
 Project 2: How Far Away?
Group 5
Hari Kurup (hgk2101@columbia.edu)
Chris Murphy (cdm6@columbia.edu)
Madhuri Shinde (mss2103@cs.columbia.edu)

October 20, 2004

Introduction
This project was based on a simple problem: conventional maps tell you how far away
two places are by distance, but not by time. If there are two ways to get from point A to
point B, you might be able to tell which one is shorter, but not which one is faster. The
challenge, then, is how to come up with a map that effectively shows the shortest time to
travel between two points, given a data set of cities and links between them. The map
would have to be generated by a software program given only the data set, and would
have to fit on one piece of letter-size paper.

This document starts off by explaining our initial thoughts about this problem, based on
our discussions as a group and in class. It then lists some of the approaches and strategies
that we considered and prototyped, before discussing the implementation that we
ultimately settled on. Finally, this report summarizes our results in the various user
evaluation tests that were performed, and finishes with some closing thoughts and ideas
on how we could have improved.

Background and Initial Findings
Based on our initial discussions as a group and in class, we felt the following were the
most important ideas to use in this project:

• Originally we thought that this project was an exercise in finding the shortest path
between two points, and we discussed search algorithms like A*. And many of the
discussions in class focused on techniques that were possible but perhaps not
useful. We soon realized that this is more of a user interface and usability
problem: how do you effectively display the map when there is so much
information? As such, we started approaching this by using usability techniques,
focusing mostly on how well a user would understand the map.

• We also realized, however, that it is useful to consider this a “search” problem,
because there can be great gains from removing unnecessary links (i.e. links that
do not appear on the shortest paths between any two points). Though some other
groups pointed out that the gain from doing so is minimal, we felt it was indeed
worthwhile and that it could actually make the map easier to read.

• One of the most commonly discussed ideas in the class was to distort the map into
“clusters” or “hubs”. And while we did end up exploring this possibility in our
first few versions of the code, we quickly agreed that it would be better to
minimize geographical distortion. We were especially concerned that too much
distortion would confuse users who already familiar with the geographic layout of
the area, and we saw little gains in grouping things into clusters or hubs. Though
some potential scenarios were discussed (e.g., a map showing the Paris subway
system and the rest of the world), we assumed that the maps we would draw
would all be on an equal scale (i.e., not composed of a small area combined with a
big one).

• Many groups pointed out that it is rather impossible to always effectively show
the shortest path between two points in such a restricted setting. The best that
could be hoped for would be to minimize calculations the user must perform. We
knew that the only way to accomplish this would be to make it clear to the user
which links were fast and which were slow. This is discussed in more detail in the
“Displaying time” section below.

• Some groups favored the idea of text representation of the data, as opposed to
drawing an actual map. Though we recognize that this can be a useful way of
demonstrating the shortest path between two points, we felt that the restriction of
limiting the “map” (in whatever format) to one page made this impossible. We
also thought that this approach would be useful for, say, engineers and computer
scientists but might not be useful for other people.

Strategies and Concepts
This section describes some of the concepts and ideas that we experimented with and
discussed past the initial stages. Though many of them were ultimately thrown out, we
feel that a future project may want to explore some of these further.

Basic map (no distortion)
The very first map that we created simply drew the cities in their exact positions,
maintaining complete geographical accuracy. This was a very simple place to start, and
the map would appeal to people who were already familiar with the geography of the
area. Our group felt strongly that the map should not be distorted to the point where the
user could not easily find cities based on previous knowledge.

Unfortunately, the major problem with this map is that many cities might be too close to
each other, or that the links would overlap and be difficult to read. Moreover, it would not
be an effective use of all the space on the map. Therefore, we quickly learned that the
main challenge in this project is how to separate the cities effectively, so that you have a
balance of readability and geographical accuracy.

Spacing (making minor adjustments)
The first idea we had in an effort to reduce the amount of clutter on the map was to
perform minor adjustments in how they are spaced out. We wanted to maintain
geographical accuracy as much as possible, but there could still be occasions when cities

were too close to each other for their labels to be readable. In those cases, we would try to
move the cities away from each other, but not by too much.

