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Abstract—Web page categorization has been extensively stud-
ied in the literature and has been successfully used to improve
information retrieval, recommendation, personalization and ad
targeting. With the new industry trend of not tracking users’
online behavior without their explicit permission, using contex-
tual targeting to accurately understand web pages in order to
display ads that are topically relevant to the pages becomes more
important. This is challenging, however, because an ad request
only contains the URL of a web page. As a result, there is
very limited available text for making accurate classifications.
In this paper, we propose a unified multilingual model that can
seamlessly classify web pages in 5 high-impact languages using
either their full content or just their URLs with limited text. We
adopt multiple data sampling techniques to increase coverage
for rare categories in our training corpus, and modify the loss
using class-based re-weighting to smooth the influence of frequent
versus rare categories. We also propose using an ensemble of
teacher models for knowledge distillation and explore different
ways to create a teacher ensemble. Offline evaluation shows
at least 2.6% improvement in mean average precision across
5 languages compared to a URL classification model trained
with single-teacher knowledge distillation. The unified model
for both full-content and URL-only input further improves the
mean average precision of the dedicated URL classification model
by 0.6%. We launched the proposed models, which achieve at
least 37% better mean average precision than the legacy tree-
based models, for contextual targeting in the Yahoo Demand
Side Platform, leading to a significant ad delivery and revenue
increase.

Index Terms—contextual targeting, text classification, URL
classification, knowledge distillation

I. INTRODUCTION

In recent years, the Internet has been going through a major
privacy enhancement. In addition to the restrictions imposed
by the EU General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA), which require
explicit user permission for web services to track users’ online
behavior, many browsers including Safari, Firefox and Chrome
are also starting to restrict the use of advertising cookies on
websites. This trend poses a challenge to the traditionally suc-
cessful approach of behavioral ad targeting, because collecting
users’ historical online activities with browser cookies and
using them to derive users’ interests and recommend relevant
ads would only be possible for a small fraction of users.
Therefore, contextual targeting, which serves ads only based
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on the context information available at the time of an ad call,
is becoming increasingly critical to online advertising.

Among the different emerging contextual targeting solu-
tions [1], category-based contextual targeting [2] has proved
to be an impactful alternative in the new cookieless world. In
this approach, advertisers specify a number of topics from
a pre-defined taxonomy and their ads are eligible to be
displayed on web pages relevant to these topics. Accurate
prediction of the topic categories of web pages is key to
the success of category-based contextual targeting. However,
although web page categorization has been extensively studied
in the literature [3]–[5], applications to contextual targeting
encounter three unique challenges that have not been properly
addressed.

First, the number of categories is relatively large. The popu-
lar IAB Content Taxonomy1 developed for contextual targeting
and brand safety has approximately 700 categories over 4
tiers. In this work, we use the Yahoo Interest Category (YIC),
which was developed specifically for contextual targeting and
consists of 442 categories over 5 tiers. In contrast, most
existing work [6] [7] classifies web pages to a handful of
top-level topic categories. Moreover, when considering a large
number of categories in a rich taxonomy, a web page may be
characterized by multiple categories—including multiple top-
level categories—for different advertising purposes. For in-
stance, a web page about news for a luxury retailer2 can be cat-
egorized as both Content & Entertainment/News/Business &
Finance and Retail/Product/Clothing/Luxury Clothing. Thus,
web page categorization for contextual targeting is a multi-
label classification problem over a large number of categories.

Second, web pages are highly skewed in terms of categories,
with a small number of frequent categories and a long tail.
The hierarchical nature of the taxonomy further increases the
skew as categories at higher tiers are more frequent than
their descendants. This makes it difficult to create a training
dataset that represents the entire taxonomy without a large
class imbalance. In addition, given the importance of the
international market for online advertising, non-English web
pages must also be classified. However, the skewed proportions
of English and non-English web pages in advertising data
creates an additional imbalance for training that needs to be
accounted for by the web page classifier.

Third, while existing work typically uses the full content of
web pages for categorization, such information is not always
available for contextual targeting. An ad request coming to

1https://iabtechlab.com/standards/content-taxonomy/
2https://finance.yahoo.com/news/post-bankruptcy-ahead-neiman-marcus-050125178.
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an ad system usually contains the URL of the web page
on which an ad will be displayed, along with other context
information such as device, location and time. A modern
ad system receives billions of ad requests each day but can
only selectively crawl a portion of the web pages due to the
high cost. An effective contextual targeting solution requires
a classifier that can not only categorize crawled web pages
using their full content, but also accurately classify web pages
using only the text found in the URLs.

To address these challenges, we propose the first (to the
best of our knowledge) unified Transformer-based model that
accurately categorizes multilingual web pages with either full
content or only URLs into multiple labels in a large taxon-
omy. We achieve this by first fine-tuning large multilingual
Transformer models with human-annotated web pages using
their full content, and then distilling the knowledge from an
ensemble of these large models into a small Transformer
model using an augmented dataset designed for both web
pages with full content and those with only URLs. This
approach bridges the performance gap caused by the input (full
content vs URL) that was also observed by an early attempt
which uses expanded tokens in the URLs for an SVM-based
multi-label web page classifier [8]. The inherent label skew
over a large taxonomy is addressed by our loss re-weighting
scheme that simultaneously smooths data imbalance between
positive and negative samples as well as between frequent
and rare categories, in addition to a number of dedicated data
augmentation techniques.

Note that the challenges listed above were also partially
addressed by the models proposed in the conference version
of this work [2]. We provide additional improvements through
ensemble knowledge distillation and model unification with
respect to different inputs. More specifically, the main contri-
butions of this work are as follows:

• We adapt Transformer models to multi-label classification
by modifying the output classification layer and propose
novel class-based loss re-weighting and data sampling
techniques to deal with label skew, achieving 37% higher
mean average precision than legacy classifiers.

• We achieve multilingual classification for content in 5
target languages by augmenting human labeled training
datasets with machine translated samples, leading to at
least 0.9% higher mean average precision over models
trained purely with human-labeled datasets.

• We train a single unified model that predicts multiple
class labels for web pages with full content and those
with only URLs by altering the training data to adapt to
both types of input and distilling knowledge from models
trained with full content. Offline evaluation shows 0.6%
better mean average precision than a dedicated URL-only
model distilled from the same teacher. The unified model
also achieves 12.7% higher mean average precision than
a URL model directly fine-tuned using human-labeled
datasets without knowledge distillation.

• We design a customizable multi-teacher knowledge dis-
tillation training framework and explore two types of
teacher ensembles: Ensemble-Aggregate aggregates the
predictions from multiple teacher models as the soft label

of a sample, while Ensemble-Best takes the teacher model
with the best accuracy on a language to generate the soft
labels for the samples in that language. We experiment
various ways of building individual teacher models by
varying random initialization, loss-specific hyperparame-
ters, and language-specific training data when fine-tuning
pre-trained language models for multi-label web page
categorization. Comparison with the URL model trained
with single-teacher knowledge distillation shows 2.6%
higher mean average precision.

• We deploy the proposed model to support category-
based contextual targeting at Yahoo, and show through
a series of launches and online metrics how each key
model improvement positively influences ad delivery and
revenue.

