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Introduction 
 
Our approach to developing players was to implement a number of 
strategies, analyze their performance in single and multiplayer 
tournaments and see whether online or offline tuning lead to any 
improvements or explanations about the players’ performance. 
 
Background 
 
We divide the game into two phases of interest, the initial Sunrise 
phase and the later Sunset phase. 
 
The Sunrise phase represents the early rounds of the game; our 
definition of early is when the round number is less than three hundred 
(<300) for 5000 round games. This early phase is characterized by 
plentiful food, relative to the food available during the later phase 
of the game, and a sparse board. Under these conditions, food appears 
more often and the possibility of food doubling is greater, provided 
that q > 0, since the board is under populated. In the early phase, 
aggressively searching for food can have a higher payoff than later in 
the game. In this early phase, amoeba energy is higher allowing an 
amoeba to search longer and farther than it could later in the game 
when its energy level is likely to be lower. The initial gamble of 
whether to strike out early foraging for food is unavoidable, if there 
is no food around an amoeba it can always sit still, conserve its 
energy while slowly starving to death – which could be a great strategy 
in exceptionally harsh conditions – at least guaranteeing that a cell 
lasts M / s rounds where M is the maximum energy level per organism and 
s is the amount of energy used for staying put. 
 
The Sunset phase represents the later rounds of the game; round number 
greater than three hundred (>300) for 5000 round games. This phase is 
characterized by less plentiful food and the board is likely to be 
crowded. Based on the discussions in class and running simulations with 
this year’s and last year’s players this proved to be the case since 
most players adopted the simple rule of thumb of “expand early in the 
game to avoid being crowded out of food later”. 
 
During both of these phases there can be huge cycles in population 
density. If food is plentiful there is an increased propensity to 
reproduce more often, if there is sufficient food then high 
reproduction rates can be sustained, however overpopulation usually 
leads to food depletion and amoeba starvation, making room for food to 
grow again and another possible surge in population density if there 
are surviving amoebas. Based on simulations the most violent surge 
occurs in the Sunrise phase as initial aggressive expansion takes 
place. During the Sunset phase surges are less violent because there is 
less open space on the board and less food available. It is not 
guaranteed however that the system reaches a self-regulating or stable 



state where the rate of reproduction balances the rate of automata 
dying and the food source remaining for the most part constant. 
 

 
Figure 1 - Steady food supply in the Sunset Phase 

 
Game Simulator Parameters 
 
There are given nine (9) simulators parameters upon which we can base 
our player strategies on. Four (4) parameters are hidden from amoebas 
while they are aware of the remaining five (5). 
 
Hidden parameters: 
 
p – The probability of food spontaneously appearing 
q – The probability of food doubling 
m – The horizontal size of the grid 
n – The vertical size of the grid 
 
Visible parameters: 
 
s – The amount of energy used to stay put 
v – The amount of energy used for moving or reproducing 
u – The amount of energy per unit food  
M – The maximum energy per organism 
K – The maximum food units per cell  
 
Based on the two categories of parameters it was initially considered 
whether it would be a useful strategy to try to estimate some of the 
unknown parameters. We also examined how the visible parameters could 
be useful to any strategies we came up with. 
 
Estimating Hidden Parameters 
 
Estimating p and q 
 
The discussions in class highlighted a number of drawbacks with 
estimating p and q. 

1. Amoebas can only sense local information about their 
environment, estimates of the global values of p and q based 
only on limited local information are expected to be 
inaccurate, sometimes by as much as an order of magnitude [1] 
To get more accurate estimates, an amoeba must sit around for 
a longer period of time collecting data and refining its 
estimates. While sitting around conserves the most energy, 
this strategy can leave an amoeba vulnerable to starvation if 
it is not sitting on or near food. 



2. In multiplayer games, sitting around for n rounds gives an n-
round advantage to opponents which could potentially deplete 
the food on the board or block us into a foodless section of 
the board hastening our demise. 

3. Even if you estimated the correct values of p and/or q what 
would you do with them? [Someone raised this in the last class 
on September 27th but we can’t find it in the transcript] 

 
Group1 presented a nice compromise to respond to drawback number 1. 
Their player uses the first fifty (50) rounds to gauge whether they are 
in harsh, moderate or good conditions based on a sliding scale of their 
own devising. 
However, rather than sit still allowing opponents to get a fifty round 
head start they collect information as they are spreading out across 
the board reproducing and wandering. This appears to be a reasonable 
compromise based on their claims of consistency across players as well 
as across various simulator values of p and q. Also it highlights an 
observation that was raised by one of our own group members, based on 
the limitations of this simulation, information that is correct as to 
the order of magnitude is just as good as having the exact information. 
 
Estimating m and n 
 
Knowing how big the board is was not really considered to be parameters 
that amoebas really needed to know. Having a big board has a number of 
benefits: 

1. It increases the likelihood that organisms from the same 
species (team) develop independently without being crowded by 
organisms from other species. 

2. The bigger the board the more likely it is to be sparse which 
allows food to appear and double more often then if the board 
was smaller and crowded.  

 
It was also discussed in class that trying the estimate the size of the 
board was not worth the hassle given a number of obstacles: 

1. Amoebas don’t know where they are, walking off one end of the 
board wraps around and the amoebas are none the wiser. 

2. Amoebas could go off in opposite directions counting squares 
until they meet, but amoebas are not able to tell whether an 
amoeba it runs into is the one it is looking. Furthermore, if 
there are obstacles in an amoeba’s path, getting back on the 
right track may be difficult e.g. if an amoeba runs into a 
wall of amoebas of another species. [ref notes from Sept 13] 

3. It is more important to gauge whether the board is crowded 
which each amoeba can infer based on its local information 
e.g. using a count of how many other organisms it has met 
after moving n squares as a rough approximation. 