Before a city would be drawn on the map, we looked at all the other cities that had
already been drawn. If the new city were within 50 pixels of another city in either
direction, then it was considered to be too close. We would then determine which axis the
cities were to close on, and move the new city away by 20 pixels. Of course, that might
not be enough, or that might put it too close to another city, so we would reduce the
number of pixels to move the city by and try again. After five moves, we would accept
that there was little we could do to reduce the clutter, and would stop.

The “Scaling” approach (described below) soon replaced this method, as we realized that
the cities were generally still too close together and that the slight adjustments typically
made little difference to the overall map. We abandoned this idea once and for all when
we implemented the “Abbreviations” concept (see below), which gave us an easier
solution without having the drawbacks of distortion.

Areas for future development
Though sometimes this produced visibly noticeable effects on some of our maps, it had
very slight effects on others. One problem was that sometimes it would lead to large
geographical distortion (thus undoing the work of our “Scaling” algorithm). A future
implementation would probably need a smarter mechanism for separating cities that are
too close. It could do this by finding unused space on the map, or by adjusting all other
points in order to space out a small group.

Grid layout
On the opposite end of the spectrum from the minor adjustments approach, we also
considered introducing massive geographical distortion in the hopes of making the best
use of empty space and making the map as readable as possible. One idea was to put all
of the cities into an m by n grid, evenly spaced out around the map. Though this could
lead to very strange results (like Boston appearing to be closer to Washington, D.C., than
to New York City), there could be great benefit from the fact that labels would not
overwrite each other and that links would not overlap.

We immediately discovered that a grid with cities on right angles to each other would not
be useful because links would appear to go through cities, even when they actually did
not. This could happen on diagonals, too. To compensate for this, we added some slight
variation in how the cities were lined up in the grid, so that cities close to each other
would not have the exact same X or Y coordinates.

Figure 1. The cities are displayed using a grid layout.

The problem inherent to this approach, though, comes not only from the distortion of
geography, but also from the confusion that could be caused by links having the same
slope and thus appearing to be the same line. Even slight variances on the X and Y axes
did not have too much effect because lines heading in the same direction were too easily
confused. We eventually gave up on this idea, as the benefits were outweighed by the
problems caused.

Areas for future development
It is likely very possible that some algorithm exists (e.g., a solution to the N-queens
problem) for ensuring that no two points are on the same X or Y axes or are on any
diagonal, but anything short of that is very likely to run into problems with overlapping
links. A future attempt to develop this would need to take that into consideration,
possibly in conjunction with the “Arcs” approach described below.

Insets
The restriction of having the map fit on one piece of paper introduced many limitations to
what we could do, but one thing that was described at length in class was to expand
certain areas by creating map “insets”. That is, it might be possible to remove all the
labels from a cluttered part of the map, and then redraw that section in an enlarged scale
on another part of the page.

One challenge was in finding free space on the map so that the inset could be drawn,
keeping in mind that the space used for the inset would have to be bigger than the region
in the original map. We decided that we would get around this by always having just one
inset, even though that necessarily meant shrinking the rest of the map.

The next obstacle came from finding the most densely populated area. We discovered
some algorithms for calculating this in terms of cities, but city density was not usually the
biggest problem. The biggest problem usually came from the labels and the links. We
found it to be quite challenging to determine which area of the map was the one that was
hardest to read, keeping in mind that city density does not always imply clutter.

We decided not to develop a prototype of this solution, partly because of the problems
listed above, but also because using an inset necessarily meant shrinking the rest of the
map, and we did not want to sacrifice the rest of the map just for one small area.

Areas for future development
We still feel that this is an idea that has a lot of potential, and another group may be able
to successfully implement it beyond a proof of concept. As noted, the group would have
to overcome two main problems: how to find free space on the map, and how to find the
most cluttered area. For the latter some implementation of a clustering algorithm like k-
means could be used. Once a cluster is found, the links between the cities in the cluster
may be removed, and that region shrunk. This cluster region can them be expanded in the
inset. We think that this idea could be used in conjunction with another (like the grid
layout) that might be used to free up a certain spot where the inset could be placed.

Trunks
As we continued to look for ideas on how to reduce clutter around certain areas, and in
particular around hubs (cities with many links), one idea was to introduce “trunks” that

would contain many “branches”. That is, rather than have all the links coming in to one
city, some (or all) of the links could converge on a point away from the city in a more
open space on the map, and there would be one thick line (the “trunk”) connecting that
point to the city.