II. RELATED WORK

In this section, we summarize relevant prior literature in a
number of areas that relate to this work. As this work is an
extension of our prior study [2], we also highlight the main
difference between the new models proposed here and their
alternatives from the previous work.
Multi-label Text Classification. Hierarchical multi-label clas-
sification (HMC) has been extensively studied in machine
learning. In HMC, categories or labels are organized in a
hierarchical structure [9], while multi-label classification al-
lows assigning multiple labels to each document [10], [11].
In HMC, one primary approach is to train independent binary
classifiers for each category. The other, which we focus on,
is to train a single multi-label model capable of predicting all
categories simultaneously.
Multilingual Text Classification. Early research in multilin-
gual document classification focused on cross-lingual sentence
representations using parallel corpora [12]–[14]. However,
recent advances in multilingual masked language models, like
Multilingual BERT [15], XLM [16], and XLM-RoBERTa [17],
have improved multilingual text classification. Our work dif-
fers by focusing on multi-label taxonomic classification with
numerous classes while enabling classification based solely on
providing the model with a URL—which may contain short
or non-meaningful text snippets—thereby setting it apart from
approaches that use more extensive textual content.
URL Classification. Classifying URLs without accessing the
web page content is of increasing importance. Applications
that require classification before crawling (e.g., focused crawl-
ing [18]) or cannot afford the high latency or high cost of large-
scale crawling (e.g., contextual targeting based on topics of
URL [2]) require lightweight and accurate models to classify
web pages only using the information available in their URLs.
Early attempts on URL classification [8], [19], [20] suffer from
a significant performance gap compared to models that have
access to the full web page content, as they rely solely on
features like tokens and n-grams [8], [19], [20] drawn from the
URLs. To better understand the semantics of URLs, we distill
knowledge from an ensemble of Transformer models fine-
tuned with full web page content, which significantly improves
the model directly fine-tuned with URLs. Singh et al. [21] also
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build an ensemble for URL classification but the ensemble
is applied at inference time. This is much more costly than
our multi-teacher ensemble as we only use a single (student)
model for inference. Moreover, our model can classify both
web pages with full content and with URLs alone, which none
of the existing models are designed for.
Weight Redistribution. Weight redistribution has been ex-
plored in machine learning to correct class imbalance, biased
datasets or corrupted labels [22]–[24]. Many modern machine
learning frameworks such as Scikit, PyTorch and TensorFlow
offer utilities to pre-compute class weights and allow a weight
re-scaling factor to be incorporated in loss functions3. Prior
research has extended these ideas to online class re-weighting,
e.g., by minimizing the loss on a clean unbiased validation
set using a meta-gradient descent step on the weights of the
current mini-batch [25]. Class weights are typically defined as
proportional to inverse class frequency, but recent work has
shown that smoothing these weights produces better empirical
outcomes [26], [27]. Smoothing can be accomplished via
heuristic transformations of inverse class frequency weights
(e.g., square root [26], log [28]), as well as formulations
that can interpolate between uniform and inverse-frequency
weights [27]; the latter is better suited to taxonomic categoriza-
tion as hyperparameters can be tuned to trade off performance
on head versus tail categories. In this work, we propose a
more intuitive weight redistribution strategy to correct extreme
class imbalances in taxonomic multi-label classification using
two hyperparameters that balance the loss among classes
while simultaneously balancing the loss between positive and
negative examples.
Pre-trained Language Models. In recent years, models based
on the Transformer architecture [29], which uses a self-
attention mechanism, have driven significant advances on
a variety of tasks such as language generation, translation,
question-answering and classification. Some examples of re-
cent models that build on this architecture include BERT [30],
RoBERTa [31], GPT [32] [33] and DistilBERT [34]. These
models are pre-trained on a large unsupervised document cor-
pus and subsequently fine-tuned on a supervised downstream
task [30]. We follow this approach and fine tune pre-trained
language models for hierarchical multi-label classification.
Multi-Teacher Knowledge Distillation. Knowledge distil-
lation is a model compression technique for transferring
knowledge from larger deep neural networks into smaller
ones. Multi-teacher distillation has shown that different teacher
architectures can provide their own useful knowledge, which
can be transferred to the student model to improve knowledge
distillation. In a typical teacher-student framework [35], the
teacher is often a large model or an ensemble of large models,
and a common approach is to utilize the averaged response
from all teacher networks as the supervision signal. This tech-
nique has proven to be effective in training the student model
as it incorporates knowledge in the form of response-based
representations [36]–[39], feature-based representations [40]–
[42] or a combination of both [43]. In this work, we explore

3e.g.https://pytorch.org/docs/master/generated/torch.nn.
BCEWithLogitsLoss.html

different variations of teacher ensembles for response-based
knowledge distillation. Our results demonstrate a significant
improvement in model performance when compared to the
models produced by single-teacher knowledge distillation.
Category-Based Contextual Targeting. Contextual targeting
[1] is an advertising strategy that displays ads relevant to the
content of a web page. Category-based [44] contextual target-
ing is widely used in digital advertising to match ad content
with relevant website content based on specific categories. This
strategy aims to ensure that ads are displayed in contexts that
align with the advertiser’s target audience and goals [44], [45].
A typical approach involves classifying web content into pre-
defined categories, such as sports, entertainment, technology,
or finance, and then delivering ads that are most relevant to
each category. Hashemi [4] summarizes the major web page
classification approaches using text, images or both. To the
best of our knowledge, this is the first study to propose a web
page classification model that solely relies on the URL itself
for contextual targeting.

This paper can be viewed as an enhancement of the pre-
liminary models presented in the conference version of this
work [2] with the following major extensions: (i) We improve
the proposed web page categorization model by introducing
a customizable multi-teacher ensemble training framework;
(ii) We develop a unified modeling approach that allows web
page categorization with or without full content, in English
and non-English languages, with a single model; (iii) We
launch the new, unified model in a production environment
and show its significant impact on ad delivery and revenue in
category-based contextual targeting for Yahoo’s demand-side
advertising platform, driven by the algorithmic improvements
made in this extension.

III. UNIFIED WEB PAGE CATEGORIZATION

To support category-based contextual targeting at scale, it is
important to classify both crawled web pages with full content
and un-crawled web pages with only URLs. We introduce in
this section our unified multilingual web page categorization
model that can seamlessly classify both kinds of web pages
from 5 targeted languages. We formulate the task as a multi-
label classification problem and describe the adaptation of
pre-trained Transformer encoders from the BERT [30] family
to address it. We provide details on the development of our
multilingual training and evaluation corpus. We then present
our multi-teacher knowledge distillation framework that makes
models compact while outperforming the standard knowledge
distillation using a single teacher model. Finally, we describe
how we adapt the training process to allow a single distilled
model to classify both crawled and uncrawled web pages.

A. Problem Formulation

Given a taxonomy of M categories {c1, c2, ...cM} and the
text available for a web page xi, the objective is to predict
a probability vector ŷi = [ŷi,c1 , ŷi,c2 , ..., ŷi,cM ], where ŷi,cj
is the probability of category cj being relevant to web page
xi. In this work we use the Yahoo Interest Categories (YIC)
taxonomy, which is a hierarchical taxonomy containing 442
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Automotive Business & Industry Content & Entertainment

Movies News

Entertainment News Sports News

Fig. 1: Example categories from the YIC taxonomy.

interest categories: 12 tier-1 (root-level) categories, 100 tier-2
categories, 259 tier-3 categories, 66 tier-4 categories and 5 tier-
5 categories. Figure 1 shows a few examples of YIC categories.
The hierarchical structure implies that a web page assigned to
any category (e.g., “Content & Entertainment/News”) would
also be categorized to its ancestor categories (e.g., “Content
& Entertainment”). A page may also be described by multiple
categories, e.g., a car blog by “Automotive” and “Content &
Entertainment/News”.

