
Project 1 Organisms 2 Final Report

Group 5

Bogdan Caprita (bc2008)
Mike Mulley (mm2041)
Rean Griffith (rg2023)

Introduction

Our approach to developing players was to implement a number of
strategies, analyze their performance in single and multiplayer
tournaments and see whether online or offline tuning lead to any
improvements or explanations about the players’ performance.

Background

We divide the game into two phases of interest, the initial Sunrise
phase and the later Sunset phase.

The Sunrise phase represents the early rounds of the game; our
definition of early is when the round number is less than three hundred
(<300) for 5000 round games. This early phase is characterized by
plentiful food, relative to the food available during the later phase
of the game, and a sparse board. Under these conditions, food appears
more often and the possibility of food doubling is greater, provided
that q > 0, since the board is under populated. In the early phase,
aggressively searching for food can have a higher payoff than later in
the game. In this early phase, amoeba energy is higher allowing an
amoeba to search longer and farther than it could later in the game
when its energy level is likely to be lower. The initial gamble of
whether to strike out early foraging for food is unavoidable, if there
is no food around an amoeba it can always sit still, conserve its
energy while slowly starving to death – which could be a great strategy
in exceptionally harsh conditions – at least guaranteeing that a cell
lasts M / s rounds where M is the maximum energy level per organism and
s is the amount of energy used for staying put.

The Sunset phase represents the later rounds of the game; round number
greater than three hundred (>300) for 5000 round games. This phase is
characterized by less plentiful food and the board is likely to be
crowded. Based on the discussions in class and running simulations with
this year’s and last year’s players this proved to be the case since
most players adopted the simple rule of thumb of “expand early in the
game to avoid being crowded out of food later”.

During both of these phases there can be huge cycles in population
density. If food is plentiful there is an increased propensity to
reproduce more often, if there is sufficient food then high
reproduction rates can be sustained, however overpopulation usually
leads to food depletion and amoeba starvation, making room for food to
grow again and another possible surge in population density if there
are surviving amoebas. Based on simulations the most violent surge
occurs in the Sunrise phase as initial aggressive expansion takes
place. During the Sunset phase surges are less violent because there is
less open space on the board and less food available. It is not
guaranteed however that the system reaches a self-regulating or stable

state where the rate of reproduction balances the rate of automata
dying and the food source remaining for the most part constant.

Figure 1 - Steady food supply in the Sunset Phase

Game Simulator Parameters

There are given nine (9) simulators parameters upon which we can base
our player strategies on. Four (4) parameters are hidden from amoebas
while they are aware of the remaining five (5).

Hidden parameters:

p – The probability of food spontaneously appearing
q – The probability of food doubling
m – The horizontal size of the grid
n – The vertical size of the grid

Visible parameters:

s – The amount of energy used to stay put
v – The amount of energy used for moving or reproducing
u – The amount of energy per unit food
M – The maximum energy per organism
K – The maximum food units per cell

Based on the two categories of parameters it was initially considered
whether it would be a useful strategy to try to estimate some of the
unknown parameters. We also examined how the visible parameters could
be useful to any strategies we came up with.

Estimating Hidden Parameters

Estimating p and q

The discussions in class highlighted a number of drawbacks with
estimating p and q.

1. Amoebas can only sense local information about their
environment, estimates of the global values of p and q based
only on limited local information are expected to be
inaccurate, sometimes by as much as an order of magnitude [1]
To get more accurate estimates, an amoeba must sit around for
a longer period of time collecting data and refining its
estimates. While sitting around conserves the most energy,
this strategy can leave an amoeba vulnerable to starvation if
it is not sitting on or near food.

2. In multiplayer games, sitting around for n rounds gives an n-
round advantage to opponents which could potentially deplete
the food on the board or block us into a foodless section of
the board hastening our demise.

3. Even if you estimated the correct values of p and/or q what
would you do with them? [Someone raised this in the last class
on September 27th but we can’t find it in the transcript]

Group1 presented a nice compromise to respond to drawback number 1.
Their player uses the first fifty (50) rounds to gauge whether they are
in harsh, moderate or good conditions based on a sliding scale of their
own devising.
However, rather than sit still allowing opponents to get a fifty round
head start they collect information as they are spreading out across
the board reproducing and wandering. This appears to be a reasonable
compromise based on their claims of consistency across players as well
as across various simulator values of p and q. Also it highlights an
observation that was raised by one of our own group members, based on
the limitations of this simulation, information that is correct as to
the order of magnitude is just as good as having the exact information.

Estimating m and n

Knowing how big the board is was not really considered to be parameters
that amoebas really needed to know. Having a big board has a number of
benefits:

1. It increases the likelihood that organisms from the same
species (team) develop independently without being crowded by
organisms from other species.

2. The bigger the board the more likely it is to be sparse which
allows food to appear and double more often then if the board
was smaller and crowded.

It was also discussed in class that trying the estimate the size of the
board was not worth the hassle given a number of obstacles:

1. Amoebas don’t know where they are, walking off one end of the
board wraps around and the amoebas are none the wiser.

2. Amoebas could go off in opposite directions counting squares
until they meet, but amoebas are not able to tell whether an
amoeba it runs into is the one it is looking. Furthermore, if
there are obstacles in an amoeba’s path, getting back on the
right track may be difficult e.g. if an amoeba runs into a
wall of amoebas of another species. [ref notes from Sept 13]

3. It is more important to gauge whether the board is crowded
which each amoeba can infer based on its local information
e.g. using a count of how many other organisms it has met
after moving n squares as a rough approximation.