Figure 2. The picture on the left is without the trunk. In the picture on the right, the trunk
is the black line connected to Santa Fe. It removes the clutter from around the Santa Fe
area and makes the links from Cheyenne and Denver easier to see.

The main advantage of this would be that there would be fewer lines converging on one
point (the city), and we could possibly have multiple trunks to eliminate the problem of
just moving that convergence point to another place on the map. However, we decided
not to pursue this idea because it might be difficult to choose a good spot to place the
trunk (we would need to find a somewhat open spot on the map that was near the city)
and it would be somewhat confusing for the user if the trunk were located too far from
the city. There were also conceivable problems with our coloring scheme, which is
described in the next section.

Areas for future development
We still think this is a worthwhile idea and one that could be used effectively (we think
that some other groups considered similar ideas), but, as explained previously, the main
hurdle to overcome would be the placement of the trunk and how to ensure that users
would not be confused by many links converging on a place that is not their intended
destination.

Arcs
It seemed that every group was using straight lines to indicate links between cities, but the
TA suggested that it might be possible to use curved lines (or “arcs”) instead. We thought
that this might be useful in situations where links were overwriting each other, especially
if the links were somehow labeled and the overlapping labels became too difficult to read.
We also considered using arcs to show that some links were longer than others (in terms
of time), which might provide a visual cue to the user.

Figure 3. The image on the left shows how the link from St. Paul is obscured by the link
from Bismarck. The image on the right uses an arc from St. Paul to make it clearer that
there is a link there.

After a short trial, though, we decided not to pursue this idea any further, primarily
because of the complexity of drawing an arc between two points using the Java 2D API.
We also realized that the arc may end up passing through another city if not carefully
drawn, and this could confuse the user. There seemed to be little reduction in overall
clutter as well.

Areas for future development
One area in which arcs could be used in a future implementation is when three or more
cities have the same X or Y coordinate. The links between them would appear to be
straight lines and they would overlap each other, so arcs could be used to “go around” the
intermediate cities.

3-D
This was an idea that no group had mentioned in class, and we admittedly were sitting on
it until we could develop it a bit more. The basic idea was to try to render a 3-D map
instead of a flat 2-D map. Whether or not anyone else actually thought of it, we don’t
know, but we thought it might be possible to represent relative distances or times by
using the Z axis (while still maintaining geographical accuracy on the X and Y
coordinates). Some possible limitations here include users’ confusion as to the meaning
of the different “height” of the cities, the fact that some cities might get hidden behind
others, and difficulties in getting Java to easily render 3-D images (though we did not
seriously investigate this).

Areas for future development
This idea might be used to reduce clutter by making some labels “higher” than others, or
to somehow represent slow links by making them appear to be longer in 3-D. However,
much consideration would need to be taken into effectively showing a 3-D map in a 2-D
format.

Implementation
This section explains our algorithms for implementing the major features of the map-
drawing program that we submitted.

Removing unnecessary links
As per the project specification, the dataset could contain a minimum of 100 links.
Drawing all of these links on the map causes cluttering. Moreover the aim here is to
provide a map with the fastest routes between cities. So, we decided to remove links that
do not fall on the fastest route. This represents a graph theory problem that is analogous
to the shortest path problem. We decided to use Djikstra’s shortest path algorithm for our
purpose. Normally, this algorithm works on the assumption that the graph is a directed
graph and cycles are not present. In our case, this is not a reasonable assumption since
there may be more than one route between a pair of cities (say, a train route and an air
route), and according to specifications, each link is bi-directional. So we treat the graph as
bi-direction with cycles and adapted the algorithm to it.

We start the algorithm by converting the dataset into a time-weighted graph. While
creating the adjacency matrix, if we encounter more than one direct link between the
same pair of cities, only the link with the least time-weight is maintained. This gives us
the shortest (fastest in this case) link between those pair of cities, but we still need to use
Djikstra’s algorithm to get the fastest route between all pairs of points on the map.

Consider a weighted graph G = (V,E), Djikstra’s algorithm works by maintaing a set of
vertices S whose final shortest –path weights from the source s have already been
determined. The algorithm repeatedly selects the vertex u E V –S with the minimum
shortest-path estimate, adds u to S and relaxes all edges leaving u [CLSR, 2nd edition].
Because this algorithm always chooses the “lightest” or “closest” vertex in V – S to add
to set S, it is considered a greedy algorithm [CLSR, 2nd edition].