 
 
 
 
 
 
 
 
 
 



Using the Visible parameters 
 
For our players the only visible parameters we used were u – the amount 
of energy used staying put and v – the amount of energy needed for 
moving or reproduction and M – the maximum energy possible per 
organism.  
We set our low energy threshold as energy left < 6v. The multiplier 6 
was chosen arbitrarily. For details on how this was used see [Bogdan’s 
section on the TilePlayer strategy] 
We also used the ratio of u/v – the cost of moving to determine an 
initial moving probability. [see BigMommaStrategy section for details] 
 
Basic Building Blocks 
 
Communication 
 
Two types of communication are allowed in this project; Amoeba-to-
amoeba and parent-to-child. 
Amoeba-to-amoeba communication is limited to and 8-bit channel but 
exchanges can take place more frequently over a sequence of turns. 
Every round an amoeba can sense the 8-bit state of amoebas adjacent to 
it. 
Parent-to-child communication takes place only when an amoeba 
reproduces. The channel in this instance however is 32-bits wide. 
Given the restricted channel of amoeba-to-amoeba communication and the 
possibility of spoofing and/or drawn out negotiation protocols we 
decided against implementing any form of amoeba-to-amoeba 
communication. We chose instead to make use of parent-to-child messages 
as our communication medium of choice. 
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Key: 
Strategy   which strategy from a predefined set should the child 

select as its primary one. The predefined set included five 
(5) core strategies: 

 TilePlayerStrategy 
 SexFiendStrategy 
 SteadyStateStrategy 
 CarefulBreederStrategy 
 BigMommaStrategy 
   

See [section on Player Strategies] for the details on how 
each of these strategies works. 

 
Round # what round has the simulator reached? 
 
Trait1 The index of the factor in a predefined table used to 

adjust the age after which an amoeba would begin 
reproducing. 

 
Trait2  The index of the factor in a predefined table, used to 

adjust the probability that a cell reproduces. 
 



Trait3  The index of the factor in a predefined table used to 
adjust the probability that an amoeba favors moving. 

 
Trait4  The index of the factor in a predefined table used to 

adjust the probability that a cell sends its children far 
away from the position of the parent.  

 
Estimating board crowdedness 
 
Each amoeba estimates the crowdedness of the board based solely on 
local information. As an amoeba moves searching for its “position”, it 
keeps a moving average of the number of other amoebas it runs into. We 
use this information on crowdedness as feedback into varying the 
reproduction rate [see the TilePlayerStrategy section for details on 
how an amoeba calculates its position and the mechanics of reproduction 
rate control] 
 
Keeping a history 
 
At a late stage in the project we considered maintaining a history of 
the board conditions and the moves we made under those conditions, 
collectively referred to as a context, but we did not implement a 
strategy that leveraged historical information in any useful way before 
the submission deadline. Keeping the previous hundred moves or so might 
be beneficial for comparing past conditions with current conditions. 
Placing a limit on the length of the history kept would allow us to act 
on more recent information rather than being bogged down with a lot of 
old information. The tradeoff we see here however, is that older 
players become more valuable whereas our current strategies are age 
agnostic with regard to amoebas dying. 
 
Simple rules of thumb 
 
Some simple rules all of our players follow include:  

1. Always squat on food 
2. Truly random walking is wasteful, controlled walking is 

better. A controlled walk picks an initial direction at random 
and follows it for n steps. At the nth step, if there is no 
food, another random direction is picked for another n steps, 
preference is given to any direction that does not backtrack 
unless that is our only option.  

3. Always move towards food. If food is sensed while walking, go 
for it. 

 
Player Strategies 
 
Group5Player5 (“Strategy Chess Knight”) 
 
Group5Player5 relies exclusively on the TilePlayerStrategy. 
The Tile Player belongs to the generic class of sit-and-wait 
strategies, and evolved out of two crucial observations about the 
dynamics of the game: 
 
1. Movement is expensive 
     
Moving is costly in that energy is wasted with no clear gain. In the 
most simplified model, a cell which sits has the same mathematical 



probability of finding food as one that moves, since at any time it can 
see only 4 adjacent squares. This simplifying assumption assumes that 
there is no food already on the board, and thus all food that an amoeba 
encounters just pops in exactly when the amoeba is next to it. To see 
why such an assumption is not too far from reality, we note that, save 
for the initial expansion stage of the game, food lying around is a 
rarity, since there is bound to be some organism to pick up any food 
that is more than a couple of turns old. As we will see, our Tile 
Player not only acknowledges this state of affairs, it bases its 
strategy on it, and even contributes to it. 

 
2. Life is cheap 
 
An amoeba is born, lives, and dies as a law abiding citizen and nothing 
more. It does not educate itself very much, it doesn't try to help 
others; it doesn't even try not to hurt others. It is an energy 
carrier, and when its energy is low, it becomes worthless in our eyes. 
At that point, creating a new amoeba or having a starving amoeba move 
on an adjacent food cell cost the same. As we will see, the amoebas are 
food filters. They sit and pick up all the food around them, for the 
glory of The Tile Player and the demise of enemies. 
 
The strategy we follow is thus almost trivial: we sit and eat all that 
is around us. The main feature of the player rests in where it sits, or 
more precisely, how. We want to span the board with amoeba such that 
there is an amoeba covering each cell on the board (a cell is covered 
by an amoeba if the amoeba sits on it, or is adjacent to it). We also 
want to do this with the largest efficiency possible, where efficiency 
= energy intake / energy expenditure. There are two major energy sinks: 
movement (which we minimize by sitting still), and existence, or energy 
used to keep an amoeba alive. The latter we optimize by employing the 
minimum number of amoeba necessary to cover the entire board. Our 
player thus introduces the L-tile positioning strategy. 
 