Using the Visible parameters

For our players the only visible parameters we used were u – the amount
of energy used staying put and v – the amount of energy needed for
moving or reproduction and M – the maximum energy possible per
organism.
We set our low energy threshold as energy left < 6v. The multiplier 6
was chosen arbitrarily. For details on how this was used see [Bogdan’s
section on the TilePlayer strategy]
We also used the ratio of u/v – the cost of moving to determine an
initial moving probability. [see BigMommaStrategy section for details]

Basic Building Blocks

Communication

Two types of communication are allowed in this project; Amoeba-to-
amoeba and parent-to-child.
Amoeba-to-amoeba communication is limited to and 8-bit channel but
exchanges can take place more frequently over a sequence of turns.
Every round an amoeba can sense the 8-bit state of amoebas adjacent to
it.
Parent-to-child communication takes place only when an amoeba
reproduces. The channel in this instance however is 32-bits wide.
Given the restricted channel of amoeba-to-amoeba communication and the
possibility of spoofing and/or drawn out negotiation protocols we
decided against implementing any form of amoeba-to-amoeba
communication. We chose instead to make use of parent-to-child messages
as our communication medium of choice.

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
Strategy Round # Trait4 Trait3 Trait2 Trait1

Key:
Strategy which strategy from a predefined set should the child

select as its primary one. The predefined set included five
(5) core strategies:

 TilePlayerStrategy
 SexFiendStrategy
 SteadyStateStrategy
 CarefulBreederStrategy
 BigMommaStrategy

See [section on Player Strategies] for the details on how
each of these strategies works.

Round # what round has the simulator reached?

Trait1 The index of the factor in a predefined table used to

adjust the age after which an amoeba would begin
reproducing.

Trait2 The index of the factor in a predefined table, used to

adjust the probability that a cell reproduces.

Trait3 The index of the factor in a predefined table used to
adjust the probability that an amoeba favors moving.

Trait4 The index of the factor in a predefined table used to

adjust the probability that a cell sends its children far
away from the position of the parent.

Estimating board crowdedness

Each amoeba estimates the crowdedness of the board based solely on
local information. As an amoeba moves searching for its “position”, it
keeps a moving average of the number of other amoebas it runs into. We
use this information on crowdedness as feedback into varying the
reproduction rate [see the TilePlayerStrategy section for details on
how an amoeba calculates its position and the mechanics of reproduction
rate control]

Keeping a history

At a late stage in the project we considered maintaining a history of
the board conditions and the moves we made under those conditions,
collectively referred to as a context, but we did not implement a
strategy that leveraged historical information in any useful way before
the submission deadline. Keeping the previous hundred moves or so might
be beneficial for comparing past conditions with current conditions.
Placing a limit on the length of the history kept would allow us to act
on more recent information rather than being bogged down with a lot of
old information. The tradeoff we see here however, is that older
players become more valuable whereas our current strategies are age
agnostic with regard to amoebas dying.

Simple rules of thumb

Some simple rules all of our players follow include:

1. Always squat on food
2. Truly random walking is wasteful, controlled walking is

better. A controlled walk picks an initial direction at random
and follows it for n steps. At the nth step, if there is no
food, another random direction is picked for another n steps,
preference is given to any direction that does not backtrack
unless that is our only option.

3. Always move towards food. If food is sensed while walking, go
for it.

Player Strategies

Group5Player5 (“Strategy Chess Knight”)

Group5Player5 relies exclusively on the TilePlayerStrategy.
The Tile Player belongs to the generic class of sit-and-wait
strategies, and evolved out of two crucial observations about the
dynamics of the game:

1. Movement is expensive

Moving is costly in that energy is wasted with no clear gain. In the
most simplified model, a cell which sits has the same mathematical

probability of finding food as one that moves, since at any time it can
see only 4 adjacent squares. This simplifying assumption assumes that
there is no food already on the board, and thus all food that an amoeba
encounters just pops in exactly when the amoeba is next to it. To see
why such an assumption is not too far from reality, we note that, save
for the initial expansion stage of the game, food lying around is a
rarity, since there is bound to be some organism to pick up any food
that is more than a couple of turns old. As we will see, our Tile
Player not only acknowledges this state of affairs, it bases its
strategy on it, and even contributes to it.

2. Life is cheap

An amoeba is born, lives, and dies as a law abiding citizen and nothing
more. It does not educate itself very much, it doesn't try to help
others; it doesn't even try not to hurt others. It is an energy
carrier, and when its energy is low, it becomes worthless in our eyes.
At that point, creating a new amoeba or having a starving amoeba move
on an adjacent food cell cost the same. As we will see, the amoebas are
food filters. They sit and pick up all the food around them, for the
glory of The Tile Player and the demise of enemies.

The strategy we follow is thus almost trivial: we sit and eat all that
is around us. The main feature of the player rests in where it sits, or
more precisely, how. We want to span the board with amoeba such that
there is an amoeba covering each cell on the board (a cell is covered
by an amoeba if the amoeba sits on it, or is adjacent to it). We also
want to do this with the largest efficiency possible, where efficiency
= energy intake / energy expenditure. There are two major energy sinks:
movement (which we minimize by sitting still), and existence, or energy
used to keep an amoeba alive. The latter we optimize by employing the
minimum number of amoeba necessary to cover the entire board. Our
player thus introduces the L-tile positioning strategy.

L-tiling

We restrict amoeba to position themselves in an L-pattern, namely, if
an amoeba sits at coordinates (0,0), then other amoeba should occupy
positions
(2,1), (1,-2), (-2,-1), and (-1,2). This behavior is analogous to the
movement of a chess knight.