The number of unnecessary links removed by the algorithm clearly depends on the
dataset. For the northeast.game dataset which has a total of 152 links, this implementation
of shortest path removes 27 unnecessary links, whereas for the uscapitals.game dataset it
removes only 7 unnecessary links..

Scaling
In order to make the map fit the image for any set of coordinates, it was necessary to scale
the range of coordinates to the dimensions of the screen, and move the coordinates into
place. In addition, we hoped to avoid clutter by spreading out the cities a bit and trying to
ensure that no two cities had the same X or Y coordinates. This idea was one that we
considered in the first few days of the project (see “Grid Layout” above), but the actual
implementation was influenced by a discussion with members of Group 6.

The concept that we used was the idea that the actual X and Y coordinates don’t really
mean anything; what is important is the relative placement of cities on the map. We
sorted the cities into two lists: one by the X coordinate, and one by the Y coordinate. If
two cities had the same coordinate, the value would be altered slightly. Then we
reassigned coordinates: the first city would be 0, the next would be 1, etc. After doing this
for both axes, we had a data set in which there would be little overlap and equal spacing.

Though this led to slight geographical distortion, we felt that the extra spacing was a
worthwhile tradeoff, and would point out that cities are still geographically accurate with
regard to each axis (e.g., Seattle would still be west of New York and Boston would still
be north of Miami).

In order to determine the X and Y coordinates that would be used on the map, we then
calculated an expansion factor (how to spread them out) and offset (how to provide a
buffer in the map) as follows:

xFactor = xScreen/(maxX - minX);
xOffset = xScreen - (xFactor * maxX) + 10;

where xScreen is the width of the screen, minX is the minimum X coordinate (which
would be 0 after repositioning), and maxX is the maximum X coordinate (which would
be one less than the number of cities). The extra 10 at the end is so that there would be a
10-pixel buffer around the map. We then recalculated the city’s coordinates like so:

city.x = (xFactor * city.x) + xOffset;
This method assured that the cities would be spread out across the map (to use as much of
it as possible) and that they would be positioned in the right place.

We also need to rescale for calculations that might put our labels off-screen. This
especially happens on the far-right (east) side of the map. In those cases, we try to move
the label to be to the left of the city’s location, instead of in its default spot to the right.

Abbreviations
In our final version of the map generator, we abandoned the “Spacing” idea (described
above) and decided that the best way to reduce clutter would be to shorten the city labels.
It occurred to us that the problem with a crowded map did not come from the links or
even the location of the cities themselves, but from the labels used to demarcate the cities.
These labels would often overwrite each other and though we initially came up with ideas
on how to move those labels (based on the ideas expressed by Group 8), we thought that
removing them altogether would be better.

We decided to use abbreviations of the cities’ names at first, but then decided that it
would be better to just replace those names with some code and then have a table aside
the map that explained which code represented which city. If any city is within 40 pixels
of another city, then its city name is added to a list of cities to be replaced. When the
cities are drawn, then the city is given a new “name”, which starts with the letter “C” (for
“city”) and is followed by a two-digit number. Additionally, any city whose name would
go over the right-hand side of the map is added to the list.

After all the cities have been drawn on the map, a legend is created on the right hand side,
mapping these new city names to the original name. The cities are ordered alphabetically
so that the user can easily find the city if he knows the abbreviation, and can easily find
the abbreviation if he is looking for a particular city. Currently we limit the number of
abbreviated city names to 37, as that is all that would fit on an 800x600 image.

Though this may cause some confusion for users, we feel that the reduction in overall
clutter in the map (and in particularly crowded areas) is a very worthwhile tradeoff. We
also preferred this idea to the “Inset” concept (described in the previous section) because
it would work on a wider scale by affecting more cities in more crowded areas, rather
than just one crowded area.

figure 4. On the left an area of the northeast map without abbreviation. On the right, the
same region, with abbreviations.

Coloring links
One of the key features of our map is that it colors the links differently in an attempt to
give the user a visual cue that some links take less time than others. We originally were
coloring based on the speed of the link, but realized that the user would be more
interested in the time, so we changed our map accordingly.

In order to calculate the color of each link, we calculate the “timeStep” variable. We find
the minimum and maximum speeds of the links, and then divide the difference by four to
get the “timeStep”. This roughly separates the links into four time categories (though the
separation is obviously not going to be uniform). The value of “timeStep” obviously
depends on the speeds used on the map, but for our US Capitals map, it was about two
hours.