The following sections describe how we adapt a popular
transfer learning framework to this multi-label classification
problem. Our basic approach is to fine tune a pre-trained
Transformer model as the shared encoder and and use an out-
put layer with sigmoid activations for each category to predict
whether a web page belongs to that category (Section III-B).
We rely on professional editors to annotate web pages with
relevant taxonomic categories and devise various techniques
to build annotated datasets (Section III-C). As shown by our
experiments in Section IV, a naive attempt at using editorial
data to train such models is sub-optimal and the accuracy
of Transformer models typically improves significantly as
the model size (i.e., inner dimensionality, number of layers,
number of self-attention heads) is increased, but larger models
are impractical for large-scale classification tasks due to signif-
icantly higher computational cost. We address this limitation
through knowledge distillation [36], a framework in which the
predictions of an accurate but expensive model are used to
train a lightweight distilled model. In this work, we propose
to use a teacher ensemble to distill knowledge from multiple
teacher models to a lightweight student model (Section III-D).
We also present an approach to augment the datasets to allow
a single distilled student model to classify both crawled and
un-crawled web pages (Section III-E).

B. Modeling Approach

We fine-tune a pre-trained Transformer encoder to predict
the probability vector ŷi. The encoder layers are shared among
all categories. For each category cj , an output layer with
sigmoid activation is trained to minimize the corresponding
binary cross-entropy loss. The loss for a web page xi is
computed as a weighted sum of its losses on all M categories.
Using yi,cj ∈ {0, 1} to indicate whether page xi belongs to
category cj , given the training set of N samples, the total loss
can be computed as follows:

L =
1

N

N∑
i=1

M∑
j=1

wcjyi,cj log ŷi,cj + (1− yi,cj ) log(1− ŷi,cj )

(1)

where the weights for negative labels (i.e., yi,cj = 0) are
implicitly always 1, and the weights for positive labels (i.e.,
yi,cj = 1) are defined for each category cj as follows:

wcj = µ
maxk fck + γN

fcj + γN
(2)

where fcj =
∑N

i=1 ŷi,cj denotes the frequency of category
cj in the training data, µ ∈ R controls the category-agnostic
weight given to positive samples and γ ∈ R≥0 is a smoothing
factor scaled by the number of training samples N . This
proposed weighting scheme simultaneously addresses data
imbalance between positive & negative samples via µ, and
between frequent & rare categories via γ. As γ → 0, the
weights become inversely proportional to class frequency (i.e.,
wcj ∝ 1/fcj ), while as γ → ∞, all positive samples receive a
uniform weight wcj = µ. This ability to interpolate between
uniform and inverse frequency weighting is similar to the
class-balanced loss formulation of [27], but features a more
intuitive smoothing factor γ and greater control due to µ.

C. Annotated Corpus Development

For our initial work on corpus development, we collected a
traffic-based stratified sample of English language bid request
URLs from the Yahoo Demand-side Platform (DSP) during a
6-month period from Jan 2020 to July 2020. All data labelling
was carried out internally by an in-house editorial team. Given
a web page in this dataset, we crawl the HTML, extract the
page title and body, strip HTML tags and present it to editors
to receive one or more category labels from the taxonomy4.

The long tail category distribution, however, means that a
random sample of bid request pages has very low coverage of
torso and tail categories. For example, 27 categories have no
labelled pages in a 15k random sample, while 114 categories
have less than 5 labelled pages in the same sample. For this
reason, we adopt two targeted sampling approaches to address
this problem: (i) URL collection, and (ii) active learning.

• URL Collection. Since many of the target categories have
zero or very few labelled samples in our initial random
sample, we did not have data to bootstrap a model that
could be used to assist with data collection. For this
reason, in collaboration with the Yahoo editorial team,
we used a method that we refer to as URL Collection or
UC, where the editorial team is given a set of categories
and asked to find URLs from diverse websites that are
relevant to those categories. After these candidate URLs
have been collected, they are then fully annotated with
respect to additional taxonomy categories that they are
relevant to. Although this is clearly a biased form of data
collection, since data does not come from the population
of bid request URLs, our results will demonstrate that this
is nevertheless a very useful way to bootstrap models for
rare categories.

• Active learning. Active learning is a method for using
model predictions to sample documents for annotation.

4Using the crawled content instead of accessing a page directly by its
URL avoids any inconsistency caused by page content update.
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Fig. 2: Pages per category in a random sample and in a
combined sample with URL Collection and active learning.

After first bootstrapping data with URL Collection, we
can train initial models for tail and torso categories. To
gather additional candidate pages for these rare cate-
gories, we adopt the simple approach of sampling pages
for which the model score is higher than a threshold, and
these pages are then manually labelled by our editorial
team. During corpus construction, this process of random
sampling followed by targeted sampling was iterated a
number of times, each time based on a recent 6-month
stratified sample. Figure 2 shows how this improves
coverage for tail categories.

In addition to English, we identified 4 other target languages
for web page classification: Spanish, French, Portuguese and
Traditional Chinese. We created language specific corpora for
each language by sampling web pages with a mix of stratified
random sampling, URL Collection and active learning for each
of the targeted languages. These web pages were annotated
with the same taxonomy labels by professional editors who
are fluent speakers of these languages. In addition, we use the
Google Translate API5 to translate the content of the annotated
English web pages to each of the non-English languages and
use them as part of the annotated datasets for training the
models. The evaluation datasets for the non-English languages
do not contain any translated data.

The corpus was partitioned into training, development and
test sets for each target language as follows:

• Training Set, containing a mix of data sampled randomly,
by URL Collection, and by active learning, as described
above.

• Development Set, used to make initial decisions on opti-
mal hyperparameters, and for model selection via early
stopping. This data is a random subset of the stratified
random sample of DSP bid request URLs.

• Test Set, held-out dataset, which serves as a gatekeeper
that determines whether the model can be deployed in
production. If the model passes the overall quality re-
quirements agreed upon, it is put into production. Like the
development set, this is a random subset of the stratified
random sample.

Corpus statistics for each target language can be found in
Table I. Trainable categories is defined as the number of
categories with at least one positive example in the train set.
Testable categories are defined as the number of categories
with at least one positive example in the development set and

5https://translate.google.com

TABLE I: Statistics of the annotated corpus. #S - Number of
samples. #C - Number of trainable or testable categories.6

Language Train Dev Test
#S #C #S #C #S #C

English 56k 442 5k 362 13k 391
Spanish 48k 442 1.2k 280 7k 378
French 48k 442 1.2k 299 8k 384

Portuguese 48k 442 1.2k 286 8k 380
Traditional Chinese 48k 442 1.2k 257 8k 387

test set respectively. As the development and test sets only
contain stratified random samples, some long tail categories
may not be covered due to their limited sizes. This is also
our motivation for using URL collection and active learning
to ensure the models are trained to predict all categories in the
taxonomy with enough examples (Figure 2).

D. Multi-Teacher Knowledge Distillation

Directly fine tuning pre-trained Transformer models using
human annotated datasets usually requires large model sizes to
achieve good classification accuracy. Larger models however
require higher computational resources and longer inference
time, making them impractical to classify pages at web scale.
To address this issue, we propose a multi-teacher knowledge
distillation approach. Distillation can be accomplished using
a variety of techniques. In our work, knowledge is transferred
to the student model through a large dataset of unlabeled
examples. Instead of using a single model as the teacher,
we use an ensemble of multiple models to transfer their
knowledge to the student model.

Specifically, in our multi-teacher knowledge distillation
framework, we first train K (K≥1) teacher models using a
human labeled dataset. We refer to these models as the teacher
ensemble. Note that each teacher model is a multilingual
model that can classify documents in any of our target
languages. We then use the probability vectors from these
models’ output to produce a soft label (i.e., a probability vector
ysi = [ysi,c1 , y

s
i,c2

, ..., ysi,cM ]) for each sample xi in a transfer
set. Finally, using the transfer set, a student model is trained
to optimize the cross entropy loss described in Formula (1)
using the soft labels ysi,cj as ground truth instead of the binary
labels yi,cj .