L-tiling 
 
We restrict amoeba to position themselves in an L-pattern, namely, if 
an amoeba sits at coordinates (0,0), then other amoeba should occupy 
positions  
(2,1), (1,-2), (-2,-1), and (-1,2). This behavior is analogous to the 
movement of a chess knight. 
 
Consider the positioning of amoeba A, B, C, D, E. The cells covered by 
an amoeba are denoted in lowercase letters corresponding to the name of 
the amoeba: 
 
[.][.][e][.][.][.][.] 
[.][e][E][e][.][b][.] 
[.][.][e][a][b][B][b] 
[.][d][a][A][a][b][.] 
[d][D][d][a][c][.][.] 
[.][b][.][c][C][c][.] 
[.][.][.][.][c][.][.] 
 
 
 
 



We note that out of the 8 cells around A, 4 are covered by A itself, 
and 4 by its L-neighbors. The main feature of this placement is 
apparent: all cells are covered, and there is no overlap (which makes 
this placement optimal in the density of amoeba needed to cover the 
entire board. Notice also the symmetry on a larger board segment, also 
apparent in the steady-state picture of the board in the single player 
game (Figure 2) 
 
  5[ ][ ][ ][ ][x][ ][ ][ ][ ][x] 
  4[ ][ ][x][ ][ ][ ][ ][x][ ][ ] 
  3[x][ ][ ][ ][ ][x][ ][ ][ ][ ] 
  2[ ][ ][ ][x][ ][ ][ ][ ][x][ ] 
  1[ ][x][ ][ ][ ][ ][x][ ][ ][ ] 
  0[ ][ ][ ][ ][x][ ][ ][ ][ ][x] 
 -1[ ][ ][x][ ][ ][ ][ ][x][ ][ ] 
 -2[x][ ][ ][ ][ ][x][ ][ ][ ][ ] 
 -3[ ][ ][ ][x][ ][ ][ ][ ][x][ ] 
   -4 -3 -2 -1  0  1  2  3  4  5 
 
We define 'valid' positions to be positions that are consistent with 
the L-tile pattern. From looking at the above figure, it should become 
apparent that the valid positions form a module L (or an integer 
'vector space') of dimension 2 over Z[i], the ring of Gaussian 
integers. In other words, looking at the board above, the 4 amoeba 
around the one at the origin of the coordinate systems (0,0) have 
Cartesian and L-coordinates as given below: 
 
Amoeba Cartesian       L 
________________________________ 
origin   0, 0  0, 0 
NE    2, 1  1, 0 
SE    1,-2  0,-1 
SW   -2, 1      -1, 0 
NW   -1, 2  0, 1 
________________________________ 
 
 
As another example, the cell at Cartesian (1, 3) has L coordinates:  
(1, 1). 
 
We can define a linear transformation to take us from Z[i] (the 
rectangular Cartesian integer coordinate system) to the new 'vector 
space', which we found to be defined as: 
 
T : L -> Z[i] given by the coordinate transformation 
 
[ 2 -1 ] [a]   [x] 
[      ].[ ] = [ ] 
[ 1  2 ] [b]   [y] 
 
where (a,b) is the L-point (coordinates in our 'valid' space) and (x,y) 
are normal Cartesian coordinates. 
 
 
 
 
 



The reverse transformation T': Z[i] -> L is 
 
1[ 2  1 ] [x]   [a] 
-[      ].[ ] = [ ] 
5[-1  2 ] [y]   [b] 
 
We immediately identify two major advantages to using this pair of 
transformations: 
 
1. Since valid points represent 1/5 of all board cells (for example, 
count the number of amoeba in each row in the board model above), 
encoding an L-position takes less bits than encoding a Cartesian 
coordinate pair for the cases where we only care about representing 
valid points (such as for any Hillbill (stationary amoeba) location).  
 
2. T' in particular offers a quick test for the validity of a 
coordinate point: (x,y) is a valid point if and only if the 
transformation takes (x,y) to a pair of integers.  
 
We are ready to explain the behavior of our player. 
Organisms have as their purpose in life the creation of the L-tile 
pattern. As such, organisms pass through two stages in life: 
 
1. The Scout Stage 
2. The Hillbill Stage 
 
Hillbills are the amoeba sitting in a valid position, hence referred to 
as its 'hut'. They sit in that spot and whenever they see food around 
them, they either eat it, or, if they are full, they reproduce onto 
that food. Only Hillbills are allowed to reproduce, and only when they 
sit in a valid position. This gives the scouts a (0,0) consistent with 
the rest of the population (we will mention wraparound problems later). 
As an enhancement for the multiplayer game, the Hillbill is allowed to 
pursue food beyond the cells covered by it, and never leaves a cell 
that has food on it. Whenever it finds itself in a cell that is not its 
hut, the Hillbill has the option of moving to any food next to it. The 
first choice is given to food closer to its hut, so that the amoeba 
always has the tendency to return to its hut. If there is no food 
around it, the Hillbill amoeba also moves towards its hut. Basically, 
extending the analogy introduced by the farming strategies, we can 
compare our Hillbills with gardeners. They maintain a 4 square garden 
around their hut, from where they collect all the food. There is no 
fence around gardens, but there need not be one, since the gardener 
will most likely be the first to reach any food that grows around his 
hut. 
 
