15 compare the execution time of custom training by using the CPU and the GPU on
the mobile device. The white bars represent the execution time of the CPU implementation written
in Java. The red bars show the execution time of the GPU implementation written in OpenCL
and embedded in the Java application through the Java Native Interface (JNI). The green curves
indicate the speedup achieved by the OpenCL implementation (ran on the GPU) over the Java
implementation (ran on the CPU).

Fig. 13 shows the execution time of the training algorithm when the hidden layer sizeH is set to
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Figure 14: Execution time comparison (H=128).
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Figure 15: Execution time comparison (H=256).

64. The execution times of both Java and OpenCL implementations grow proportional to the input
size, or the number of vocabularies in the training data set. In most cases, the speedup is close to
6, while the speedup is 4.5 and 5.5 for train dataset sized 1k and 2k, respectively. This interesting
phenomenon occurs because for a small dataset the overhead from the OpenCL kernel invocation
takes a large portion of the total execution time. This overhead includes times for initializing the
OpenCL context, compiling the OpenCL kernel, and copying kernel arguments.

Fig. 14 is the execution time when H is set to 128. While increasing H improves prediction
performance, it takes more time to complete the computations. Compared to Fig. 13 the execution
times are almost doubled. This means that the size of the hidden layer impacts the amount of
computations proportionally. The lower points on the left end of the green curve are observed also
in this figure. The bending slops is more gradual than in Fig. 13. The overall speedup from the
previous figure is increased because the OpenCL performance gets better as H increases. This
is because our OpenCL implementation exploits the benefit of the concurrent hardware threads,
which execute the matrix operations parallelly.

Fig. 15 presents the execution time when H is 256. Since the amount of computations required
in each iteration has increased because of the larger H value, the lower speedups observed in the
previous figures do not appear in these experiments. The overall speedup remains the same without
a large improvement with respect to the previous experiment.

OpenCL Energy Saving. Our next set of experiments is about energy consumption. Since we
have achieved a good speedup by utilizing the mobile GPU, we also expect to see some reduction in
energy consumption. To measure the power consumption of each application and component, we
used an open source software called PowerTutor [98] and a profiling tool, called Trepn, provided
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Figure 16: Energy consumption comparison (H=64).
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Figure 17: Energy consumption comparison (H=128).

by the chipset vendor [75].
Fig. 16 shows the energy consumed by the Java implementation executed on the CPU and by

the OpenCL implementation run on the GPU. The red portion of the energy consumption of the
OpenCL implementation is spent by the CPU while the rest is spent by the GPU. These experiments
confirm that the energy consumed on the training for the same amount of input dataset could be
reduced to one fourth by using the mobile GPU. This reduced energy consumption mostly came
from the decreased execution time by the GPU. In fact, the power dissipation is even higher while
the algorithm runs on the GPU. For instance, when the algorithm runs on the CPU the average
power consumption by the CPU is approximately 0.682 Watt. On the other hand, the average power
consumptions by the GPU and the CPU when the algorithm is executed on the GPU are around
1.02 Watt and 0.108 Watt, respectively. Another interesting point is that the power dissipation on
the CPU, while the GPU is in use, is very low. This is because our OpenCL implementation is
one consolidated kernel, thus not relying on the CPU during the entire iteration.10 We speculate
that the 0.108 Watt is mostly spent on the static power dissipation and on the maintenance of the
Android app main thread, including event handling of the user interface.

Both Fig. 16 and Fig. 17 show lower energy savings for small datasets, i.e. 1k and 2k. Com-
pared to the green curves in Fig. 13 and Fig. 14, the green curves in Fig. 16 and Fig. 17 stagger
slightly. We presume that this is due to small errors introduced by the power measurement tools
we used.

10There exist some GPUs that consume CPU resources even inside the GPU kernel, although the GPU we used in the experiments does not.
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Figure 18: Energy consumption comparison (H=256).

4.5 Summary
We proposed and implemented Locally-customized NER-based Annotation (LN-Annote), a new
method to extract personal information from emails stored locally on personal mobile devices.
Our implementation is based on a newly-designed neural network model that works well for the
two main phases of learning that characterize LN-Annote: universal training (performed in the
cloud) and custom training & testing (performed on the mobile devices). The experimental results
show the feasibility and effectiveness of LN-Annote. In particular, they demonstrate how the use
of custom trained parameters actually improves the performance of NER on the local email data
without reducing its performance on the dataset used for universal training.

5 Related Work
Design Tools. A number of studies have previously focused on helping system architects to better
design distributed embedded systems by providing ways to optimize the process scheduling and the
communication protocols [47, 74], tools to ease design space explorations [78, 51, 41], estimation
models [96], network behavior simulations [32], and methodologies [55, 41].