1) Teacher Model Training.
All teacher models are trained using the human labeled

dataset described in Table I. In addition to the page title and
body extracted from the HTML, we also parse the URL (e.g.,
https://news.yahoo.com/sports/football) and
extract the domain (e.g., news.yahoo.com) and path (e.g.,
/sports/football) from the URL to use in the input. The
URL domain, path and page title are designated as the first
segment while the page body constitutes the second segment
when fine tuning the pre-trained Transformer based teacher
models. Using full content (i.e., URL, title and body) leads to
higher accuracy than using only URL text as we will see in
Table VII (T-Rand-1 vs. XML-R-Largeu). Since we target a
multilingual scenario, we use XLM-RoBERTa-Large [17] as

6Categories with at least 1 positive sample in the dataset.
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our backbone model in this work. We train K models with
different settings to create the teacher ensemble.

We consider three different ways of training a set of K
teacher models to create a teacher ensemble:

• Random initialization variants. Different random seeds
are used to initialize the parameters in the output layer,
a common approach to create neural network ensem-
bles [36].

• Loss re-weighting variants. Different hyperparameter
combinations µ and α (Equation (2)) are used to train
teacher models that achieve different balance between
positive-negative samples and frequent-rare categories.

• Language variants. Different subsets of the training
dataset (i.e., each subset contains samples specific to
one selected language) are used to fine tune multilin-
gual teacher models that perform better in one specific
language.

2) Transfer Set Development
In response-based knowledge distillation, the knowledge

of the teacher model is transferred to a student model by
training the student model to match the teacher model’s soft
targets (class probabilities) using a transfer set. Our transfer
set consists of two sets of web pages: (1) a large random
sample of unlabeled web pages collected with traffic-based
stratified sampling on the bid request URLs from the Yahoo
DSP in a 6-month period from July 2021 to December 2021;
(2) the same web pages in our human annotated training set
in section III-C. Instead of using the human provided labels,
we generate soft labels for these web pages using the teacher
ensemble approaches we present in the next section and use
them as part of the transfer set for knowledge distillation.

3) Teacher Ensemble Approaches.
We consider two different ways of generating the soft labels

ysi = [ysi,c1 , y
s
i,c2

, ..., ysi,cM ] for each sample xi in the transfer
set, using the multiple teacher models trained with one of the
approaches described in Section III-D1.

• Ensemble-Aggregate. Following the literature on
response-based knowledge distillation, given a sample
xi, we apply each of the K teacher models to predict
a probability vector y

(k)
i = [y

(k)
i,c1

, y
(k)
i,c2

, ..., y
(k)
i,cM

],
k = 1, 2, ...,K. We use category-wise average or
maximum to represent the probability for a category.
Specifically, the soft label for sample xi and category cj
can be computed as

ysi,cj =
1

K

∑
k

y
(k)
i,cj

(3)

or

ysi,cj = max
k

y
(k)
i,cj

(4)

Figure 3(a) illustrates the Ensemble-Aggregate approach
by averaging the category-wise predictions from the
teacher models.

• Ensemble-Best. Ensemble-Aggregate requires predicting
categories for each sample K times to generate a soft
label. Depending on the size of the transfer set, this
process may be cost inefficient. An alternative is to use a

(a) Ensemble-Aggregate

(b) Ensemble-Best

Fig. 3: Teacher ensemble approaches.

single model out of the K teacher models that leads to the
best performance on a specific language to generate soft
labels for samples in that language. Language of a web
page can be detected using signals from its URL and the
ad request. We do not elaborate on language detection
in this work. Practically, we perform an evaluation of K
teacher models using a development dataset to determine
the best teacher model for each language. The soft label
for a web page in a language is simply the probability
vector predicted by the best model for that language. Note
that the same teacher model may be the best performing
model for one or more languages. Figure 3(b) illustrates
the Ensemble-Best approach.

Most previous work on knowledge distillation has been in
the multi-class setting, where temperature scaling is applied
to smooth the predicted label distribution from the teacher to
ensure that predictions for classes outside of the sole positive
class have non-trivial values. In the multi-label classification
setting, where predictions are not normalized over all classes,
the benefit of this smoothing is not clear. Our preliminary
experiments showed that temperature of 1 (i.e., no scaling)
performed best. We thus use the teacher predictions directly
without any scaling when generating the soft labels.

4) Student Model Training.
Once the soft labels are generated for the transfer set,

we train the student model by fine tuning a pre-trained
Transformer model that is smaller than the teacher models
using the transfer set as discussed in section III-D2 When
optimizing the cross entropy loss described in Formula (1), the
soft labels ysi,cj are used as ground truth instead of the binary
labels yi,cj for both datasets. We use this process to distill
large models like XLM-RoBERTa-Large (561M parameters)
into models like XLM-RoBERTa-Base (279M parameters),
resulting in more computationally efficient inference at scale.

E. Data Augmentation for a Unified Student Model

Our teacher models are trained with the data annotated by
professional editors (Section III-C). When generating the soft
labels for the transfer set, we follow the same process to crawl
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the web pages and construct the input using URL domain and
path, page title and body extracted from the HTML for the
teacher models.

When training the student model, we aim at building a
unified model that can categorize both crawled and un-crawled
web pages. This is motivated by two key observations: (1)
crawling to extract page content may add significant latency,
in addition to consuming a lot of resources, when running
contextual targeting at scale; (2) there is often sufficient
information in URL domains (e.g., news.yahoo.com) and
paths (e.g., /sports/football) to produce reasonable
categories. Therefore, we create two training samples from
each labeled web page: the first sample uses the URL, title and
body as input and its soft label as target; the second sample
uses the URL as input and the same soft label as target. When
fine-tuning a pre-trained Transformer student model, we add
the prefix token [Content] to the input of each sample that
has crawled title and body and add the prefix token [URL] to
the input of each sample that only has URL. During inference,
we again append the appropriate prefix token to the input.

IV. RESULTS

In this section, we present the offline evaluation of the
proposed web page classification model. We first evaluate the
different techniques for addressing data imbalance (Section
IV-B) and show how machine translation helps to better
classify multilingual web pages (Section IV-C). We then
delve into our unified multilingual web page categorization
model, emphasizing the performance of the teacher ensembles
(Section IV-D) and the student models distilled from them
(Section IV-E). We finally report the ablation studies on the
impact of teacher ensemble size, the impact of transfer set
size, and the effect of unified input (Section IV-F).

A. Experimental Setup

Corpus. We build the train, development and test datasets as
described in Section III-C. The train set consists of a stratified
sample of web pages included in the ad requests collected by
Yahoo DSP (Demand Side Platform) in 5 languages (English,
Spanish, French, Portuguese, Traditional Chinese), with ad-
ditional English web pages collected by human-editors and
active learning for rare categories, and English web pages
translated into each of the target languages. The development
and test sets only consist of a stratified sample of web pages
for each language. Corpus statistics for each target language
can be found in Table I. Note that the development set is only
used to evaluate the teacher models in Table V and Figure 5.
All other evaluation relies on the test set.
Metric. We use a macro average mAP (Mean Average Preci-
sion) as our main, threshold-independent, metric. Macro mAP
is computed as the mean of each category’s average precision7.
All models were trained over the entire set of 442 categories,
but due to the skewed category distribution in the test set,

7We do not report micro average mAP because its value is dominated
by frequent categories that are easier to predict. Our focus is also to improve
relatively rare categories as they may be important for specific advertising
needs.

evaluation is limited to categories with at least one positive
test example, which we refer to as “testable” categories.
Implementation. We modify the open source code of Hugging
Face transformers8 to support multi-label output and loss
re-weighting, as described in Section III-A. Hyperparameters
are optimized using grid search and the best models are se-
lected based on mAP using early stopping on the development
set. Experiments were conducted using eight Nvidia A100
GPUs with 80GB of VRAM each.