Scouts are newly-born amoebas which go off in search of a valid cell to 
settle down into its own 'hut' and become a Hillbill. As mentioned, 
only a Hillbill in its hut (a valid cell) is allowed to reproduce. The 
reproduction invariant is that a scout's origin of coordinates is 
always a valid cell, and thus a scout can easily compute a valid point 
to go towards. Scouts are given by their parent a direction in L-space, 
and when they are born, the parent places the scouts in the cell that 
is best suited for the scout to depart in the chosen direction. If no 
special reproduction opportunities present themselves (i.e., food in an 
adjacent square that cannot be eaten by the parent), the parent 
reproduces spontaneously in that it round-robins among the 4 directions 



and sends scouts out every so often in each direction. Scouts then move 
away a variable distance in the determined direction. If their target 
cell is occupied, the scout continues its motion in its direction, 
until it finds an empty valid cell. At that point, it becomes a 
Hillbill. As with Hillbills, scouts are allowed to stray away from 
their direction of motion in pursuit of food, but will refocus on their 
destination as soon as the food is exhausted. 
 
From the above discussion, the following advantages immediately come to 
mind: 
Optimal energy consumption 
Maximal energy intake  
Simplicity 
 
We present now how we apply various techniques to implement our 
strategy, and point out their benefic effects as appropriate: 
 
* Reproduction threshold: 
 
This is perhaps the most important variable in our strategy. The 
decision about how often to reproduce spontaneously, determines the 
energy/food/population balance of the board. Ideally, once all the 
Hillbills are in their 'huts' and the entire board is covered, there 
ought to be no need for new amoeba and thus no new scouts. Although 
Hillbills are very conservative, they do die off, mainly because the 
cells covered by them happen to not produce food for a long time. We 
are not the least compassionate about dying Hillbills, since they are 
just meant to 'garden' a given 5 cell cross. Instead, by randomly 
sending out scouts across the board, we fill up the gaps that the dying 
Hillbills leave behind. We do need to be careful about throttling our 
reproduction rate, lest excess scouts are doomed to wander around 
without finding an empty valid slot to settle down. 
There are several conditions we are sensitive to when deciding to 
spontaneously reproduce. As a general guideline, most thresholds are 
soft, in that loaded coins are flipped with a probability proportional 
to the respective threshold: 
 
- Minimum energy threshold  
 
This is the only hard limit, in that a Hillbill will never reproduce if 
his energy falls below the threshold. This is set to 12 times the 
energy needed to make a move, such that the scout, born with 6 times 
the energy for a move, has enough resources to reach a valid cell at an 
L-distance of 2 (an L-distance of 1 requires 3 moves). 
 
- Crowdedness  
 
Each Hillbill keeps a moving average of the number of scouts seen. The 
more scouts it sees, the more likely it is that the board in its 
neighborhood has all valid L-spots occupied (and thus scouts are unable 
to settle down). 
 
- Reproduction probability  
 
This is just a probability that a Hillbill will reproduce at any round. 
This parameter was tuned off-line. 
 



- Energy left  
 
We weighted the reproduction probability by a sub unitary power of the 
ratio of energy left to maximum energy, mostly to give more parental 
opportunities to healthy Hillbills. The more energy an amoeba has, the 
better chance of survival the scout has (so it can reach its target 
cell), and the bigger the likelihood that that area is richer in food. 
 
* Communication: 
 
We kept communication to a minimum: apart from settling down in their 
L-pattern, amoeba had little else to coordinate. Furthermore, ensuring 
that the L-pattern was formed correctly was an easy task, as the scouts 
each kept their own coordinate system which guided them to a valid 
cell, and the parents transmitted them the direction of motion at birth 
(to ensure even spreading of scouts in the 4 directions). 
 
The only instance where we do use the 1 byte external state for 
communication is in encounters between Hillbills and Scouts: as 
mentioned, Hillbills identify scouts to count their number. On the 
other hand, scouts also learn from Hillbills: each Hillbill that finds 
itself in its hut exposes that fact as a flag, which the scout can use 
to readjust its coordinate system (since it knows the Hillbill's hut is 
always on a valid square). This is the way we deal with wraparound 
conditions: instead of determining the board size or performing  other 
cumbersome measurements, we allow any scout which has moved around the 
world and finds its coordinate system confused to readjust it based on 
what positions are considered valid in that neighborhood. We have found 
this decentralized strategy to preserve the L-pattern with only local 
discrepancies. 
 
* Dealing with adversaries: 
 
Initially, we wanted to block off any adversaries that tried to enter 
out L-pattern structure, by having Hillbills reproduce or move to 
create spontaneous walls in the face of foreigner. We soon realized 
that such explicit blocking, besides being expensive in energy and 
disruptive to our pattern, was actually not needed. Taking a look at 
Figure 3 should show why: since we are always the first to eat all the 
food in the gardens around us, enemy cells will find the intra-L-
pattern terrain to be a wasteland of food and stay out of it. 
 
 
Figure 2 exemplifies the L-pattern in the steady-state phase of a game 
with p = 0.003 on a 25 x 20 board. The darker colored amoeba are the 
Hillbills, when they are positioned in valid L-positions. We draw 
attention to the successful avoidance of any wrap-around problems: the 
pattern does not break down as amoeba travel across the board. The 
slightly brighter organisms are Hillbills that have moved outside their 
hut to gather food. An example would be the amoeba in cell (18,6) whose 
hut probably lies in (20, 7) and had followed a path of food to its 
present square. Finally, scouts are the bright colored amoeba such as 
the ones in (13,5) and (18,5). As Figure 1 implies, the amoeba are 
successful at consuming all the food on the board, without 
overpopulating. In Figure 2, scouts are few, since Hillbills adjust 
their reproduction rates to fit the needs of the L-pattern structure. 
 



Figure 3 shows the end of a 5000 round multiplayer game (p = 0.005) 
where we are the only population left to fight off the very expansive 
yellow player. An important consequence of our strategy is that it 
avoids the initial sunrise phase by keeping few amoeba with high energy 
count, and expands with a slow growing exponential throughout the game. 
Thus, at round 5000 our player had been growing steadily from 2 cells 
(Round 200) to 73 (round 500) and the ascending trend does not seem to  
die off as we extend the running period.  