Embedded Clusters. Our work is aligned with efforts in the Mobile Space to bridge MapRe-
duce execution to embedded systems and devices. For example, the Misco system implements
a novel framework for integrating smartphone devices for MapReduce computation [26]. Simi-
larly, Elespuro et al. developed a system for executing MapReduce using smartphones under the
coordination of a Web-based service framework [27].

Information Extraction Techniques. LN-Annote is related to some existing studies that fo-
cus on enhancing the model parameters for distinct cases. For instance, domain adaptation is an
approach to transfer the feature vectors obtained on the source domain to the target domain [19].
In speech recognition, speaker adaptation is used to to improve the recognition performance by
adapting the parameters of the acoustic models to better match the specific speaker’s voice [76].

6 Research Plan
The following summarizes my research activities to date towards the completion of my disserta-
tion: First, I built a design tool for large-scale, heterogeneous MCC systems. This tool eases the
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Figure 19: Two ways of simulating GPU applications.

development of MCC applications. Second, I developed reverse distributed offloading by build-
ing a computing framework for a cluster of embedded systems. In this system, the computational
tasks from users are distributed over the cluster. Third, I developed an MCC application where
algorithm-division reverse offloading plays a key role to reduce offloaded computations.

The following subsections provide more details on my research plan to complete the reminder
of the dissertation. In Section 6.1, I explain how I plan to enhance the design tool for the ap-
plications that use mobile GPUs. In Section 6.2, I sketch how to develop query-division reverse
offloading to optimize a new MCC application.

In Section 6.3, I present a tentative timeline for the completion of my research.

6.1 Improving the design tool for mobile GPU simulations
Despite their proliferation across many embedded platforms, GPUs present still many challenges
to embedded-system designers. In particular, GPU-optimized software actually slows down the
execution of embedded applications on system simulators. This problem is worse for concur-
rent simulations of multiple instances of embedded devices equipped with GPUs. To address this
challenge, I plan to improve the design tool I developed by accelerating concurrent simulations
on multiple virtual platforms. This technique leverages the physical GPUs present on the host
machines, as shown in Fig. 19. The tool multiplexes the host GPUs to speed up the concurrent
simulations without requiring any change to the original GPU-optimized application code.

Since analysis of execution times and energy consumption of the target application are critical
features for modern system simulators, I plan to collect profile information from executing GPU
code on the host GPUs and estimate the number of executed instructions on the target GPUs.
These features will allow my design and simulation tool to support MCC applications that use
mobile GPUs.

6.2 Query-Division Reverse Offloading: a ranking model for ASR
Audio Stream Retrieval (ASR) is an emerging class of applications in audio retrieval. ASR clients
periodically query an audio database with an audio segment taken from the input audio stream
to keep track of the original content sources in the stream or to compare two differently edited
audio streams. We recently developed ASR applications such as broadcast monitoring systems,
automatic caption fetching systems, and automatic media edit tracking systems. In these automated
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systems, ranking the retrieved result candidates is particularly important because the systems take
the most likely result (top-ranked) for their purpose.

I propose query-division reverse offloading applied to a ranking model for ASR, as shown in
Fig 20. Fig. 20(a) illustrates the iterative process of ASR without reverse offloading. The client
queries the retrieval server. The server has various features such as query processing, retrieval from
database, and ranking, collectively represented as a yellow box. This process can be improved by
letting the client have a certain amount of fingerprints from a continuous content source and query
the local database. In Fig. 20(b), the client has a ‘light’ version of search and rank functions
(yellow box). First, the client still queries the server. When the retrieval server finds some results
to answer the query, it sends the client a fingerprint sequence file along with the results. After
a query interval, the client queries its own local search engine instead of querying the server. It
can decide if the next result is still in the local database by comparing the score of the top-ranked
result from the local search to a configurable threshold ε. If a good result is found within the local
database, it simply returns this result. Otherwise, it forwards the query to the server and lets the
server retrieve the queried fingerprint from the entire database. This approach significantly reduces
the number of queries made to the servers.

6.3 Research plan
Table 5 shows my plan for completion of my PhD research. Thus, I plan to defend my thesis in
October 2015.

Timeline Work Progress
2012 Development of an embedded cluster (Reverse Distributed Offloading) completed
2013 Development of NETSHIP (a MCC CAD tool) completed
2014 Development of LN-Annote (Algorithm-Division Reverse Offloading) completed
Apr. 2015 Improvement of NETSHIP with mobile GPU simulation support ongoing
Aug. 2015 Development of an ASR ranking model (Query-Division Reverse Offloading) ongoing
Sep. 2015 Thesis writing
Oct. 2015 Thesis defense

Table 5: Plan for completion of my research
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