B. Evaluation of Imbalanced Data Classification

A key contribution of this work is to address the inherent
class imbalance in web page classification through category-
based loss re-weighting and targeted data collections as de-
scribed in Section III-A and Section III-C. In this section, we
evaluate their impact using a single large-size model trained
with the full content from English web pages, in order to rule
out the impact of multilingual datasets, url-only input, and
knowledge distillation.

1) Loss Re-Weighting
Since preliminary results showed that RoBERTa-Large [31]

models outperformed similarly sized BERT models, consistent
with published results, we use RoBERTa-Large as our English
language model for the experiments in this section. Table II
shows baseline results for RoBERTa-Large models evaluated
on the entire set of 391 testable categories on the English
language test set. These models are compared against a
unigram+bigram XGBoost [46] model trained on the same
data. We use XGBoost as a baseline here as this was used as
our legacy production model, and XGBoost has been shown
to perform well on a variety of tasks compared with other
decision tree models [46]. Optimal values for the µ and γ
weighting hyperparameters are selected based on mAP on the
development set. The results for models trained for 5 epochs
show the benefit of loss re-weighting: a vanilla implementation
without re-weighting achieves an mAP of 0.326, which is
worse than the baseline XGBoost model, and far behind that
of the best mAP of 0.440 when the proposed class-based
re-weighting is used. Interestingly, positive class weighting,
which assigns the same weight (empirically, always greater
than 1) to all the positive samples and a default value of 1 to
all the negative samples, achieves results almost on par with
the more sophisticated class-based weighting. Although the
early work on BERT models reported task-specific fine tuning
results for a small number of epochs [30], our preliminary
results suggested that training for longer can lead to significant
improvements. The results in Table II show that the mAP
for the best model improves significantly, from 0.440 to
0.462, with longer training. Longer training also appears to
make these models more robust to the choice of loss, as
the difference between the unweighted vs weighted models
is much smaller in this case. Overall, apart from the 5-
epoch RoBERTa model with no re-weighting, all models show
dramatic improvements over the baseline XGBoost model.

Figure 4 examines the impact of the re-weighting hyper-
parameters µ and γ in more details for models trained for

8https://huggingface.co/docs/transformers/index
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(a) Varying µ w/o per-class re-weighting (γ = ∞) (b) Varying γ w/o positive weight (µ = 1) (c) Varying µ at optimal γ = 0.0001

Fig. 4: Analysis of the effect of positive class weight µ and smoothing factor γ with RoBERTa-Large.

TABLE II: mAP for various weighting strategies for English
web page classification with RoBERTa-Large on the test set

.

Model 5 epochs 80 epochs
XGBoost 0.337
Transformer models
No re-weighting 0.326 0.450
Positive-class weighting 0.435 0.460
Class-based weighting 0.440 0.462

5 epochs. In addition to mAP averaged over all categories,
for this analysis we split the taxonomy into head, torso and
tail categories based on the number of training samples per
category in a 25k stratified random sample, as follows: (i)
head: categories with >=500 examples, (ii) torso: categories
with >=30 and <500 examples, (iii) tail: categories with <30
examples. Figure 4a examines the effect of the positive weight
factor µ without per-class re-weighting: while a default value
of 1 is optimal for the head categories, this leads to poor per-
formance on tail categories and sub-optimal performance on
torso categories, with an optimal value for torso/tail at around
µ = 10. This is because torso and tail categories suffer much
more from the positive-negative imbalance problem compared
to head categories. Increasing the value of µ encourages the
model to focus on improving torso and tail categories. Figure
4b examines the effect of the smoothing factor when the
positive labels have no additional weight (µ = 1). For larger
values of the γ hyperparameter (i.e. less re-weighting), we
see that torso/tail categories perform poorly, with torso/tail
performance improving as re-weighting is applied by reducing
γ. According to Formula (2), as γ gets smaller, the smoothing
term γN gets larger, and thus the positive samples from the
torso and tail categories receive higher weights. Figure 4c
shows the effect of changing µ when an approximately optimal
smoothing factor is used: while the trend is the same, the
interaction of the two hyperparameters leads to a lower optimal
value for µ.

2) Targeted Data Collection
In this section, we delve into the implications of the targeted

data sampling techniques outlined in Section III-C. In these
experiments, we train the RoBERTa-Large models using differ-
ent subsets of the training set, specifically comparing datasets
comprising 15k, 20k, and 25k documents, which are assembled
through a mix of random sampling, URL Collection, and active
learning data acquisition strategies. The results, as presented

TABLE III: mAP for RoBERTa-Large on English web page
classification using various sampling methods on the test set.
Random - Random sample. UC - URL Collection. Active -
Active learning.

Sampling Strategy #samples All Head Torso Tail
Random15k 15k 0.390 0.652 0.439 0.269
Random20k 20k 0.397 0.659 0.450 0.271
Random15k + UC5k 20k 0.447 0.652 0.452 0.394
Random25k 25k 0.401 0.655 0.451 0.282
Random20k + UC5k 25k 0.445 0.647 0.448 0.393
Random15k + Active5k + UC5k 25k 0.452 0.649 0.448 0.413

in Table III, reveal a modest enhancement across all segments
when introducing additional random data to the initial 15k
dataset. In contrast, the inclusion of URL Collection data leads
to a substantial improvement in the case of tail categories
and a modest improvement for torso categories. As URL
Collection primarily focuses on rare categories, it underscores
the effectiveness of this strategy, even though it may exhibit
bias. Moreover, after training a model using URL Collection
data, we accumulate sufficient data to bootstrap models for
torso and tail categories, enabling the application of active
learning techniques to sample these specific categories. The
final three rows of Table III illustrate the impact of further
expanding the size of the training corpus, demonstrating that
active learning sampling provides additional enhancements
over URL Collection, particularly for tail categories.

C. Evaluation of Multilingual Models

Our ultimate goal is to train a single multilingual model that
is able to classify web pages in 5 target languages. To this
end, we first evaluate in this section a number of large-size
models trained on our multilingual dataset described in Section
III-C. Models trained with the best dataset variant serve as the
base models of the proposed teacher ensembles that we will
evaluate in Section IV-D. To have a single model that is able to
predict over multiple languages, we employ XLM-RoBERTa-
Large, a state-of-the-art model known for its effectiveness in
multilingual NLP tasks [17]. We compare the performance of
XLM-RoBERTa-Large models trained with human-annotated
editorial data, translated data, and a combination of both in
Table IV. Notably, training a non-English classifier exclusively
using translated data yields competitive results compared to
training with data directly annotated in the target language.
These findings are promising because using automatically
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TABLE IV: mAP for multilingual models with various training
datasets on the test set. E - Editorial data. T - Translated data.

Model Train Language en es fr pt zh-tw
Monolingual
RoBERTa-Large E:en 0.460 - - - -
XLM-R-Large E:en 0.458 - - - -
Multilingual
XLM-R-Large E:en + T:es/fr/pt/zh-tw 0.447 0.544 0.519 0.517 0.485
XLM-R-Large E:en/es/fr/pt/zh-tw 0.468 0.555 0.552 0.536 0.532
XLM-R-Large E+T:es/fr/pt/zh-tw - 0.550 0.529 0.536 0.520
XLM-R-Large E+T:en/es/fr/pt/zh-tw 0.474 0.577 0.557 0.560 0.543

translated data not only augments our training dataset with-
out requiring additional human effort but also allows us to
leverage English-language URL Collection and active learning
strategies to enhance coverage of rare categories. The most op-
timal results, encompassing all languages, including English,
are achieved by combining translated and directly annotated
data, leading to improvements in mAP of 1.3% for English,
4.0% for Spanish, 0.9% for French, 4.5% for Portuguese,
and 2.1% for Traditional Chinese. Surprisingly, these results
reveal that when evaluating on English data, the multilingual
model trained with data from five languages not only matches
the performance of English-only models but surpasses them
with a relative improvement of 3.0% over the English-only
RoBERTa-Large model and 3.5% over an English-only XLM-
RoBERTa-Large model. Similarly, Table IV indicates that
adding English data while fine-tuning the XLM-RoBERTa-
Large multilingual model significantly improves mAP for all
the non-English languages.