 
Figure 2 - Example of the Tile Pattern and Grid Covering (Scouts are Light Cyan, Hillbills are 
darker) 

 



 
Figure 3 – Us (Chess Knight) holding off Group 4 (Yellow) using our L-tiling pattern 

 
Group5Player9 ("Mrs. Betty Bjornson") 
 
The central principle of our second player is the use of multiple 
strategies. In giving our organisms highly variable parameters and 
personalities, we aimed to make them adaptable to a wide range of 
conditions and situations. 
 
Beyond this, Betty's design takes into account a few core principles: 
 
- Gardening, not farming 
 
For many board configurations, food doubling (q) is a better source of 
dinner than food blowing in (p). But for food doubling to be effective, 
the board must be left fairly open, and organisms generally need to 
avoid eating the last couple of food units on a square. In single-
player games, this is easy to implement. But in a multiplayer game, 



leaving uneaten food in an empty square is simply an invitation to 
enemy organisms. 
 
In class discussions and last year's players, farming was a popular 
solution to this problem. Food would be allowed to multiply--and enemy 
organisms would be kept away. But our attempts to implement farming 
were quickly met with frustration. Farms took a great deal of effort 
and coordination to set up, and it takes only one move from an enemy 
organism--into the home square of hungry farmer organisms--to destroy a 
whole farm. Proposed solutions to this generally involved ever-larger, 
multi-layered farms, which seem all-but-impossible to implement 
efficiently using only the insecure state system for communication. 
 
Our approach was to try "gardening": leaving open squares, and 
depleting all the food in a particular location only if necessary. To 
prevent other organisms from abusing our goodwill, we temporarily shut 
off this behavior if there are aliens in our midst. 
 
- Magic numbers are a pain 
 
When working on our first player, we discovered that we didn't much 
like endlessly tuning scores of constants. This makes optimization not 
only difficult by endless. 
 
Though our players still have their share of hard-coded constants and 
formulas, we also try to use inter- and intra-generational evolution to 
set our parameters for us. 
 
- Game phase matters 
 
Round 5 and round 500 are very different games. As outlined in the 
Background section on the phases of the game, different phases require 
different strategies. Risky moves early in the game can have 
substantially higher payoffs than risky moves taken later in the game. 
 
- Life is cheap 
 
One organism's death is no big deal. We'd rather produce three 
organisms with different strategies and lose two than produce one 
organism with a middle-of-the-road strategy and lose the game when its 
strategy proves unsuccessful. [Discussed more by Bogdan] 
 
The Group5Player9 class is little more than a framework for different 
strategies. In any given time slice, the decision of which move to make 
is made solely by a strategy class. Instead of discussing the player as 
a whole, then, we will begin by discussing the individual strategies. 
 
We used strategies as both a design principle and a programming 
concept. That's why you'll find, for example, a RandomWalkStrategy 
class. We're not content to create organisms that do nothing but walk 
randomly; instead, the class is used by higher-level strategies, when 
they decide that the best move in a given time slice is to move to a 
random square. 
 
Other such mini-strategies include the StubbornWalkStrategy and the 
FoodSearchStrategy. The former picks a general direction, like 
Southeast, and then does its best to move roughly in that direction, 



stopping at any food it sees along the way. The FoodSearchStrategy uses 
the StubbornWalkStrategy to look for food, but also decides each turn 
whether it wants to move or just sit and watch neighboring squares. To 
make this decision, it uses a movement probability passed from parent 
to child, as well as the number of free adjacent squares--the more 
crowded the adjacent squares are, the less likely that food will 
appear, and the more likely the organism is to move. 
 
We implement five high-level strategies. These are BigMommaStrategy, 
CarefulBreederStrategy, SexFiendStrategy, SteadyStateStrategy, and 
TileStrategy. 
 
BigMomma 
 
This is the strategy assigned to our first automaton, and it's never 
assigned to any other automata. 
 
In general, it plays conservatively: if our first player dies before 
reproducing, there's no going back. It moves rarely at first, stepping 
up its rate of movement only if it has trouble finding food. It 
reproduces only when it has plenty of energy. 
 
One of its significant functions is determining initial values of the 
movement and reproduction probabilities that future players will use. 
It initially chooses a movement probability based on the ratio of u and 
v. If a piece of food will give us enough energy for 15 moves, we'll 
move a lot; if it'll give us enough energy for 5, we'll tend to sit 
still. As it searches for food, it adjusts the parameters. If it finds 
it needs to move several squares before finding food, it will raise the 
movement parameter and lower the reproduction parameter.  If it finds 
food plentiful, it does the opposite. 
 
BigMomma's biggest duty, of course, is to reproduce. To avoid a 
premature demise, it reproduces only when it has significant energy and 
either has food itself or can put its child on top of food. Its 
children are sequentially assigned one of three strategies--
CarefulBreeder, SexFiend, or Tile. 
 
BigMomma is designed for the early rounds of the game. After round 250, 
it switches to the SteadyStateStrategy. 
 
CarefulBreeder 
 
This strategy is focused on reproducing frequently but not recklessly. 
It reproduces whenever it's very full (energy at roughly 90% of the 
maximum value), and whenever it has a reasonable amount of energy 
(roughly 45% of maximum) and can place its child on top of food. 
 
Of course, it also searches for food. Like all other strategies, it 
subcontracts this to the FoodSearchStrategy, which uses the variable 
movement parameter to decide on its behavior. 
 
All of CarefulBreeder's children are also CarefulBreeders. Around round 
200 -- the exact point is random -- CarefulBreeder organisms switch to 
the SteadyStateStrategy. 
 