Consider the positioning of amoeba A, B, C, D, E. The cells covered by
an amoeba are denoted in lowercase letters corresponding to the name of
the amoeba:

[.][.][e][.][.][.][.]
[.][e][E][e][.][b][.]
[.][.][e][a][b][B][b]
[.][d][a][A][a][b][.]
[d][D][d][a][c][.][.]
[.][b][.][c][C][c][.]
[.][.][.][.][c][.][.]

We note that out of the 8 cells around A, 4 are covered by A itself,
and 4 by its L-neighbors. The main feature of this placement is
apparent: all cells are covered, and there is no overlap (which makes
this placement optimal in the density of amoeba needed to cover the
entire board. Notice also the symmetry on a larger board segment, also
apparent in the steady-state picture of the board in the single player
game (Figure 2)

 5[][][][][x][][][][][x]
 4[][][x][][][][][x][][]
 3[x][][][][][x][][][][]
 2[][][][x][][][][][x][]
 1[][x][][][][][x][][][]
 0[][][][][x][][][][][x]
 -1[][][x][][][][][x][][]
 -2[x][][][][][x][][][][]
 -3[][][][x][][][][][x][]
 -4 -3 -2 -1 0 1 2 3 4 5

We define 'valid' positions to be positions that are consistent with
the L-tile pattern. From looking at the above figure, it should become
apparent that the valid positions form a module L (or an integer
'vector space') of dimension 2 over Z[i], the ring of Gaussian
integers. In other words, looking at the board above, the 4 amoeba
around the one at the origin of the coordinate systems (0,0) have
Cartesian and L-coordinates as given below:

Amoeba Cartesian L

origin 0, 0 0, 0
NE 2, 1 1, 0
SE 1,-2 0,-1
SW -2, 1 -1, 0
NW -1, 2 0, 1

As another example, the cell at Cartesian (1, 3) has L coordinates:
(1, 1).

We can define a linear transformation to take us from Z[i] (the
rectangular Cartesian integer coordinate system) to the new 'vector
space', which we found to be defined as:

T : L -> Z[i] given by the coordinate transformation

[2 -1] [a] [x]
[].[] = []
[1 2] [b] [y]

where (a,b) is the L-point (coordinates in our 'valid' space) and (x,y)
are normal Cartesian coordinates.

The reverse transformation T': Z[i] -> L is

1[2 1] [x] [a]
-[].[] = []
5[-1 2] [y] [b]

We immediately identify two major advantages to using this pair of
transformations:

1. Since valid points represent 1/5 of all board cells (for example,
count the number of amoeba in each row in the board model above),
encoding an L-position takes less bits than encoding a Cartesian
coordinate pair for the cases where we only care about representing
valid points (such as for any Hillbill (stationary amoeba) location).

2. T' in particular offers a quick test for the validity of a
coordinate point: (x,y) is a valid point if and only if the
transformation takes (x,y) to a pair of integers.

We are ready to explain the behavior of our player.
Organisms have as their purpose in life the creation of the L-tile
pattern. As such, organisms pass through two stages in life:

1. The Scout Stage
2. The Hillbill Stage

Hillbills are the amoeba sitting in a valid position, hence referred to
as its 'hut'. They sit in that spot and whenever they see food around
them, they either eat it, or, if they are full, they reproduce onto
that food. Only Hillbills are allowed to reproduce, and only when they
sit in a valid position. This gives the scouts a (0,0) consistent with
the rest of the population (we will mention wraparound problems later).
As an enhancement for the multiplayer game, the Hillbill is allowed to
pursue food beyond the cells covered by it, and never leaves a cell
that has food on it. Whenever it finds itself in a cell that is not its
hut, the Hillbill has the option of moving to any food next to it. The
first choice is given to food closer to its hut, so that the amoeba
always has the tendency to return to its hut. If there is no food
around it, the Hillbill amoeba also moves towards its hut. Basically,
extending the analogy introduced by the farming strategies, we can
compare our Hillbills with gardeners. They maintain a 4 square garden
around their hut, from where they collect all the food. There is no
fence around gardens, but there need not be one, since the gardener
will most likely be the first to reach any food that grows around his
hut.

Scouts are newly-born amoebas which go off in search of a valid cell to
settle down into its own 'hut' and become a Hillbill. As mentioned,
only a Hillbill in its hut (a valid cell) is allowed to reproduce. The
reproduction invariant is that a scout's origin of coordinates is
always a valid cell, and thus a scout can easily compute a valid point
to go towards. Scouts are given by their parent a direction in L-space,
and when they are born, the parent places the scouts in the cell that
is best suited for the scout to depart in the chosen direction. If no
special reproduction opportunities present themselves (i.e., food in an
adjacent square that cannot be eaten by the parent), the parent
reproduces spontaneously in that it round-robins among the 4 directions

and sends scouts out every so often in each direction. Scouts then move
away a variable distance in the determined direction. If their target
cell is occupied, the scout continues its motion in its direction,
until it finds an empty valid cell. At that point, it becomes a
Hillbill. As with Hillbills, scouts are allowed to stray away from
their direction of motion in pursuit of food, but will refocus on their
destination as soon as the food is exhausted.