D. Evaluation of Teacher Ensembles

In Section II we presented three variants of creating in-
dividual teacher models (i.e., Random initialization, Loss re-
weighting and Language) and two types of teacher ensemble
approaches (i.e., Ensemble-Aggregate and Ensemble-Best). We
evaluate their combinations in this section. Table V summa-
rizes the performance of individual teachers as well as the
corresponding teacher ensembles on the development dataset.
All the teacher models are fine-tuned from the same XML-
RoBERTa-Large model.

The top section in Table V (Random initialization variants)
reports the performance of 5 individual teacher models trained
with different random initialization, denoted as T-Rand-k
(1 ≤ k ≤ 5), two variants of Ensemble-Aggregate that aggre-
gate the per category predictions from the 5 teacher models
using average probability (T-Rand-Avg) or max probability
(T-Rand-Max), and one variant of Ensemble-Best that uses
the best model among the 5 teachers for each language (T-
Rand-Best). We observe that the 3 teacher ensembles clearly
outperform all the 5 individual models on the 5 targeted lan-
guages. While the improvement is expected for T-Rand-Best
as it explicitly picks the best performing model, T-Rand-Avg
and T-Rand-Max achieve better mAP than T-Rand-Best. This
implies different teacher models may capture complementary
knowledge. By aggregating their predictions, there is also a
regularization effect that reduces the biases from individual
teacher models. T-Rand-Avg achieves the best mAP, which
improves the performance of the baseline single teacher model

(T-Rand-1 as presented in the conference version of this work
[2]) by 7.1% for English, 4.8% for Spanish, 3.2% for French,
7.2% for Portuguese and 4.7% for Traditional Chinese.

The middle section in Table V (Loss re-weighting variants)
reports the performance of 5 individual teacher models trained
with different loss re-weighting hyperparameters, denoted as
T-Hyper-k (1 ≤ k ≤ 5), two variants of Ensemble-Aggregate
that aggregate the per category predictions from the 5 teacher
models using average probability (T-Hyper-Avg) or max prob-
ability (T-Hyper-Max), and one variant of Ensemble-Best that
uses the best model among the 5 teacher models for each
language (T-Hyper-Best). Note that T-Hyper-1 and T-Rand-
1 are the same individual teacher model which is also the
same as the teacher model in [2]. We name it differently in
Table V for the easy of comparison within the same group
of models. We observe that all 3 ensemble models improve
the mAP of each individual teacher models across the five
targeted languages. The performance of T-Hyper-Avg is 2.1%
better than that of T-Rand-Avg.

The bottom section in Table V (Language variants) explores
the language variants of the teacher models. Here, we train
“monolingual” teacher models using samples in one specific
language to fine tune an XLM-RoBERTa-Large model for that
language. We obtain 5 individual teacher models, one for each
target language. As expected, the mAP on each target language
outperforms the mAPs on the four off-the-target languages9.
The teacher ensembles are created in the same way as T-Lang-
Avg and T-Lang-Max for Ensemble-Aggregate and as T-
Lang-Best for Ensemble-Best. All 3 teacher ensembles lead to
higher mAP than each individual model. More importantly, the
best performing language specific teacher ensemble T-Lang-
Avg also achieves higher mAP than the baseline individual
teacher model T-Rand-1 for four out of five languages.

As shown by Table V, all the three variants of building in-
dividual teacher models allow creating teacher ensembles that
can categorize web pages more accurately than an individual
model. Teacher ensembles based on loss re-weighting perform
slightly better than those based on random initialization, and
they outperform the teacher ensembles based on language.
Ensemble-Aggregate by averaging per category probability to
create soft labels (i.e., T-*-Avg) is the best among all ensemble
approaches (compared to T-*-Max and T-*-Best).

E. Evaluation of Student Models

Table VI summarizes the performance of XLM-RoBERTa-
Base student models trained using the Ensemble-Aggregate
and Ensemble-Best teacher ensembles, evaluated on the test
dataset. We use the transfer dataset labeled by each teacher
ensemble to train two separate models: Content Model is
trained using the full content as input and URL Model is
trained using the URL as input. Our transfer dataset consists
of the human labelled dataset plus 300K web pages randomly
sampled from Yahoo DSP for each language.

We observe that the student models distilled from teacher
ensembles have higher mAP than students models distilled

9Although the fine-tuning is done with samples in one language, since
the pre-trained model is multilingual, the performance on the off-the-target
languages remains competitive.
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TABLE V: mAP of teacher models on the development set. Highlighted entries indicate the best mAP per language overall
(bold underlined), per section (bold), and among individual teacher models per section (underlined).

Teacher Model Type µ γ en es fr pt zh-tw Avg
Random initialization variants
T-Rand-1 [2] Individual teacher 0.1 0.01 0.466 0.478 0.494 0.456 0.387 0.456
T-Rand-2 Individual teacher 0.1 0.01 0.477 0.481 0.488 0.457 0.380 0.456
T-Rand-3 Individual teacher 0.1 0.01 0.483 0.477 0.480 0.464 0.382 0.457
T-Rand-4 Individual teacher 0.1 0.01 0.473 0.479 0.487 0.467 0.382 0.457
T-Rand-5 Individual teacher 0.1 0.01 0.477 0.467 0.486 0.459 0.388 0.455
T-Rand-Best Ensemble-Best - - 0.483 0.481 0.494 0.467 0.388 0.462
T-Rand-Max Ensemble-Aggregate - - 0.491 0.489 0.496 0.471 0.394 0.468
T-Rand-Avg Ensemble-Aggregate - - 0.499 0.501 0.510 0.489 0.405 0.472
Loss re-weighting variants
T-Hyper-1 [2] Individual teacher 0.1 0.01 0.466 0.478 0.494 0.456 0.387 0.456
T-Hyper-2 Individual teacher 0.01 0.01 0.463 0.460 0.477 0.454 0.373 0.445
T-Hyper-3 Individual teacher 1.0 0.01 0.474 0.473 0.484 0.466 0.383 0.456
T-Hyper-4 Individual teacher 2.0 0.01 0.471 0.467 0.480 0.457 0.388 0.453
T-Hyper-5 Individual teacher 0.1 0.001 0.481 0.476 0.486 0.471 0.388 0.442
T-Hyper-Best Ensemble-Best - - 0.481 0.478 0.494 0.471 0.388 0.462
T-Hyper-Max Ensemble-Aggregate - - 0.482 0.491 0.508 0.476 0.397 0.471
T-Hyper-Avg Ensemble-Aggregate - - 0.500 0.502 0.515 0.488 0.407 0.482
Language variants
T-Lang-En Individual teacher 2.0 0.01 0.459 0.427 0.448 0.415 0.358 0.422
T-Lang-Es Individual teacher 2.0 0.01 0.443 0.452 0.443 0.416 0.341 0.419
T-Lang-Fr Individual teacher 2.0 0.01 0.428 0.423 0.449 0.405 0.321 0.405
T-Lang-Pt Individual teacher 2.0 0.01 0.439 0.428 0.425 0.424 0.344 0.412
T-Lang-Zh-Tw Individual teacher 2.0 0.01 0.420 0.420 0.417 0.383 0.367 0.402
T-Lang-Best Ensemble-Best - - 0.459 0.452 0.449 0.424 0.367 0.430
T-Lang-Max Ensemble-Aggregate - - 0.472 0.470 0.474 0.459 0.379 0.451
T-Lang-Avg Ensemble-Aggregate - - 0.484 0.484 0.492 0.468 0.391 0.464