When CarefulBreeder reproduces, it decides at random whether to alter 
the movement and reproduction parameters. The changes are made entirely 
at random; the assumption is that players with values better-suited to 
the current game will be able to reproduce more, and the fact that 
players are more likely to keep values as-is than tweak them will 
result in parameters slowly moving toward an optimal value. 
 
SexFiend 
 
This strategy reproduces, and then reproduces some more. It fills the 
board in short order, though of course the high population that results 
is often not stable. Our goal with the SexFiendStrategy was to be first 
to fill the board when conditions are favorable. When conditions aren't 
so favorable, well, at least we'll crowd our enemies for a while, and 
the presence of CarefulBreeder organisms means that we'll still have a 
fair number of more durable organisms on the board. 
 
SexFiend reproduces whenever it has fairly high energy (roughly 70% of 
the maximum) and essentially whenever it can place its child on top of 
food. It also moves more frequently than other strategies, in order to 
spread out across the board. 
 
All of SexFiend's children are also SexFiends. Around round 200 -- the 
exact point is random -- SexFiend organisms switch to the 
SteadyStateStrategy. 
 
SexFiend uses the same evolutionary parameter-tweaking as 
CarefulBreeder. 
 
TileStrategy 
 
This is the same strategy that Group5Player5 uses exclusively; it's 
discussed in great detail in the previous section on Group5Player5. 
 
SteadyState 
 
The goal of the SteadyStateStrategy is to maintain its current 
population as smoothly as possible.  
 
Players are only assigned the SteadyStateStrategy after a couple of 
hundred rounds, so the assumption is that our player has already 
reached sufficient population levels. Because of this, SteadyState 
organisms reproduce very rarely: only when they have more than (M - 2u) 
in energy, are adjacent to food, and are adjacent to at least two 
squares unoccupied by other organisms. 
 
SteadyState organisms, then, tend to spend their lives just sitting 
around. But there's one important twist: when they haven't seen any 
foreign players in k rounds (k is 50 in the player we submitted), they 
start to behave cooperatively. They will move away from fellow 
organisms, in order to leave the board open, and they will move off 
squares with a fewer than 3 units of food (unless they're hungry enough 
to need those remaining pieces of food). This altruistic behavior is 
designed to take effect in single-player games and in pockets of multi-
player boards inhabited mostly by our organisms. 
 



Identification of friend and enemy organisms is done very simply. All 
of our organisms broadcast a constant state value, and this value is 
used to identify friends. This is, of course, highly vulnerable to 
spoofing in any given round. But because we act cooperatively only if 
we haven't seen a single player with a different state in 50 rounds, we 
believe that mistaking enemies for friends is very unlikely. 
 
During reproduction, SteadyState uses the same evolutionary parameter-
tweaking as SexFiend and CarefulBreeder. 
 
But not all of SteadyState's children are themselves SteadyState 
organisms. Roughly two-thirds are -- but about one third are assigned a 
different strategy (SexFiend, CarefulBreeder, or TileStrategy) at 
random. Because of their nearly infertile ways, SteadyState organisms 
are particularly vulnerable to temporary changes in food supply, such 
as that which results from an unsustainable surge in an enemy 
organism's population. Organisms will die of starvation, but then will 
regenerate very slowly once food starts to reappear. But if breeder 
players are occasionally produced, they will take advantage of these 
fertile conditions and quickly replenish our population. 
(CarefulBreeder and SexFiend players that trace their ancestry to 
SteadyState players all revert to the SteadyState strategy after about 
130 rounds.) This is also evolutionary behavior: if TileStrategy's 
approach is better-suited to board conditions, that occasional child 
should thrive, reproduce, and start taking over SteadyState players. 
 
Strategy Tuning 
 
As we tuned our players over the four – five week period we quickly 
realized that while hand tuning seemed to give us decent results, the 
more sophistication we wanted to add to our players the more magic 
numbers we had to add. Turning any of these extra “knobs” resulted in 
wildly oscillating behavior; clearly we needed a better way or some 
justification for selecting some of our magic constants. 
To this end we found the concept of genetic mutation very appealing. 
We identified for key traits that we believe have a direct impact on a 
player’s success. These traits are: 
 
The propensity to move 
The propensity to reproduce 
The propensity to send offspring farther away from the birth site 
The age when reproduction starts 
 
We augmented our parent-to-child communication to allow us to pass down 
a directive to the child that would cause it to adjust one or more of 
these traits in a positive or negative direction. In our final player 
Group5Player9 we chose to mutate either the propensity to move or the 
propensity to reproduce, and randomly selected a scaling factor from a 
table of multipliers for the child to use. 
 
int[] table = { 0,1,2,4,5,8,10,50,100,-1,-2,-4,-5,-8,-10,-50 }; 
 
Given the four bits per trait, we randomly selected an index in this 
sixteen element table to pass onto the child. The child in turn would 
compute the new value for its trait. 
 



As an example of some offline runs we did to determine reasonable 
initial move propensities. For set simulator parameters of p and q we 
use a test strategy that every time it reproduces picks a factor index 
at random. Each child is likely to have a completely different move 
probability than its parent.  
 
For our tuning experiments we augment each player to have a unique id 
and we run each player in a 10000 round game. For every move the player 
prints out its id, age, movement probability and whether that trait has 
been mutated or not. We process this output after the tournament and 
examine which move probabilities are used by the amoebas that have the 
longest lifespan for the given simulator parameters of p and q. We then 
use these probabilities as the magic numbers in some of our player 
strategies depending on the simulator conditions we want to optimize 
for. While we do not think that this will lead to “optimal” parameters 
suitable for every scenario they may be used in a scheme suggested by 
Madhuri Shinde of Group 8 who suggested that a lookup table of 
<conditions,parameter value> tuples may be useful for organisms to have 
if they can indeed reasonably estimate conditions. 
 