From the above discussion, the following advantages immediately come to
mind:
Optimal energy consumption
Maximal energy intake
Simplicity

We present now how we apply various techniques to implement our
strategy, and point out their benefic effects as appropriate:

* Reproduction threshold:

This is perhaps the most important variable in our strategy. The
decision about how often to reproduce spontaneously, determines the
energy/food/population balance of the board. Ideally, once all the
Hillbills are in their 'huts' and the entire board is covered, there
ought to be no need for new amoeba and thus no new scouts. Although
Hillbills are very conservative, they do die off, mainly because the
cells covered by them happen to not produce food for a long time. We
are not the least compassionate about dying Hillbills, since they are
just meant to 'garden' a given 5 cell cross. Instead, by randomly
sending out scouts across the board, we fill up the gaps that the dying
Hillbills leave behind. We do need to be careful about throttling our
reproduction rate, lest excess scouts are doomed to wander around
without finding an empty valid slot to settle down.
There are several conditions we are sensitive to when deciding to
spontaneously reproduce. As a general guideline, most thresholds are
soft, in that loaded coins are flipped with a probability proportional
to the respective threshold:

- Minimum energy threshold

This is the only hard limit, in that a Hillbill will never reproduce if
his energy falls below the threshold. This is set to 12 times the
energy needed to make a move, such that the scout, born with 6 times
the energy for a move, has enough resources to reach a valid cell at an
L-distance of 2 (an L-distance of 1 requires 3 moves).

- Crowdedness

Each Hillbill keeps a moving average of the number of scouts seen. The
more scouts it sees, the more likely it is that the board in its
neighborhood has all valid L-spots occupied (and thus scouts are unable
to settle down).

- Reproduction probability

This is just a probability that a Hillbill will reproduce at any round.
This parameter was tuned off-line.

- Energy left

We weighted the reproduction probability by a sub unitary power of the
ratio of energy left to maximum energy, mostly to give more parental
opportunities to healthy Hillbills. The more energy an amoeba has, the
better chance of survival the scout has (so it can reach its target
cell), and the bigger the likelihood that that area is richer in food.

* Communication:

We kept communication to a minimum: apart from settling down in their
L-pattern, amoeba had little else to coordinate. Furthermore, ensuring
that the L-pattern was formed correctly was an easy task, as the scouts
each kept their own coordinate system which guided them to a valid
cell, and the parents transmitted them the direction of motion at birth
(to ensure even spreading of scouts in the 4 directions).

The only instance where we do use the 1 byte external state for
communication is in encounters between Hillbills and Scouts: as
mentioned, Hillbills identify scouts to count their number. On the
other hand, scouts also learn from Hillbills: each Hillbill that finds
itself in its hut exposes that fact as a flag, which the scout can use
to readjust its coordinate system (since it knows the Hillbill's hut is
always on a valid square). This is the way we deal with wraparound
conditions: instead of determining the board size or performing other
cumbersome measurements, we allow any scout which has moved around the
world and finds its coordinate system confused to readjust it based on
what positions are considered valid in that neighborhood. We have found
this decentralized strategy to preserve the L-pattern with only local
discrepancies.

* Dealing with adversaries:

Initially, we wanted to block off any adversaries that tried to enter
out L-pattern structure, by having Hillbills reproduce or move to
create spontaneous walls in the face of foreigner. We soon realized
that such explicit blocking, besides being expensive in energy and
disruptive to our pattern, was actually not needed. Taking a look at
Figure 3 should show why: since we are always the first to eat all the
food in the gardens around us, enemy cells will find the intra-L-
pattern terrain to be a wasteland of food and stay out of it.

Figure 2 exemplifies the L-pattern in the steady-state phase of a game
with p = 0.003 on a 25 x 20 board. The darker colored amoeba are the
Hillbills, when they are positioned in valid L-positions. We draw
attention to the successful avoidance of any wrap-around problems: the
pattern does not break down as amoeba travel across the board. The
slightly brighter organisms are Hillbills that have moved outside their
hut to gather food. An example would be the amoeba in cell (18,6) whose
hut probably lies in (20, 7) and had followed a path of food to its
present square. Finally, scouts are the bright colored amoeba such as
the ones in (13,5) and (18,5). As Figure 1 implies, the amoeba are
successful at consuming all the food on the board, without
overpopulating. In Figure 2, scouts are few, since Hillbills adjust
their reproduction rates to fit the needs of the L-pattern structure.

Figure 3 shows the end of a 5000 round multiplayer game (p = 0.005)
where we are the only population left to fight off the very expansive
yellow player. An important consequence of our strategy is that it
avoids the initial sunrise phase by keeping few amoeba with high energy
count, and expands with a slow growing exponential throughout the game.
Thus, at round 5000 our player had been growing steadily from 2 cells
(Round 200) to 73 (round 500) and the ascending trend does not seem to
die off as we extend the running period.

Figure 2 - Example of the Tile Pattern and Grid Covering (Scouts are Light Cyan, Hillbills are
darker)

Figure 3 – Us (Chess Knight) holding off Group 4 (Yellow) using our L-tiling pattern

Group5Player9 ("Mrs. Betty Bjornson")

The central principle of our second player is the use of multiple
strategies. In giving our organisms highly variable parameters and
personalities, we aimed to make them adaptable to a wide range of
conditions and situations.

Beyond this, Betty's design takes into account a few core principles:

- Gardening, not farming

For many board configurations, food doubling (q) is a better source of
dinner than food blowing in (p). But for food doubling to be effective,
the board must be left fairly open, and organisms generally need to
avoid eating the last couple of food units on a square. In single-
player games, this is easy to implement. But in a multiplayer game,

leaving uneaten food in an empty square is simply an invitation to
enemy organisms.

In class discussions and last year's players, farming was a popular
solution to this problem. Food would be allowed to multiply--and enemy
organisms would be kept away. But our attempts to implement farming
were quickly met with frustration. Farms took a great deal of effort
and coordination to set up, and it takes only one move from an enemy
organism--into the home square of hungry farmer organisms--to destroy a
whole farm. Proposed solutions to this generally involved ever-larger,
multi-layered farms, which seem all-but-impossible to implement
efficiently using only the insecure state system for communication.