TABLE VI: mAP for the student models on the test set. c
- Model trained with full content (i.e., URL+Title+Body) as
input. u - Model trained with URL as input.
Model Teacher en es fr pt zh-tw Avg
Teacher/Teacher Ensemble Models
T-Hyper-1 [2] - 0.474 0.577 0.557 0.560 0.543 0.542
T-Hyper-Avg - 0.504 0.607 0.588 0.590 0.580 0.574
Student Content Models - trained and tested with full content as input
S-Rand-1c [2] T-Rand1 0.483 0.581 0.564 0.570 0.548 0.549
S-Rand-Bestc T-Rand-Best 0.489 0.589 0.564 0.566 0.560 0.554
S-Rand-Avgc T-Rand-Avg 0.500 0.599 0.586 0.581 0.573 0.569
S-Hyper-Bestc T-Hyper-Best 0.485 0.591 0.564 0.551 0.534 0.545
S-Hyper-Avgc T-Hyper-Avg 0.493 0.591 0.576 0.572 0.566 0.559
Student URL Models - trained and tested with URL as input
S-Rand-1u [2] T-Rand1 0.423 0.508 0.497 0.506 0.418 0.470
S-Rand-Bestu T-Rand-Best 0.424 0.523 0.498 0.508 0.416 0.474
S-Rand-Avgu T-Rand-Avg 0.427 0.521 0.508 0.513 0.424 0.479
S-Hyper-Bestu T-Hyper-Best 0.424 0.510 0.488 0.496 0.410 0.466
S-Hyper-Avgu T-Hyper-Avg 0.423 0.518 0.494 0.508 0.426 0.474

from an individual teacher. For the student content models,
the mAPs are even higher than those of the individual teacher
T-Hyper-1 [2]. The mAP scores are also very close to the
best teacher ensemble T-Hyper-Avg (Table V). Student con-
tent models S-Rand-Avgc and S-Hyper-Avgc outperform S-
Rand-Bestc and S-Hyper-Bestc. This implies better teacher
ensembles lead to better student models. The student models
S-Rand-Avgc and S-Rand-Avgu, distilled from the teacher
ensemble T-Rand-Avg, have the highest mAP among all
student models, improving mAP the baseline model S-Rand-
1c [2] and S-Rand-1u [2] by 3.6% and 1.9% on average across
5 languages.

Table VII compares the best student URL model distilled
from the teacher ensemble S-Rand-Avgu with models directly
fine-tuned from pre-trained models using URL as input. We
observe that URL-only inference using a model trained with

TABLE VII: mAP for different URL models on the test
set. XML-R-Baseu and XLM-R-Largeu are fine-tuned URL
models without using knowledge distillation.

Model Train Test en es fr pt zh-tw Avg
T-Rand-1 [2] Content URL 0.309 0.380 0.381 0.368 0.306 0.349
XLM-R-Baseu URL URL 0.345 0.433 0.415 0.430 0.351 0.397
XLM-R-Largeu URL URL 0.374 0.470 0.449 0.455 0.376 0.425
S-Rand-Avgu URL URL 0.427 0.521 0.508 0.513 0.424 0.479

content yields poor mAP and a model fine-tuned specifically
with URL-only input shows significant improvement. Never-
theless, using the proposed multi-teacher knowledge distilla-
tion to train a base-sized URL model can achieve significantly
higher mAP (12.7% on average) than a large model directly
fine-tuned with URL data across all the languages.

A main contribution of this work is that our student model
is a unified multilingual model that can categorize both full
content and URL-text only as input. Table VIII compares
the unified student model (S-Rand-Avgm) with the separate
student models. S-Rand-Avgm achieves competitive mAPs
as the student content and URL models distilled from the
same teacher ensemble T-Rand-Avg. On average, the mAP is
0.9% lower than S-Rand-Avgc and 0.6% higher than S-Rand-
Avgu. This model is better than the student models distilled
from a single teacher model, i.e., S-Rand-1c and S-Rand-
1u for web pages with and without full content, by 2.7%
and 2.6% respectively. More importantly, with the unified
model, we only need to deploy one single model which halves
the memory footprint in our system. Note that although we
augment the transfer set and double its size for the unified
model, it is still trained for the same number of steps as the
separate models. This keeps the training cost comparable.
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TABLE VIII: mAP for the unified student model on the test
set. m - Unified model trained with mixed inputs.
Model Train Input en es fr pt zh-tw Avg
Unified Student Models - tested with full content as input
S-Rand-1c [2] Content 0.483 0.581 0.564 0.570 0.548 0.549
S-Rand-Avgc Content 0.500 0.599 0.586 0.581 0.573 0.569
S-Rand-Avgm Content & URL 0.502 0.596 0.575 0.580 0.567 0.564
Unified Student Models - tested with URL as input
S-Rand-1u [2] URL 0.423 0.508 0.497 0.506 0.418 0.470
S-Rand-Avgu URL 0.427 0.521 0.508 0.513 0.424 0.479
S-Rand-Avgm Content & URL 0.433 0.519 0.506 0.522 0.429 0.482

Fig. 5: Impact of teacher ensemble size. T-Rand-Avg is eval-
uated on the development set.

F. Ablation Study

1) Impact of Teacher Ensemble Size
In this section, we evaluate how the number of teacher

models in an ensemble influences its performance as well as
that of the student model distilled from it. Figure 5 shows
the mAP per language for teacher ensembles with 1, 3, 5, 7
and 9 models respectively. We focus on T-Rand-Avg because
the corresponding student models have the best performance
(Table VI). We observe that as the number of models in the
teacher ensemble increases, the mAP also increases.

Table IX compares the performance of the unified student
models distilled from teacher ensemble with sizes 5 and 9.
We observe that using 9 models in T-Rand-Avg leads to 1.4%
and 1.2% higher mAPs on average for the student model.
This implies different teacher model can have complementary
knowledge and different correctness on the same sample
and combine all together could lead less bias and provide
better supervision for the student model learning. Despite the
superior accuracy, using more models in the teacher ensemble
implies higher computational cost for predicting probability
vectors for each sample in the transfer set, especially when
the transfer set is large.

2) Impact of Transfer Set Size
Table VI and Table VII show that a base-size distilled

model trained with a transfer set achieves significantly higher
mAP than a large-size model directly fine-tuned with a human
labeled set for both web pages with and without full content.
Table X reports how the size of the transfer set influences
the mAP of the unified student models (S-Rand-Avgm). As
described in Section III-D2, our transfer set is composed
of web pages from the human labeled training set (Section
III-C) and those randomly sampled from an unlabeled set
representing the live advertising traffic. The student models in

TABLE IX: Impact of teacher ensemble size on student
models. S-Rand-Avgm is evaluated on the test set.

Test Input #Models en es fr pt zh-tw Avg
Content 5 0.502 0.596 0.575 0.580 0.567 0.564
Content 9 0.503 0.613 0.584 0.591 0.571 0.572
URL 5 0.433 0.519 0.506 0.522 0.429 0.482
URL 9 0.434 0.533 0.514 0.526 0.433 0.488

TABLE X: Impact of transfer set size on the unified student
models S-Rand-Avgm, evaluated on the test set. Soft labels
for web pages in the editorial labeled data (E) and additional
random unlabeled data (R). Numbers in the #R column are per
language: e.g. 50k × 5 indicates 50k each for 5 languages.