See a few examples of tuning runs below. 
 
Tuning Move Probability 
 
Default Move Probability= 0.20 
Move probability delta = 0.03 
Factor table  = 0,1,2,4,5,8,10,50,100,-1,-2,-4,-5,-8,-10,-50 
p    = 0.001 
q    = 0.005 
v    = 10 
u    = 100 
M    = 500 
K    = 80 
m    = 25 
n    = 20        
Rounds   = 10000 
 
Run 1 
 
Raw Table 
 
Move Probability Range  #Amoebas Avg Amoeba Age 
 
0.05    0.1        33       1143.60606060606 
0.1     0.15       17       619.411764705882 
0.15    0.2        10       688.8 
0.2     0.25       106      915.745283018868 
0.25    0.3        10       867 
0.3     0.35       16       786.5625 
0.35    0.4        13       676.846153846154 
0.4     0.45       16       890.75 
0.45    0.5 
0.5     0.55       15       1063 
0.55    0.6 
 



Tuning Move Probabilities Experiment 1 - Run 1
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Run 2  
 
Raw Table 
 
Move Probability Range  #Amoebas Avg Amoeba Age 
 
0.05    0.1        12       929.583333333333 
0.1     0.15       13       550.076923076923 
0.15    0.2        13       2253.61538461538 
0.2     0.25       92       2155.44565217391 
0.25    0.3        18       465.5 
0.3     0.35       19       1077.68421052632 
0.35    0.4        19       1348.36842105263 
0.4     0.45       16       1557.5 
0.45    0.5 
0.5     0.55       12       1427.5 
0.55    0.6 

Tuning Move Probabilities Experiment 1 - Run 2
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Run 3 
 
Raw Table 
 
Move Probability Range  #Amoebas Avg Amoeba Age 
 
0.05    0.1        27       837.407407407407 
0.1     0.15       14       989.285714285714 
0.15    0.2        11       321.545454545455 
0.2     0.25       87       1665.34482758621 
0.25    0.3        14       1262.64285714286 
0.3     0.35       11       2227.90909090909 
0.35    0.4        9        1731.55555555556 
0.4     0.45       17       1189.47058823529 
0.45    0.5 
0.5     0.55       9        1707 
0.55    0.6 
 
 

Tuning Move Probabilities Experiment 1 - Run 3
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Default Move Probability= 0.50 
Move probability delta = 0.03 
Factor table  = 0,1,2,4,5,8,10,50,100,-1,-2,-4,-5,-8,-10,-50 
p    = 0.001 
q    = 0.005 
v    = 10 
u    = 100 
M    = 500 
K    = 80 
m    = 25 
n    = 20        
Rounds   = 10000 
 
 
 
 
 



Run 1 
 
Raw Table 
 
Move Probability Range  #Amoebas Avg Amoeba Age 
 
0.05    0.1 
0.1     0.15 
0.15    0.2 
0.2     0.25       14       363.714285714286 
0.25    0.3        21       448.714285714286 
0.3     0.35 
0.35    0.4        42       803.47619047619 
0.4     0.45       27       619.925925925926 
0.45    0.5        22       626.5 
0.5     0.55       128      451.4765625 
0.55    0.6        26       176.615384615385 
0.6     0.65       19       956.736842105263 
0.65    0.7        19       824.842105263158 
0.7     0.75       19       723.894736842105 
0.75    0.8        16       993.5625 
0.8     0.85 
0.85    0.9 
0.9     0.95 
0.95    1 
 

Tuning Move Probabilities Experiment 2 - Run 1
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Run 2 
 
Raw Table 
 
Move Probability Range  #Amoebas Avg Amoeba Age 
 
0.05    0.1 
0.1     0.15 
0.15    0.2 
0.2     0.25       11       3446.27272727273 
0.25    0.3        8        3819 
0.3     0.35 
0.35    0.4        25       3756.24 
0.4     0.45       8        2168.375 
0.45    0.5        11       2531 
0.5     0.55       34       2151.32352941176 
0.55    0.6        11       1200 
0.6     0.65       7        1453.85714285714 
0.65    0.7        9        1140.33333333333 
0.7     0.75       6        1359 
0.75    0.8        7        2837.28571428571 
0.8     0.85 
0.85    0.9 
0.9     0.95 
0.95    1 
 

Tuning Move Probabilities Experiment 2 - Run 2
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Run 3 
 
Raw Table 
 
Move Probability Range  #Amoebas Avg Amoeba Age 
 
0.05    0.1 
0.1     0.15 
0.15    0.2 
0.2     0.25       10       3430.7 
0.25    0.3        5        197.8 
0.3     0.35 
0.35    0.4        24       2723 
0.4     0.45       12       4967.83333333333 
0.45    0.5        9        206.222222222222 
0.5     0.55       39       2288.89743589744 
0.55    0.6        11       3148.18181818182 
0.6     0.65       15       1913.86666666667 
0.65    0.7        6        1700.5 
0.7     0.75       6        266.166666666667 
0.75    0.8        11       364.545454545455 
0.8     0.85 
0.85    0.9 
0.9     0.95 
0.95    1 
 

Tuning Move Probabilities Experiment 2 - Run 3
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Tournament Runs 
 
Class Tournament Runs 
 
Below are some sample results from the class tournament single player 
and multi-player runs. Based on the conservative foundations of our 
strategies we are not surprised by our overall performance. We 
consistently finish in the top five in terms of energy and we survive 
until the end of the simulation in single player games. 