Links are colored as follows:

COLOR TIME
green shortest (0 – timeStep)
cyan short (timeStep – 2*timeStep)
orange long (2*timeStep – 3*timeStep)
red longest (3*timeStep – 4*timeStep)

We used the color green to give the user a feeling of “going”, whereas red was meant to
give the user a feeling of “stopping” (or moving slowly). We considered using three or
five colors, but felt that four was a better number because it gave the user few colors to
have to remember, but still could show a good range of times.

The time of each link is shown on the map as a label in the same color as the link itself.
However, times are not shown for red links because the time is usually so long that the
user will generally want to avoid that link if possible. We experimented with removing
the labels for other colors, but found many situations in which a user might miscalculate
the shortest path. The time is shown halfway between the two cities it connects. In some
cases (when the link goes from southwest to northeast) we move the time to the left of the
line so that it can be displayed more easily than in its default position, which is to the
right.

The first iterations of our map used a white background. We felt that a black background
would be better because the links would be easier to see, the cities would stand out more,
and the user could more easily differentiate labels when they are cluttered. This also
allowed us to use the same color for the time labels as for the links themselves, which did
not appear as clearly on a white background. We also experimented with a gray
background, but the colors were not bright enough to contrast as well as they did against
black.

Tournament Maps
The maps generated by our project for the four datasets, 3 known and 1 unknown that
were part of the tournament are given below:

Figure 5. A map of capital cities of the United States.

Figure 6. A map of some major cities and regional airports of the northeast region of the
US

Figure 7. A map of some stops on the New York City subway.

Figure 8. A map of Australia.

User Evaluation Results
Out performance in the user evaluations were good. We managed to get some good
reviews, and in most cases our map was legible enough for the judges to find the routes.
Here are a few comments about our maps from the judges:

• Color legend helpful.
• ("the legend was good")
• Direct link (4:10 time noted)

Not all reviews were positive. There were some that made us realize that more work
needs to be done in certain areas. For example, on the map of the northeast, one of the
judges could not find a path between New York and Reading because he found map to be
cluttered. This tells us that there is scope for improvement in the area of congestion
reduction.

The US capitals map and the secret map (Australia) were our best maps in the
tournament. Almost every judge found it easy to use and find the fastest route. The
subway map comes in next with only one mishap. The map of the northeast, though
cleared of lot of clutter still had some.

Conclusion and Lessons Learned
Areas for improvement
It occurred to us early on – and it is repeatedly mentioned throughout this document – that
reducing clutter is the key to implementing a good map. Regardless of technical
approach, the problems of overlapping links and link times, and cities too close together,
are ones that must be dealt with in order to produce a map that is ultimately usable. While
maintaining geographical accuracy is desirable, we learned that making the map readable
is essential from the user perspective. Therefore, we feel that more emphasis should be
put on making the map easy to read, even if it means distorting the geography.

Accomplishments
Despite the fact that we could have made the map easier to read, we still feel that this
project was successful for the following reasons:

• We achieved some degree of spacing while still maintaining geographical
accuracy. By using the “Scaling” approach, we managed to find a balance
between making the map easy to read and ensuring that the cities were positioned
in places familiar to the user.

• We took a user-centric approach instead of a technology-centric one, by trying
to think about “what should be done” instead of “what could be done”. Whereas it
seemed to us that many other groups were considering the technological ease of
the solutions, we realized that the end-user of the map was more important, and
we took that in mind at each step.

• We explored and documented a number of other concepts that could be
developed by other groups in the future. Though many of these were not
implemented in this project, we feel that many of them have a great amount of
potential for the future.

Acknowledgements
• The idea for placing each city on a grid with each having a unique X and Y comes

from Group 6.
• The idea for moving the city label based on its proximity to another city label

came from the concept expressed in class by Group 8.
• Implementation of Djikstra’s algorithm, adapted from Data Structures in Java, 2nd

edition, Robert Lafore.
• Some of the ideas for heuristics for making the map more user-friendly came from

Jakob Nielsen’s “Ten Usability Heuristics”
(http://www.useit.com/papers/heuristic/heuristic_list.html)

• Working principle of Djikstra’s algorithm taken from Introduction to Algorithms,
CLSR, 2nd edition.