Our approach was to try "gardening": leaving open squares, and
depleting all the food in a particular location only if necessary. To
prevent other organisms from abusing our goodwill, we temporarily shut
off this behavior if there are aliens in our midst.

- Magic numbers are a pain

When working on our first player, we discovered that we didn't much
like endlessly tuning scores of constants. This makes optimization not
only difficult by endless.

Though our players still have their share of hard-coded constants and
formulas, we also try to use inter- and intra-generational evolution to
set our parameters for us.

- Game phase matters

Round 5 and round 500 are very different games. As outlined in the
Background section on the phases of the game, different phases require
different strategies. Risky moves early in the game can have
substantially higher payoffs than risky moves taken later in the game.

- Life is cheap

One organism's death is no big deal. We'd rather produce three
organisms with different strategies and lose two than produce one
organism with a middle-of-the-road strategy and lose the game when its
strategy proves unsuccessful. [Discussed more by Bogdan]

The Group5Player9 class is little more than a framework for different
strategies. In any given time slice, the decision of which move to make
is made solely by a strategy class. Instead of discussing the player as
a whole, then, we will begin by discussing the individual strategies.

We used strategies as both a design principle and a programming
concept. That's why you'll find, for example, a RandomWalkStrategy
class. We're not content to create organisms that do nothing but walk
randomly; instead, the class is used by higher-level strategies, when
they decide that the best move in a given time slice is to move to a
random square.

Other such mini-strategies include the StubbornWalkStrategy and the
FoodSearchStrategy. The former picks a general direction, like
Southeast, and then does its best to move roughly in that direction,

stopping at any food it sees along the way. The FoodSearchStrategy uses
the StubbornWalkStrategy to look for food, but also decides each turn
whether it wants to move or just sit and watch neighboring squares. To
make this decision, it uses a movement probability passed from parent
to child, as well as the number of free adjacent squares--the more
crowded the adjacent squares are, the less likely that food will
appear, and the more likely the organism is to move.

We implement five high-level strategies. These are BigMommaStrategy,
CarefulBreederStrategy, SexFiendStrategy, SteadyStateStrategy, and
TileStrategy.

BigMomma

This is the strategy assigned to our first automaton, and it's never
assigned to any other automata.

In general, it plays conservatively: if our first player dies before
reproducing, there's no going back. It moves rarely at first, stepping
up its rate of movement only if it has trouble finding food. It
reproduces only when it has plenty of energy.

One of its significant functions is determining initial values of the
movement and reproduction probabilities that future players will use.
It initially chooses a movement probability based on the ratio of u and
v. If a piece of food will give us enough energy for 15 moves, we'll
move a lot; if it'll give us enough energy for 5, we'll tend to sit
still. As it searches for food, it adjusts the parameters. If it finds
it needs to move several squares before finding food, it will raise the
movement parameter and lower the reproduction parameter. If it finds
food plentiful, it does the opposite.

BigMomma's biggest duty, of course, is to reproduce. To avoid a
premature demise, it reproduces only when it has significant energy and
either has food itself or can put its child on top of food. Its
children are sequentially assigned one of three strategies--
CarefulBreeder, SexFiend, or Tile.

BigMomma is designed for the early rounds of the game. After round 250,
it switches to the SteadyStateStrategy.

CarefulBreeder

This strategy is focused on reproducing frequently but not recklessly.
It reproduces whenever it's very full (energy at roughly 90% of the
maximum value), and whenever it has a reasonable amount of energy
(roughly 45% of maximum) and can place its child on top of food.

Of course, it also searches for food. Like all other strategies, it
subcontracts this to the FoodSearchStrategy, which uses the variable
movement parameter to decide on its behavior.

All of CarefulBreeder's children are also CarefulBreeders. Around round
200 -- the exact point is random -- CarefulBreeder organisms switch to
the SteadyStateStrategy.

When CarefulBreeder reproduces, it decides at random whether to alter
the movement and reproduction parameters. The changes are made entirely
at random; the assumption is that players with values better-suited to
the current game will be able to reproduce more, and the fact that
players are more likely to keep values as-is than tweak them will
result in parameters slowly moving toward an optimal value.

SexFiend

This strategy reproduces, and then reproduces some more. It fills the
board in short order, though of course the high population that results
is often not stable. Our goal with the SexFiendStrategy was to be first
to fill the board when conditions are favorable. When conditions aren't
so favorable, well, at least we'll crowd our enemies for a while, and
the presence of CarefulBreeder organisms means that we'll still have a
fair number of more durable organisms on the board.

SexFiend reproduces whenever it has fairly high energy (roughly 70% of
the maximum) and essentially whenever it can place its child on top of
food. It also moves more frequently than other strategies, in order to
spread out across the board.

All of SexFiend's children are also SexFiends. Around round 200 -- the
exact point is random -- SexFiend organisms switch to the
SteadyStateStrategy.

SexFiend uses the same evolutionary parameter-tweaking as
CarefulBreeder.

TileStrategy

This is the same strategy that Group5Player5 uses exclusively; it's
discussed in great detail in the previous section on Group5Player5.

SteadyState

The goal of the SteadyStateStrategy is to maintain its current
population as smoothly as possible.

Players are only assigned the SteadyStateStrategy after a couple of
hundred rounds, so the assumption is that our player has already
reached sufficient population levels. Because of this, SteadyState
organisms reproduce very rarely: only when they have more than (M - 2u)
in energy, are adjacent to food, and are adjacent to at least two
squares unoccupied by other organisms.

SteadyState organisms, then, tend to spend their lives just sitting
around. But there's one important twist: when they haven't seen any
foreign players in k rounds (k is 50 in the player we submitted), they
start to behave cooperatively. They will move away from fellow
organisms, in order to leave the board open, and they will move off
squares with a fewer than 3 units of food (unless they're hungry enough
to need those remaining pieces of food). This altruistic behavior is
designed to take effect in single-player games and in pockets of multi-
player boards inhabited mostly by our organisms.