Our conservative strategy turns out to be our biggest weakness in 
multiplayer games. We are easily blocked in by opponents that 
aggressively reproduce early in the game. We do how ever put in a good 
fight holding them off until either the game ends or we are smothered 
[See Figure 3]. 
 
Single Player 
 
[X=50, Y=50, u=100, v=10, p=0.0050, q=0.01] 
Group0Player1            722.59:101580.1:-1        
Group0Player3            763.75:101524.7:-1        
Group0Player5            778.67:167761.0:-1        
Group1PlayerFinal        132.84:28977.2:-1         
Group2Player2            298.34:27577.0:-1         
Group2Player3            999.55:192115.8:-1        
Group3Player1            535.63:73418.1:-1         
Group3Player2            510.86:114126.4:-1        
Group4Player1            603.48:71237.6:-1         
Group4Player2            720.49:97270.6:-1         
Group5Player5            662.97:182340.1:-1   * 2nd Highest energy    
Group5Player9            677.86:163138.9:-1   *     
Group6PlayerAG2          755.8:127456.3:-1         
Group6PlayerN            725.97:106215.0:-1        
Group7PlayerFinal        790.81:168522.2:-1        
Group8Player1            284.73:59142.9:-1         
Group8Player2            717.61:160165.5:-1        
Group9Player1            663.79:139538.5:-1        
Group9PlayerJD           754.35:135562.9:-1    
 
[X=40, Y=40, u=100, v=2, p=0.0080, q=0.0020] 
Group0Player1            615.48:89288.7:-1         
Group0Player3            682.8:92393.0:-1          
Group0Player5            702.58:160518.2:-1        
Group1PlayerFinal        612.79:160528.5:-1        
Group2Player2            674.62:99069.0:-1         
Group2Player3            578.87:75430.9:-1         
Group3Player1            464.5:109066.5:-1         
Group3Player2            456.24:105970.3:-1        
Group4Player1            629.11:83731.5:-1         
Group4Player2            696.61:94567.8:-1         
Group5Player5            610.68:150442.2:-1 * 3rd Highest energy      
Group5Player9            653.44:150621.4:-1 * 3rd Highest energy       
Group6PlayerAG2          698.03:128466.7:-1        
Group6PlayerN            664.54:104552.5:-1        
Group7PlayerFinal        695.48:60230.7:-1         
Group8Player1            530.31:123022.2:-1        
Group8Player2            695.07:160515.7:-1        
Group9Player1            691.85:147148.6:-1        
Group9PlayerJD           698.25:141065.6:-1 
 
 
 
 
 
 
 
 



[X=75, Y=75, u=100, v=10, p=0.0020, q=0.0] 
Group0Player1            209.37:26292.7:-1         
Group0Player3            709.5:92299.1:-1          
Group0Player5            541.69:97708.5:-1         
Group1PlayerFinal        103.35:22975.0:-1         
Group2Player2            0.0:0.0:25                
Group2Player3            0.0:0.0:23                
Group3Player1            491.1:69671.4:-1          
Group3Player2            484.29:110790.0:-1        
Group4Player1            572.38:62516.6:-1         
Group4Player2            664.27:78077.5:-1         
Group5Player5            625.22:143829.3:-1  ** Highest energy      
Group5Player9            1.0:343.2:-1        *      
Group6PlayerAG2          0.0:0.0:499               
Group6PlayerN            631.97:86640.0:-1         
Group7PlayerFinal        713.53:126983.9:-1        
Group8Player1            279.98:56348.5:-1         
Group8Player2            695.0:153351.3:-1         
Group9Player1            475.87:101951.4:-1        
Group9PlayerJD           120.22:21709.9:-1      
 
[X=25, Y=25, u=100, v=10, p=0.01, q=0.02] 
Group0Player1            296.0:44510.1:-1          
Group0Player3            286.04:38807.3:-1         
Group0Player5            297.27:67696.9:-1         
Group1PlayerFinal        66.93:15961.9:-1          
Group2Player2            444.68:176051.8:-1        
Group2Player3            246.53:33484.2:-1         
Group3Player1            224.18:31260.0:-1         
Group3Player2            197.98:45867.1:-1         
Group4Player1            223.06:27993.4:-1         
Group4Player2            273.43:38979.6:-1         
Group5Player5            238.98:73755.3:-1 * 2nd Highest energy        
Group5Player9            226.07:56601.1:-1 *         
Group6PlayerAG2          273.1:49542.3:-1          
Group6PlayerN            283.61:43957.9:-1         
Group7PlayerFinal        288.22:58732.8:-1         
Group8Player1            111.05:23720.3:-1         
Group8Player2            274.29:63108.0:-1         
Group9Player1            274.04:57743.8:-1         
Group9PlayerJD           296.86:58462.5:-1       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multi-player 
 
X=40, Y=40, u=100, v=2, p=0.0080, q=0.0020] 
Group0Player1            0.0:0.0:4935              
Group0Player3            96.93:13151.7:-1          
Group0Player5            31.52:7150.3:-1           
Group1PlayerFinal        27.93:6712.7:-1           
Group2Player3            0.0:0.0:471               
Group3Player1            0.0:0.0:2763              
Group3Player2            0.0:0.0:2002              
Group4Player1            28.44:3534.4:-1           
Group4Player2            52.01:7276.1:-1           
Group5Player5            67.26:15922.3:-1  *        
Group5Player9            122.52:31301.3:-1 ** Highest energy        
Group6PlayerAG2          0.0:0.0:283               
Group6PlayerN            34.26:5328.8:-1           
Group7PlayerFinal        26.09:2696.1:-1           
Group8Player1            0.0:0.0:2898              
Group8Player2            135.31:31296.9:-1         
Group9Player1            0.0:0.0:697               
Group9PlayerJD           38.35:7363.4:-1    
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