#E #R en es fr pt zh-tw Avg
Unified Student Model - tested with full content as input
248k 0 0.471 0.583 0.554 0.564 0.549 0.544
248k 50k × 5 0.487 0.590 0.570 0.574 0.558 0.556
248k 100k × 5 0.496 0.598 0.574 0.580 0.559 0.561
248k 300k × 5 0.502 0.596 0.575 0.580 0.567 0.564
0 300k × 5 0.504 0.597 0.579 0.581 0.567 0.566
Unified Student Model - tested with URL as input
248k 0 0.401 0.489 0.478 0.472 0.402 0.448
248k 50k × 5 0.417 0.510 0.495 0.500 0.416 0.468
248k 100k × 5 0.427 0.512 0.497 0.509 0.422 0.473
248k 300k × 5 0.433 0.519 0.506 0.522 0.429 0.482
0 300k × 5 0.434 0.505 0.492 0.501 0.405 0.467

Table X are trained for 1M steps using soft labels generated by
the teacher ensemble T-Rand-Avg for web pages from editorial
data, randomly sampled data, or a combination of both.

We observe from Table X that training directly with soft
labels from the editorial data leads to an increase in mAP
compared to not using knowledge distillation (Table V and
Table VII). Introducing random data labelled by the teacher
model for distillation leads to further performance gains. The
improvement is more significant with a larger amount of
random samples, especially for web pages without full content.
Interesting, using enough random samples only achieves the
highest mAP for web pages with full content. This may be
because the label distribution is better represented by this large
random set. Yet, since using the full transfer set (of web pages
from the editorial set and the random set) leads to much better
mAP for web pages with only URL, our final unified model
is trained with the full transfer set.

3) Impact of Prefix Token in Student Models
When training the unified student model for classifying

web pages with full content or with only URLs, we enhance
the training data by adding a prefix token, [Content]
or [URL], to the input of each sample as described in
Section III-E. We assess the performance of the unified student
models trained with or without the prefix tokens. The results
in Table XI demonstrate that the unified student model (S-
Rand-Avgm), trained on input data with a prefix token for
each sample, achieves higher mAPs regardless of whether a
web page has full content or not during the inference.

V. PRODUCT IMPACT ON CONTEXTUAL TARGETING

Our taxonomic web page classification models were de-
veloped to support category-based contextual targeting in
the Yahoo DSP (Demand Side Platform). We built a Spark
Streaming pipeline on AWS that uses our unified multilingual
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TABLE XI: Impact of prefix token on the unified student
models. S-Rand-Avgm trained with or without prefix tokens
are evaluated on the test set.

Test Input prefix en es fr pt zh-tw Avg
Content no 0.497 0.598 0.580 0.582 0.567 0.565
Content yes 0.503 0.613 0.584 0.591 0.571 0.572
URL no 0.430 0.523 0.507 0.520 0.431 0.482
URL yes 0.434 0.533 0.514 0.526 0.433 0.488

model to categorize the web pages in the ad requests to the
DSP in near real time. Categories assigned to a web page are
filtered using per category thresholds that ensure a precision
of at least 0.8 on a standalone evaluation dataset randomly
sampled from the online traffic. URLs and their predicted
categories are stored in a key-value store for real-time lookup
during ad serving. When an ad request arrives in the DSP, ads
that target at least one of the web page’s categories are eligible
for the ad auction.

In this section, we report the performance of four represen-
tative model launches in production for contextual targeting
during the course of building the product. We measure the
contribution of contextual targeting to the entire Yahoo DSP
before and after a model launch for impressions, clicks and
revenue. These contributions are measured 15 days before and
15 days after each launch date, and the relative improvement
for each metric is summarized in Table XII. Relative changes
are computed to de-emphasize temporal effects.

The first launch replaced the production XGBoost model
with our Transformer-based model for crawled English web
pages. The XGBoost model consists of one binary classifier
for each category, trained using words and Wikipedia entities
from the web page content as features. We observe that
the Transformer-based model increased the contribution of
Contextual Targeting to DSP by 56% for impressions, 17%
for clicks, and 53% for revenue.

One major contribution of this work is a distilled
Transformer-based model that can accurately classify un-
crawled web pages solely based on tokens from the URLs.
When we launched this model into production for English
pages, in addition to the model that only classifies crawled
web pages, the contribution of contextual targeting to DSP im-
pressions increased by 257%. Given that a significant fraction
of web pages do not have their content available for analysis,
and therefore could not previously be classified, this launch
enabled classification of a far greater number of documents,
and so greatly increased the impact of contextual targeting.

The third launch involved the two distilled multilingual
models that extend our contextual targeting solution to crawled
and uncrawled web pages in Spanish, French, Portuguese,
and Traditional Chinese. As expected, compared to the earlier
models that only classify English pages, this launch increased
the contribution of Contextual Targeting to DSP by 37% for
impressions, 31% for clicks, and 33% for revenue.

Note that the second and the third launches consist of sep-
arate models for classifying web pages with crawled content
and web pages with only URLs respectively. The forth launch
replaces the models in the third launch with a single unified
model that categorizes crawled and uncrawled web pages
seamlessly. Specifically, we replaced the 4 running models

TABLE XII: Post launch metrics for contextual targeting. The
relative improvement for the contribution percentage of con-
textual targeting to DSP before and after launch are reported.
#Models - number of models required.

#Models Post launch coverage Relative change w.r.t. pre-launch
Market Uncrawled Impression Click Revenue

1 en No +56% +17% +77%
2 en Yes +257% +194% +353%
4 en/es/fr/pt/zh-tw Yes +37% +31% +33%
1 en/es/fr/pt/zh-tw Yes +19% +36% +17%

for crawled English, crawled non-English, uncrawled English
and uncrawled non-English web pages with 1 single model.
This reduces the memory footprint of the model and the
maintenance complexity. More importantly, as the accuracy
of the unified model improves, after launching the new model
into production, we observe 19% increase in impressions, 36%
increase in clicks, and 17% increase in revenue for Yahoo’s
category-based contextual targeting on DSP.

Together, these post-launch metrics show that each of these
launches, based on model variations described in this paper,
contributed significantly to the growth of contextual targeting
within the DSP platform at Yahoo.

VI. CONCLUSION

In this paper, we proposed, for the first time, a unified
multilingual model that accurately categorizes web pages
using either full content or only URLs. We showed through ex-
tensive evaluation that (i) URL Collection (i.e. tasking editors
with actively searching for web pages relevant to rare cate-
gories) is critical to bootstrap models for torso/tail categories,
which further enables the use of active learning sampling,
to address the skewed category distribution; (ii) augmenting
multilingual data through machine translation significantly
improves the classification accuracy for both English and non-
English pages; (iii) class-based loss re-weighting is important
to improve classification accuracy for rare categories; (iv)
knowledge distillation allows us to train lightweight and
more accurate models, especially when page content is not
crawled for URLs; (v) multi-teacher knowledge distillation is
a crucial approach for improving the supervision signals from
the teachers’ responses; (vi) augmenting the training set with
different input formats and proper prefix tokens is a simple yet
effective approach to enable a unified student model to classify
both crawled and uncrawled web pages. This model has been
successfully deployed into the production system to improve
the category-based contextual targeting in Yahoo’s DSP.

As future improvements, we are expanding the model to
cover more languages that are important to our international
markets. Besides, as the web continuously evolves and the
categories need to reflect emerging advertising needs, adapting
the model to evolving interest taxonomy with minimum re-
labeling and re-training remains a challenge.
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