Identification of friend and enemy organisms is done very simply. All
of our organisms broadcast a constant state value, and this value is
used to identify friends. This is, of course, highly vulnerable to
spoofing in any given round. But because we act cooperatively only if
we haven't seen a single player with a different state in 50 rounds, we
believe that mistaking enemies for friends is very unlikely.

During reproduction, SteadyState uses the same evolutionary parameter-
tweaking as SexFiend and CarefulBreeder.

But not all of SteadyState's children are themselves SteadyState
organisms. Roughly two-thirds are -- but about one third are assigned a
different strategy (SexFiend, CarefulBreeder, or TileStrategy) at
random. Because of their nearly infertile ways, SteadyState organisms
are particularly vulnerable to temporary changes in food supply, such
as that which results from an unsustainable surge in an enemy
organism's population. Organisms will die of starvation, but then will
regenerate very slowly once food starts to reappear. But if breeder
players are occasionally produced, they will take advantage of these
fertile conditions and quickly replenish our population.
(CarefulBreeder and SexFiend players that trace their ancestry to
SteadyState players all revert to the SteadyState strategy after about
130 rounds.) This is also evolutionary behavior: if TileStrategy's
approach is better-suited to board conditions, that occasional child
should thrive, reproduce, and start taking over SteadyState players.

Strategy Tuning

As we tuned our players over the four – five week period we quickly
realized that while hand tuning seemed to give us decent results, the
more sophistication we wanted to add to our players the more magic
numbers we had to add. Turning any of these extra “knobs” resulted in
wildly oscillating behavior; clearly we needed a better way or some
justification for selecting some of our magic constants.
To this end we found the concept of genetic mutation very appealing.
We identified for key traits that we believe have a direct impact on a
player’s success. These traits are:

The propensity to move
The propensity to reproduce
The propensity to send offspring farther away from the birth site
The age when reproduction starts

We augmented our parent-to-child communication to allow us to pass down
a directive to the child that would cause it to adjust one or more of
these traits in a positive or negative direction. In our final player
Group5Player9 we chose to mutate either the propensity to move or the
propensity to reproduce, and randomly selected a scaling factor from a
table of multipliers for the child to use.

int[] table = { 0,1,2,4,5,8,10,50,100,-1,-2,-4,-5,-8,-10,-50 };

Given the four bits per trait, we randomly selected an index in this
sixteen element table to pass onto the child. The child in turn would
compute the new value for its trait.

As an example of some offline runs we did to determine reasonable
initial move propensities. For set simulator parameters of p and q we
use a test strategy that every time it reproduces picks a factor index
at random. Each child is likely to have a completely different move
probability than its parent.

For our tuning experiments we augment each player to have a unique id
and we run each player in a 10000 round game. For every move the player
prints out its id, age, movement probability and whether that trait has
been mutated or not. We process this output after the tournament and
examine which move probabilities are used by the amoebas that have the
longest lifespan for the given simulator parameters of p and q. We then
use these probabilities as the magic numbers in some of our player
strategies depending on the simulator conditions we want to optimize
for. While we do not think that this will lead to “optimal” parameters
suitable for every scenario they may be used in a scheme suggested by
Madhuri Shinde of Group 8 who suggested that a lookup table of
<conditions,parameter value> tuples may be useful for organisms to have
if they can indeed reasonably estimate conditions.

See a few examples of tuning runs below.

Tuning Move Probability

Default Move Probability= 0.20
Move probability delta = 0.03
Factor table = 0,1,2,4,5,8,10,50,100,-1,-2,-4,-5,-8,-10,-50
p = 0.001
q = 0.005
v = 10
u = 100
M = 500
K = 80
m = 25
n = 20
Rounds = 10000

Run 1

Raw Table

Move Probability Range #Amoebas Avg Amoeba Age

0.05 0.1 33 1143.60606060606
0.1 0.15 17 619.411764705882
0.15 0.2 10 688.8
0.2 0.25 106 915.745283018868
0.25 0.3 10 867
0.3 0.35 16 786.5625
0.35 0.4 13 676.846153846154
0.4 0.45 16 890.75
0.45 0.5
0.5 0.55 15 1063
0.55 0.6

Tuning Move Probabilities Experiment 1 - Run 1

0
200
400
600
800

1000
1200
1400

0.0
5

 0
.1

0.1

 0.15

0.1
5

 0
.2

0.2

 0.25

0.2
5

 0
.3

0.3

 0.35

0.3
5

 0
.4

0.4

 0.45

0.4
5

 0
.5

0.5

 0.55

0.5
5

 0
.6

Move Probability Ranges

A
ve

ra
ge

 A
ge

 in
 R

ou
nd

s

Average age

Run 2

Raw Table

Move Probability Range #Amoebas Avg Amoeba Age

0.05 0.1 12 929.583333333333
0.1 0.15 13 550.076923076923
0.15 0.2 13 2253.61538461538
0.2 0.25 92 2155.44565217391
0.25 0.3 18 465.5
0.3 0.35 19 1077.68421052632
0.35 0.4 19 1348.36842105263
0.4 0.45 16 1557.5
0.45 0.5
0.5 0.55 12 1427.5
0.55 0.6

Tuning Move Probabilities Experiment 1 - Run 2

0

500

1000

1500

2000

2500

0.0
5

 0
.1

0.1

 0.15

0.1
5

 0
.2

0.2

 0.25

0.2
5

 0
.3

0.3

 0.35

0.3
5

 0
.4

0.4

 0.45

0.4
5

 0
.5

0.5

 0.55

0.5
5

 0
.6

Move Probability Ranges

A
ve

ra
ge

 A
ge

 in
 R

ou
nd

s

Average Age

Run 3

Raw Table

Move Probability Range #Amoebas Avg Amoeba Age

0.05 0.1 27 837.407407407407
0.1 0.15 14 989.285714285714
0.15 0.2 11 321.545454545455
0.2 0.25 87 1665.34482758621
0.25 0.3 14 1262.64285714286
0.3 0.35 11 2227.90909090909
0.35 0.4 9 1731.55555555556
0.4 0.45 17 1189.47058823529
0.45 0.5
0.5 0.55 9 1707
0.55 0.6

Tuning Move Probabilities Experiment 1 - Run 3

0

500

1000

1500

2000

2500

0.0
5

 0
.1

0.1

 0.15

0.1
5

 0
.2

0.2

 0.25

0.2
5

 0
.3

0.3

 0.35

0.3
5

 0
.4

0.4

 0.45

0.4
5

 0
.5

0.5

 0.55

0.5
5

 0
.6

Move Probability Ranges

A
ve

ra
ge

 A
ge

 in
 R

ou
nd

s

Average Age

Default Move Probability= 0.50
Move probability delta = 0.03
Factor table = 0,1,2,4,5,8,10,50,100,-1,-2,-4,-5,-8,-10,-50
p = 0.001
q = 0.005
v = 10
u = 100
M = 500
K = 80
m = 25
n = 20
Rounds = 10000

Run 1

Raw Table

Move Probability Range #Amoebas Avg Amoeba Age

0.05 0.1
0.1 0.15
0.15 0.2
0.2 0.25 14 363.714285714286
0.25 0.3 21 448.714285714286
0.3 0.35
0.35 0.4 42 803.47619047619
0.4 0.45 27 619.925925925926
0.45 0.5 22 626.5
0.5 0.55 128 451.4765625
0.55 0.6 26 176.615384615385
0.6 0.65 19 956.736842105263
0.65 0.7 19 824.842105263158
0.7 0.75 19 723.894736842105
0.75 0.8 16 993.5625
0.8 0.85
0.85 0.9
0.9 0.95
0.95 1

Tuning Move Probabilities Experiment 2 - Run 1

0
200
400
600
800

1000
1200

0.0
5

 0
.1

0.1
5

 0
.2

0.2
5

 0
.3

0.3
5

 0
.4

0.4
5

 0
.5

0.5
5

 0
.6

0.6
5

 0
.7

0.7
5

 0
.8

0.8
5

 0
.9

0.9
5

 1

Moving Probability Ranges

Av
er

ag
e

A
ge

 in
 R

ou
nd

s

Average Age

Run 2

Raw Table

Move Probability Range #Amoebas Avg Amoeba Age

0.05 0.1
0.1 0.15
0.15 0.2
0.2 0.25 11 3446.27272727273
0.25 0.3 8 3819
0.3 0.35
0.35 0.4 25 3756.24
0.4 0.45 8 2168.375
0.45 0.5 11 2531
0.5 0.55 34 2151.32352941176
0.55 0.6 11 1200
0.6 0.65 7 1453.85714285714
0.65 0.7 9 1140.33333333333
0.7 0.75 6 1359
0.75 0.8 7 2837.28571428571
0.8 0.85
0.85 0.9
0.9 0.95
0.95 1

Tuning Move Probabilities Experiment 2 - Run 2

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0.0
5

 0
.1

0.1
5

 0
.2

0.2
5

 0
.3

0.3
5

 0
.4

0.4
5

 0
.5

0.5
5

 0
.6

0.6
5

 0
.7

0.7
5

 0
.8

0.8
5

 0
.9

0.9
5

 1

Moving Probability Ranges

Av
er

ag
e

A
ge

 in
 R

ou
nd

s

Average Age

Run 3

Raw Table

Move Probability Range #Amoebas Avg Amoeba Age

0.05 0.1
0.1 0.15
0.15 0.2
0.2 0.25 10 3430.7
0.25 0.3 5 197.8
0.3 0.35
0.35 0.4 24 2723
0.4 0.45 12 4967.83333333333
0.45 0.5 9 206.222222222222
0.5 0.55 39 2288.89743589744
0.55 0.6 11 3148.18181818182
0.6 0.65 15 1913.86666666667
0.65 0.7 6 1700.5
0.7 0.75 6 266.166666666667
0.75 0.8 11 364.545454545455
0.8 0.85
0.85 0.9
0.9 0.95
0.95 1

Tuning Move Probabilities Experiment 2 - Run 3

0
1000
2000
3000
4000
5000
6000

0.0
5

 0
.1

0.1
5

 0
.2

0.2
5

 0
.3

0.3
5

 0
.4

0.4
5

 0
.5

0.5
5

 0
.6

0.6
5

 0
.7

0.7
5

 0
.8

0.8
5

 0
.9

0.9
5

 1

Moving Probability Ranges

Av
er

ag
e

A
ge

 in
 R

ou
nd

s

Average Age

Tournament Runs

Class Tournament Runs

Below are some sample results from the class tournament single player
and multi-player runs. Based on the conservative foundations of our
strategies we are not surprised by our overall performance. We
consistently finish in the top five in terms of energy and we survive
until the end of the simulation in single player games.

Our conservative strategy turns out to be our biggest weakness in
multiplayer games. We are easily blocked in by opponents that
aggressively reproduce early in the game. We do how ever put in a good
fight holding them off until either the game ends or we are smothered
[See Figure 3].

Single Player

[X=50, Y=50, u=100, v=10, p=0.0050, q=0.01]
Group0Player1 722.59:101580.1:-1
Group0Player3 763.75:101524.7:-1
Group0Player5 778.67:167761.0:-1
Group1PlayerFinal 132.84:28977.2:-1
Group2Player2 298.34:27577.0:-1
Group2Player3 999.55:192115.8:-1
Group3Player1 535.63:73418.1:-1
Group3Player2 510.86:114126.4:-1
Group4Player1 603.48:71237.6:-1
Group4Player2 720.49:97270.6:-1
Group5Player5 662.97:182340.1:-1 * 2nd Highest energy
Group5Player9 677.86:163138.9:-1 *
Group6PlayerAG2 755.8:127456.3:-1
Group6PlayerN 725.97:106215.0:-1
Group7PlayerFinal 790.81:168522.2:-1
Group8Player1 284.73:59142.9:-1
Group8Player2 717.61:160165.5:-1
Group9Player1 663.79:139538.5:-1
Group9PlayerJD 754.35:135562.9:-1

[X=40, Y=40, u=100, v=2, p=0.0080, q=0.0020]
Group0Player1 615.48:89288.7:-1
Group0Player3 682.8:92393.0:-1
Group0Player5 702.58:160518.2:-1
Group1PlayerFinal 612.79:160528.5:-1
Group2Player2 674.62:99069.0:-1
Group2Player3 578.87:75430.9:-1
Group3Player1 464.5:109066.5:-1
Group3Player2 456.24:105970.3:-1
Group4Player1 629.11:83731.5:-1
Group4Player2 696.61:94567.8:-1
Group5Player5 610.68:150442.2:-1 * 3rd Highest energy
Group5Player9 653.44:150621.4:-1 * 3rd Highest energy
Group6PlayerAG2 698.03:128466.7:-1
Group6PlayerN 664.54:104552.5:-1
Group7PlayerFinal 695.48:60230.7:-1
Group8Player1 530.31:123022.2:-1
Group8Player2 695.07:160515.7:-1
Group9Player1 691.85:147148.6:-1
Group9PlayerJD 698.25:141065.6:-1

[X=75, Y=75, u=100, v=10, p=0.0020, q=0.0]
Group0Player1 209.37:26292.7:-1
Group0Player3 709.5:92299.1:-1
Group0Player5 541.69:97708.5:-1
Group1PlayerFinal 103.35:22975.0:-1
Group2Player2 0.0:0.0:25
Group2Player3 0.0:0.0:23
Group3Player1 491.1:69671.4:-1
Group3Player2 484.29:110790.0:-1
Group4Player1 572.38:62516.6:-1
Group4Player2 664.27:78077.5:-1
Group5Player5 625.22:143829.3:-1 ** Highest energy
Group5Player9 1.0:343.2:-1 *
Group6PlayerAG2 0.0:0.0:499
Group6PlayerN 631.97:86640.0:-1
Group7PlayerFinal 713.53:126983.9:-1
Group8Player1 279.98:56348.5:-1
Group8Player2 695.0:153351.3:-1
Group9Player1 475.87:101951.4:-1
Group9PlayerJD 120.22:21709.9:-1

[X=25, Y=25, u=100, v=10, p=0.01, q=0.02]
Group0Player1 296.0:44510.1:-1
Group0Player3 286.04:38807.3:-1
Group0Player5 297.27:67696.9:-1
Group1PlayerFinal 66.93:15961.9:-1
Group2Player2 444.68:176051.8:-1
Group2Player3 246.53:33484.2:-1
Group3Player1 224.18:31260.0:-1
Group3Player2 197.98:45867.1:-1
Group4Player1 223.06:27993.4:-1
Group4Player2 273.43:38979.6:-1
Group5Player5 238.98:73755.3:-1 * 2nd Highest energy
Group5Player9 226.07:56601.1:-1 *
Group6PlayerAG2 273.1:49542.3:-1
Group6PlayerN 283.61:43957.9:-1
Group7PlayerFinal 288.22:58732.8:-1
Group8Player1 111.05:23720.3:-1
Group8Player2 274.29:63108.0:-1
Group9Player1 274.04:57743.8:-1
Group9PlayerJD 296.86:58462.5:-1

Multi-player

X=40, Y=40, u=100, v=2, p=0.0080, q=0.0020]
Group0Player1 0.0:0.0:4935
Group0Player3 96.93:13151.7:-1
Group0Player5 31.52:7150.3:-1
Group1PlayerFinal 27.93:6712.7:-1
Group2Player3 0.0:0.0:471
Group3Player1 0.0:0.0:2763
Group3Player2 0.0:0.0:2002
Group4Player1 28.44:3534.4:-1
Group4Player2 52.01:7276.1:-1
Group5Player5 67.26:15922.3:-1 *
Group5Player9 122.52:31301.3:-1 ** Highest energy
Group6PlayerAG2 0.0:0.0:283
Group6PlayerN 34.26:5328.8:-1
Group7PlayerFinal 26.09:2696.1:-1
Group8Player1 0.0:0.0:2898
Group8Player2 135.31:31296.9:-1
Group9Player1 0.0:0.0:697
Group9PlayerJD 38.35:7363.4:-1

References

[1] Project 4 Organisms II Group 1 2003 - Alexis Goldstein, Edan Harel,
David Vespe

[2] Class notes 09-13 courtesy Abhinav Kamra

[3] Class notes 09-15 courtesy Abhinav Kamra

[4] Class notes 09-20 courtesy Abhinav Kamra

[5] Class notes 09-22 courtesy Abhinav Kamra

[6] Class notes 09-27 courtesy Abhinav Kamra

